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Outline
1. Description of Orb: a new computer pro-
gram by Damian Heard for computing and study-
ing hyperbolic structures on very general 3-
manifolds and 3-orbifolds.

2. Some applications to classification of knot-
ted graphs and low volume hyperbolic 3-orbifolds.

3. A brief demonstration of Orb.



Orbifolds:
A 3-orbifold is a space locally modelled onR3

modulo finite groups of diffeomorphisms.
An orientable 3-orbifold is determined by its
underlying space Q which is an orientable 3-
manifold and singular locusΣ which is a triva-
lent graph (possibly disconnected or empty)
with each edge or circle labelled by an integer
n ≥ 2. For example:
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A hyperbolic structure on such an orbifold is
a singular hyperbolic metric with cone angles
2π/n along each edge labelled n.

At a trivalent vertex we allow:
angle sum > 2π giving a finite vertex,
angle sum= 2π giving a cusp,
angle sum< 2π giving a totally geodesic bound-
ary component.



Basic method for computing hyperbolic struc-
tures
•Decompose the manifold or orbifold into tetra-
hedra.
• Find geometric shapes for tetrahedra in hy-
perbolic space (dihedral angles, edge lengths)
so that:
1. faces are glued by isometries
2. sum of dihedral angles around each edge
is 2π (or the desired cone angle).
(Also need completeness conditions if the space
is non-compact.)

Generalized hyperbolic tetrahedra
In hyperbolic geometry can use tetrahedra with
• finite vertices (inside H3),
• ideal vertices (on the sphere at infinity), or
• hyperinfinite vertices (beyond the sphere at
infinity)!

This is easiest to see in the projective model
for H3:
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Hyperinfinite vertices are truncated as shown.
Interiors of edges must meet H3.



Some existing programs

SnapPea by Jeff Weeks
Uses ideal triangulations to find hyperbolic
structures on cusped hyperbolic 3-manifolds
(finite volume, non-compact) and closed man-
ifolds obtained from these by Dehn filling.
Can start by drawing a projection of a knot
or link, and find hyperbolic structures on the
link complement and on manifolds obtained by
Dehn surgery.

(See preprint of Weeks: math.GT/0309407)

Geo by Andrew Casson
Uses finite triangulations to find hyperbolic
and spherical structures on closed manifolds.

ographs by B. Martelli, R. Frigerio, C.Petronio
Finds hyperbolic structures with totally geodesic
boundary using triangulations by truncated tetra-
hedra.



Orb by Damian Heard
Uses generalized hyperbolic tetrahedrawith
finite, ideal and hyperinfinite vertices. (Can
pass continuously between these and allow flat
and negatively oriented tetrahedra.)

Can deal with orbifolds and cone-manifolds
where the cone angle around an edge is not
necessarily 2π.

Can start with a projection of a graph in S3

and try to find hyperbolic structures with pre-
scribed cone angles around all the edges

How Orb works

Suppose we have an orbifold in S3 whose sin-
gular locus is a graphΣ with integer labels on
the edges. (For this talk, I’ll generally assume
all vertices are finite.)

Step 1. Finding triangulations
Given a projection of Σ, find a triangulation
of S3 with Σ contained in the 1-skeleton by
extending the approach of W. Thurston and
J. Weeks. Can also retriangulate to change
and simplify the triangulation, using 2-3 and
3-2 moves etc.



Step 2. Finding hyperbolic structures
We work in Minkowski space E3,1, i.e. R4 with
the indefinite inner product

〈x, y〉 = −x0y0 + x1y1 + · · · + x3y3

and use the hyperboloid model:
H

3 = {x ∈ E
3,1|〈x, x〉 = −1, x0 > 0}.

x
0

The distance d between x, y ∈ H3 is given by
〈x, y〉 = − cosh d.

Each point x ∈ E3,1 with 〈x, x〉 > 0 repre-
sents a normal to the geodesic plane in H3

Πx = {w ∈ H
3|〈x, w〉 = 0}.

x
0

x

If Πx intersects Πy inside H3 then the angle
θxy between the two planes is given by

cos θxy =
〈x, y〉

‖x‖‖y‖
.



Let ∆ be a generalized tetrahedron with ver-
tices v1, v2, v3, v4 in E3,1. This gives a basis
for E3,1 with dual basis w1, w2, w3, w4 such
that 〈vi, wj〉 = δij. Geometrically, wi repre-
sents a choice of normal to the face of∆ op-
posite vertex vi.

2-dimensional picture in projective model:
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Let G be the vertex Gram matrix of∆:

G = [〈vi, vj〉] = [vij].

Then ∆ is determined (up to isometry) by G

since the length xij of edge ij is

coshxij = − vij√
viivjj

.

Let G∗ be the normal Gram matrix of∆:

G∗ = [〈wi, wj〉] = [wij].

Then the dihedral angle of edge ij is

cos θij =
wij√
wiiwjj

.

Further it is easy to check that G∗ = G−1.



Parameters and equations
Given a triangulation of a 3-orbifold we have
• one parameter vij per edge,
• one parameter vii per vertex.

