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1 Introduction and Motivation

In this lecture I would like to introduce to you an unconventional perturbation
theory for the single impurity Anderson model (SIAM) which can be used as
“quick-and-dirty” method to study correlated models in the DMFT. During the
past week you will already have heard about other “impurity solvers” such as
Quantum Monte Carlo (QMC), perturbation theory in the Coulomb repulsion U
or Wilson’s numerical renormalization group (NRG). The obvious question thus
is: Why do we yet need another technique to treat this model? Of course, QMC
is numerically exact; however, for large Coulomb repulsion and small tempera-
tures it becomes, even with modern computers, computationally very expensive.
In addition, in order to obtain dynamical quantities one has to go through the
numerically ill-defined process of analytic continuation. Perturbation theory in
U (non self-consistent) is straightforward and numerically easy to implement; by
its very nature it is in principle restricted to the weak coupling regime and can
of course never produce exponentially small energy scales like the Kondo tem-
perature, for example. Moreover, strictly speaking it leads to reasonable results
only in the particle-hole symmetric case1 and systematic improvements (self-
consistency, additional diagram classes etc.) up to now always seem to severely
worsen the result, and the reliability of an extension to orbitally degenerate mod-
els is also highly unclear. Last but not least NRG is designed to treat low-energy
features correctly and becomes extremly expensive for multi-band models, espe-
cially when applied to DMFT (typically 16GB of memory, 5 hours or more using
8 – 16 processors on modern SMP machines).

Thus, especially in the strong coupling regime, a different approach might be
desirable and helpful. Such an approach is the resolvent perturbation theory. In
order to keep things simple, I will not attempt to present you the most general
version of this theory together with the most general version of the SIAM. For
the actual application to real materials, be it magnetic ions in metals, quantum
dots or within the DMFT, this would of course be desirable; however, in the short
time given such a program is impossible to carry through. Nevertheless I will try
to convey the basic ideas and enable you to read the more advanced publications
on this subject. As a very nice introductory reading, not only to the resolvent
perturbation theory but to the subject of the physics of the SIAM and different
methods to solve it in general, I can recommend the book by Alex Hewson ”The
Kondo problem to heavy fermions” and the article by Bickers, Cox and Wilkins,
Phys. Rev. B36, 2036(1987). A comprehensive introduction how to extend the
method to general multi-band Hamiltonians can be found in M.B. Zölfl et al.,
Phys. Rev. B61, 12810(2000).

1The interpolation scheme introduced to you last week is not systematic in the sense of per-

turbation theory, but rather a ”recipe” to cure the problems away from particle-hole symmetry

by hand.
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2 The SIAM and the resolvents

Let me start by writing down the SIAM for a non-degenerate system consisting
of a broad, non-interacting conduction band coupled to a localized state. In
standard notation it reads

H =
∑

~kσ

ε~k
c†~kσ

c~kσ
+

∑

σ

(εd +
U

2
d†
−σd−σ)d

†
σdσ +

1√
N

∑

~kσ

(V~k
c†~kσ

dσ + h.c.)

= Hc + Hd + Hdc

(1)

c
(†)
~kσ

annihilates (creates) a conduction state with momentum ~k and spin σ, ε~k

is the dispersion relation for the band states; the d(†)
σ annihilates (creates) a

impurity state with spin σ and energy εd and U is the Coulomb energy one has
to pay for doubly occupying the d state. Finally V~k

describes the hybridization
between the two subsystems. If W is the bandwidth of the conduction band, the
relevant energies of the model are εd/W , U/W and Γ0/W = Γ(0)/W , where

Γ(ω) = −=m
1

N

∑

~k

|V~k
|2

ω + iδ − ε~k

=
π

N

∑

~k

|V~k
|2δ(ω − ε~k

) (2)

is the hybridization function.
For the typical strong coupling situation, the so-called Kondo limit, we have

|εd/W | ,(εd + U)/W � Γ0/W . It thus seems reasonable to develop a pertur-
bation expansion in the hybridization V~k

or more precisely Γ(ω) rather than in
U . It is however evident that such a perturbation theory will not lead to the
conventional diagrammatic expansion with Feynman diagrams. The latter relies
on the existence of Wick’s theorem; since the unperturbed part of our problem
will contain a two-particle interaction, namely the Coulomb repulsion in Hd, it is
not bilinear in fermionic operators and therefore Wick’s theorem does not apply
for calculating expectation values of products of d operators. Hc on the other
hand is bilinear in fermionic operators, so Wick’s theorem may be used for this
case. Thus, we will eventually be lead to something that may be called a mixed
Feynman-Goldstone perturbation theory.

The first step now is to diagonalize Hd, i.e. find states |M〉 with Hd|M〉 =
EM |M〉. For the current problem this step is rather trivial, but it becomes
important in the case of a multi-band Hamiltonian. With these states we can
write

Hd =
∑

M

EM |M〉〈M |

and

Hdc =
1√
N

∑

~kσMM ′

(F MM ′

σ V~k
c†~kσ

|M ′〉〈M | + h.c.)

2



with F MM ′

σ = 〈M ′|dσ|M〉 the transition matrix element. For the simple Hamilto-
nian Hd in (1) the result are the set of states {|0〉, |σ〉 = d†

σ|0〉, |2〉 = d†
↑d

†
↓|0〉 with

energies {0, εd, 2εd + U}. The matrix elements are F σ0
σ = 1 and F 2,−σ

σ = σ.
As a second step we have to calculate the partition function of this system.

Quite generally, we have Z = Tre−βH , where β = 1/kBT is the inverse tempera-
ture. The following idea is rather subtle, because it uses the fact that even for a
macroscopically large system one still has a presumably very fine but nevertheless
discrete spectrum for H. With this assertion one can write using the theorem on
residues

Z =
∮

C

dz

2πi
e−βzTr

1

z − H

where the contour C surrounds all singularities of the integrand counterclockwise.
Let us now perform a partial trace over the band states, i.e.

Z = Z(0)
c

∮

C

dz

2πi
e−βz

∑

M

1

Z
(0)
c

∑

c

〈M |〈c| 1

z − H
|c〉|M〉

where |c〉 is an eigenstate of Hc with Hc|c〉 = Ec|c〉. Finally, we shift the integra-
tion by Ec for each summand in the trace over c and obtain

Z = Z(0)
c

∮

C

dz

2πi
e−βz

∑

M

〈M | 1

Z
(0)
c

∑

c

e−βEc〈c| 1

z − H + Ec

|c〉
︸ ︷︷ ︸

|M〉

=: R(z)

(3)

The quantity R(z) is called ionic resolvent operator, its matrix elements RMM ′(z)
correspondingly ionic resolvents or ionic propagators and

Zd :=
∮

C

dz

2πi
e−βz

∑

M

〈M |R(z)|M〉 =

∞∫

−∞

dωe−βω
∑

M

%M(ω) (4)

is the partition function of the d-level. From the definition of R(z) it is obvious
that it is analytical everywhere except on the real axis. This property was used
in the last step, where I deformed the contour in the standard fashion to obtain a
spectral integral and introduced the spectral function %M(ω) = − 1

π
=mRM (ω+iδ).

Up to now we have been exact and gained nothing except for a fancy way
of writing the partition function. Before we continue to set up a perturbation
expansion in Hdc for R(z) let us try to get an idea about the behaviour of R(z).
Obviously, for Hdc = 0, we have R(z) = 1/(z−Hd) and hence %M(ω) = δ(ω−EM),
i.e. Zd =

∑

M
e−βEM . The situation is visualized in Fig. 1a. Since 1

β
ln Zd is the

contribution of the local system to the free energy, which should be finite, we
further know that

• %M(ω) ∼ eβω as ω → −∞ to ensure a finite integral in (4) and
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Figure 1: Typical behaviour of the spectral functions %M(ω) for the ionic re-
solvents for Hdc = 0 (a) and Hdc 6= 0 (b) for εd/W = −0.3, U/W = 0.9 and
Γ0/W = 0.1

• there must exist a lower threshold Es common to all resolvents below which
this exponential decay of %M(ω) has to set in.

As T → 0, this energy Es becomes the ground state energy of the local system.
This anticipated behaviour becomes apparent in Fig. 1b. Apart from a broad-
ening (and slight shift) of the peaks at E0 = 0, Eσ = εd and E2 = 2εd + U , all
propagators show a lower threshold at Es ≈ −0.39W with a very sharp peak in
the spectra for the states |0〉 and |σ〉. While a peak in the spectrum of the state
|σ〉 is expected, the aditional strong peak at the threshold in the spectrum of the
state |0〉 is a signature of the Kondo effect in the SIAM, as will become clear
later.