From these we can calculate the dihedral an-
gles of each tetrahedron. Moreover, faces paired
by gluing maps will be automatically isometric.

So the only equations we have to satisfy are
the edge equations, i.e.
• the sum of dihedral angles around each edge
is the desired cone angle.
These can be solved using Newton’s method,
starting with suitable regular generalized tetra-
hedra as the initial guess.

ByMostow-Prasad rigidity the hyperbolic struc-
ture on the 3-orbifold is unique if it exists. Hence
geometric invariants are actually topological in-
variants.

Using Orb we can find: volume (using formu-
las of A. Ushijima), matrix generators, Dirich-
let domains, lengths of closed geodesics, pre-
sentations of π1, homology groups, covering
spaces, ...

For hyperbolic manifolds with geodesic bound-
ary we can also compute the canonical cell
decomposition (defined by Kojima). This al-
lows us to decide if such manifolds are homeo-
morphic and compute their symmetry groups.



Features to be added:
• Dehn filling
• addition of 2-handles or handlebodies to man-
ifolds with boundary of genus ≥ 2,
• computation of spherical structures.

By combining Orb with the program Snap (de-
veloped by Oliver Goodman) we will also be
able to find
• exact solutions,
• arithmetic invariants.

Application 1: Enumeration and classifica-
tion of knotted graphs in S3

(Hodgson, Heard; J. Saunderson, N. Sheri-
dan, M. Chiodo)

Much work in knot theory has been motivated
by attempts to build up knot tables (e.g. Tait,
Conway, Hoste-Thistlethwaite-Weeks). A very
natural generalization is to study knotted graphs
in S3, say up to isotopy. There has been much
less work on the tabulation of knotted graphs.
In 1989, Rick Litherland produced a table of
90 prime knotted theta curves up to 7 cross-
ings, using an Alexander polynomial invariant
to distinguish graphs.



H. Moriuchi has recently verified these tables
by using Conway’s approach and the Yamada
polynomial invariant.

We have shown that these knotted graphs can
be distinguished by hyperbolic invariants com-
puted using Orb. In fact there is a complete
invariant: We compute the hyperbolic struc-
ture with geodesic boundary consisting of 3-
punctured spheres, such that all meridian curves
are parabolic. (This is a limit of hyperbolic
orbifolds where all labels → ∞, i.e. all cone
angles → 0). Kojima’s canonical decompo-
sition then determines the graph completely.
This also allows us to determine the symme-
try group of all these graphs.

Start of Litherland’s table of θ graphs

For each graph we give volume of hyperbolic structure
with meridians parabolic, symmetry group, reversibility.

5.333489566898 7.706911802810

C4 r C4 r

10.396867320885 8.929317823097

D3 n C4 r



6.551743287888 8.355502146380

C4 r C2 r

8.967360848788 8.793345603865

C4 r C4 r

9.966511883698

C2 r

Building up tables of knotted graphs
We have also extended these tables to enu-
merate and classify all prime knotted trivalent
graphs in S3 with 2 or 4 trivalent vertices, and
up to 7 crossings. Here prime means there
is no 2-sphere meeting the graph in at most 3
points dividing the graph into non-trivial pieces.

Our method is based on Conway’s approach:
First we enumerate basic prime polyhedra
with vertices of degree 3 and 4, using the pro-
gram plantri of B. McKay and G. Brinkmann.



Then replace degree 4 vertices by algebraic
tangles to obtain projections of knotted graphs.

We then remove repeated projections by find-
ing a canonical description for each one using
the ideas behind plantri.

Finally we distinguish the graphs using hyper-
bolic invariants computed using Orb, e.g.
volumes of associated orbifolds and Kojima’s
canonical decomposition.

The following table summarizes the knotted graphs
produced.



Prime trivalent graphs:
up to 4 vertices and 7 crossings
basic graph no. of circle components

0 1 2
90 50 4
48 9 0
810 143 3

554 121 3
529 29 0
60 3 0
57 0 0

8 0 0
8 0 0

Application 2: enumeration of low volume
hyperbolic 3-orbifolds

By varying the labels on the knotted graphs
obtained above we can start generating hyper-
bolic orbifolds with underlying space S3. This
work is just beginning; currently we are looking
at orbifolds with connected graphs as singular
locus.

The following table shows a few of the lowest
volume orbifolds. The first 14 orbifolds on our
list were already known (and included in a pa-
per of Zimmermann). After that some new low
volume hyperbolic 3-orbifolds start to appear.



Some low volume hyperbolic 3-orbifolds
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Vol: 0.05265 Vol: 0.065965
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Vol: 0.06619 Vol: 0.071770
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Vol: 0.0845785 Vol: 0.117838
smallest cusped smallest 2 vertex
orbifold orbifold

(All edges labelled 2 except where otherwise indicated.)



Availability of Orb
Orb uses Qt for its user interface and should
run on any unix system. We’ve been using it
on Macs running OS X and linux machines.

Orb should be available for distribution by the
end of July.

I will add a link to Orb on my webpage:
www.ms.unimelb.edu.au/∼cdh