3 Resolvent perturbation theory and NCA

In the following let us denote H0 = Hc + Hd. The desired perturbation theory is
easily constructed from the observation that (proof left as an exercise)

1

z − H + Ec

=
1

z − H0 + Ec

+
1

z − H0 + Ec

Hdc

1

z − H + Ec

=
1

z − H0 + Ec

+

1

z − H0 + Ec

Hdc

1

z − H0 + Ec

+

1

z − H0 + Ec

Hdc

1

z − H0 + Ec

Hdc

1

z − H0 + Ec

+ . . .

(5)
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Since we have to perform a trace over the band states to obtain R(z), it is obvious
that only terms with an even number in Hdc will contribute. For the simple SIAM
(1) it is furthermore easy to show (exercise) that RMM ′(z) = RM(z)δMM ′ . This
need not be the case for more complicated models, especially if Hdc mixes states
with different quantum numbers; such a situation can e.g. occur in multi-band
systems with hybridization processes between different orbital quantum numbers.
In order to motivate the further evaluation of the perturbation series let us inspect
the second order contribution to R0(z) in detail:

R
(2)
0 (z) =

1

Z
(0)
c

∑

c

〈c|e−βHc
1

z − Hc + Ec

〈0|Hdc

1

z − H0 + Ec

Hdc|0〉
1

z − Hc + Ec

|c〉
(6)

Obviously, 〈0|Hdc = 1√
N

∑

~kσ

V~k
c†~kσ

〈σ|, and Hdc|0〉 = 1√
N

∑

~kσ

V~k
c~kσ

|σ〉. Noting fur-

thermore (exercise) that

1

z − H0 + Ec

c~kσ
= c~kσ

1

z + ε~k − H0 + Ec

1

z − H0 + Ec

c†~kσ
= c†~kσ

1

z − ε~k
− H0 + Ec

(7)

it follows

R
(2)
0 (z) =

1

z

1

N

∑

~k~k′

∑

σ

V~k
V~k′

1

Z
(0)
c

∑

c

〈c|e−βHcc†~kσ
c~k′σ

|c〉 1

z + ε~k′ − Eσ

1

z
(8)

Since
1

Z
(0)
c

∑

c

〈c|e−βHcc†~kσ
c~k′σ

|c〉 = f(ε~k
)δ~k~k′

where f(x) = 1/(1 + ex) is Fermi’s function, we have

R
(2)
0 (z) =

1

z

1

N

∑

~kσ

|V~k
|2f(ε~k

)

z + ε~k
− Eσ

1

z
(9)

Using the relation (2), the ~k-sum can be written as

1

N

∑

~k

|V~k
|2 . . . →

∫
dε

π
Γ(ε) . . .

and we finally arrive at

R
(2)
0 (z) =

1

z

∑

σ

∫
dε

π

Γ(ε)f(ε)

z + ε − Eσ

1

z
(10)

For a general contribution to (5) one follows the same scheme, i.e. first one moves
all band operators to the left, each commutation with 1/(z − H0 + Ec) leaving a
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corresponding ±ε~k
in the denominator. Finally, one has to calculate the thermal

expectation value with respect to Hc of a product of band operators, which, due
to Wick’s theorem, breaks up into a sum over products of corresponding factors
f(±ε~k

). The transfer operators |M〉〈M ′| together with the initial local state lead
to a sequence of intermediate bare ionic propagators. The practical evaluation
of such a contribution can most conveniently be done by means of diagrams. To
this end we define symbols for the ionic propagators and the Fermi function:

R
(0)
0 (z) = , R(0)

σ (z) =
σ

, R
(0)
2 (z) =

f(ε~k
) =

~kσ
, f(−ε~k

) =
~kσ

In addition, we have the four basic vertices

σ

~kσ

σ

~kσ

−σ

~kσ

σ −σ

~kσ

σ

A 2n-th order diagram is then obtained as follows:

1. Draw on a straight horizontal line 2n dots and to the right of the rightmost
and to the left of the leftmost dot a horizontal line denoting the propagator
of the initial ionic state.

2. Fill the spaces between the dots with a sequence of intermediate ionic prop-
agators as allowed by Hdc.

3. At each vertex, draw an incoming vertical band electron line, if the state
to the left of the vertex has one electron less than the one to the right.
Otherwise draw an outgoing vertical band electron line. Label the band
electron lines such that at each vertex the spin is conserved.

4. Connect the band electron lines.

By building all possible sequences of intermediate states and all possible con-
nections of band electron lines one generates all contributions to order 2n. The
translation of a diagram to an analytic expression proceeds as follows:
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1. From right to left, assign to each ionic propagator of state |M〉 the quantity
RM(z +

∑
(±ε~ki

)), where
∑

(±ε~ki
) is the sum of the energies of all incoming

(−) and outgoing (+) band electron lines to the right of this propagator.

2. Assign each band electron line pointing to the left (right) a factor 1
N
|V~k

|2f(ε~k
)

( 1
N
|V~k

|2f(−ε~k
)).

3. Sum over all free internal spins and momenta ~k.

4. Assign to each diagram a factor (−1)c, where c is the number of crossing
of band electron lines (each crossing means that one has to commutate two
band operators to achieve the desired order for the Wick decomposition).

Within this diagrammatic language, the second order contribution R
(2)
0 (z) be-

comes

R
(2)
0 (z) =

σ

~kσ

The translation of this diagram into an analytic expression and comparison to
(10) is left as an exercise.

Just like in ordinary diagrammatic perturbation theory one can now define
reducible diagrams

that can be separated into two diagrams by cutting one ionic line only, “self-
energy” insertions
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and vertex corrections

The concept of reducibility and self-energy insertions allows to reformulate the
perturbation theory in terms of skeletons, i.e. diagrams that are irreducible in
the above sense and do not contain self-energy insertions. In addition, one has
to replace the bare ionic propagators by renormalized ones, i.e.

R
(0)
M (z) =

1

z − EM

→ RM(z) =
1

z − EM − ΣM(z)

where the ionic self-energies ΣM (z) have been introduced. In the diagrams, renor-
malized ionic propagators are symbolized by double lines. The perturbation ex-
pansion for the self-energies ΣM(z) follows the same rules as for the propagators,
with the exception that the external ionic legs, i.e. the left- and rightmost prop-
agators, have to be cut off and that only skeletons must be considered. For
example, to second order in Hdc, the self energies for the states |0〉, |σ〉 and |2〉
read

Σ
(2)
0 (z) =

σ

~kσ

=
1

N

∑

~kσ

|V~k
|2f(ε~k

)

z − Eσ + ε~k
− Σσ(z + ε~k

)
(11)

Σ(2)
σ (z) =

~kσ

+

~kσ

=
1

N

∑

~k

|V~k
|2f(−ε~k

)

z − Eσ − ε~k − Σ0(z − ε~k)
+

1

N

∑

~kσ

|V~k
|2f(ε~k

)

z − Eσ + ε~k
− Σ2(z + ε~k

)

(12)

Σ
(2)
2 (z) =

−σ

~kσ

=
1

N

∑

~kσ

|V~k
|2f(−ε~k

)

z − Eσ − ε~k
− Σσ(z − ε~k

)
(13)
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The diagrams in equations (11)-(12) have a particular property, viz they contain
no diagrams with crossing band electron lines. This feature has been used to coin
the name Non-Crossing Approximation (NCA) for this second order approxima-
tion of the ionic self-energies. They constitute a set of coupled nonlinear integral
equations for the ionic self energies. It is interesting to note that the band states
and the hybridization enter only in the combination

1

N

∑

~k

|V~k|2F (ε~k) =
∫

dε

π
Γ(ε)F (ε)

This feature, which remains true in all orders, is particularly important for the
application to the DMFT since the quantity Γ(ε) simply is the imaginary part of
the Weiss field and thus can readily be calculated from the site excluded Green
function.

Up to now this whole effort has been made in order to calculate the ionic
propagators for the SIAM, i.e. the partition function only! Can one also extract
dynamical quantities? The answer is, of course, yes. Let me outline the procedure
for the one-particle Green function Gσ(z) = 〈〈dσ; d

†
σ〉〉z. Other dynamic corre-

lation functions can be calculated accordingly. With the help of the Hubbard
transfer operators XMM ′ = |M〉〈M ′| we can write

Gd
σ(z) = 〈〈X0σ; Xσ0〉〉z + 〈〈X−σ,2; X2,−σ〉〉z (14)

If we formally identify RM(z) = 〈〈XMM〉〉z with the “single-particle” propagator,
then the expressions in (14) can be interpreted as “two-particle” Green func-
tions. Stressing this analogy to standard perturbation theory a little bit further,
the perturbation expansion of these “two-particle” propagators should consist of
bubbles built from the RM (z). Although this reasoning is far from constituting
a proof, it can serve as guideline. It actually turns out that the diagrammatic
expression for the first term is

〈〈X0σ; Xσ0〉〉iωn
=

iωnσ

+ . . . (15)

and we have to add to the diagram rules

5) For a closed loop of ionic propagators let the integral operator

1

Zd

∮

C

dz

2πi
e−βz

9



act on the result, where the contour C surrounds all singularities of the
integrand counterclockwise.

For our expression (15) this leads to

〈〈X0σ; Xσ0〉〉iωn
=

1

Zd

∮

C

dz

2πi
e−βzR0(z)Rσ(z + iωn) + . . . (16)

The . . . represent higher order diagrams. However, if we use the NCA as approx-
imation for the ionic self-energies, these diagrams can be neglected. Similarly,
the second term in (14) yields

〈〈X−σ,2; X2,−σ〉〉iωn
=

−σ

iωn

+ . . .

=
1

Zd

∮

C

dz

2πi
e−βzR2(z + iωn)R−σ(z) + . . .

(17)

Again, within the NCA the higher order terms may be neglected.
Since the ionic resolvents are, just like ordinary Green functions, analytic

everywhere except on the real axis, the contour integrals can be transformed into
spectral integrals with the result

〈〈X0σ; Xσ0〉〉iωn
=

1

Zd

∞∫

−∞

dε e−βε (%0(ε)Rσ(ε + iωn) − R0(ε − iωn)%σ(ε)) (18)

and

〈〈X−σ,2; X2,−σ〉〉iωn
=

1

Zd

∞∫

−∞

dε e−βε (R2(ε + iωn)%−σ(ε) − %2(ε)R−σ(ε − iωn))

(19)
It is quite instructive to think about these relations in connection with the ionic
spectra of Fig. 1. Taking for instance the imaginary part of (18), after analytic
continuation iωn → ω + iδ, yields

1

π
=m〈〈X0σ; Xσ0〉〉ω+iδ =

1

Zd

∞∫

−∞

dε e−βε (%0(ε)%σ(ε + ω) + %0(ε − ω)%σ(ε))

This is a convolution of the ionic spectra %0(ω) and %σ(ω) in Fig. 1 and in partic-
ular the existence of rather sharp structures at the common threshold will lead
to a sharp resonance at ω → 0 – the well-known Abrikosov-Suhl resonance of the
Kondo effect. Thus, the appearance of these sharp structures at the threshold in
the ionic propagators is an extremely important physical aspect.

10



4 Some concluding remarks

In the previous sections I have introduced to you the concept of the resolvent
perturbation theory and the NCA as an approximation within this formalism.
The equations (11)-(13) and (18), (19) are in principle all one needs to calculate
the thermodynamics and one-particle Green function for the SIAM (1). Actually
coding (11)-(13) is not very complicated, as long as one takes care of the peculiar
properties of the %M(ω), namely the existence of a common threshold with pos-
sibly rather sharp structures there (cf. Fig. 1), which are directly responsible for
the physics of the model. More cumbersome is the expected exponential decay as
ω → −∞. While formally quantities like e−βε%M(ε) are well defined in the limit
as ω → −∞, the numerical evaluation is ill defined, since one multiplies some-
thing exponentially small with something exponentially large; the result would of
course be meaningless. To overcome this problem and do calculations for low tem-
peratures, one introduces a new set of quantities, the so-called defect propagators

or negative energy propagators defined as

ξM(ω) =
1

Zd

e−βω%M(ω) (20)

With equations (11)-(13) one can then set up an additional set of self-consistency
equations for those ξM(ω) and use them to evaluate the Green function etc.
reliably even for low temperatures.

Since the NCA is an approximation it has, like any approximation, some
deficiencies. The most spectacular deficiency is known under the name NCA-
pathology and occurs for very low temperatures or very low energies, typically for
ω, T < TK/10, where TK is the Kondo temperature or more generally the lowest
energy scale in the problem. It leads to a violation of Fermi liquid properties.
This means for example, that, while the imaginary part of the Green function
itself has of course always a definite sign, the proper one-particle self-energy

Σd(z) = z − εd −
1

N

∑

~k

|V~k
|2

z − ε~k

− Gd(z)−1

may become acausal, i.e. =mΣ(ω + iδ) > 0 for some frequency range. This
breakdown of course limits the applicability of the NCA to the DMFT, especially
for “low temperatures”. What “low” precisely means has to be clarified for
each model and each paramter set independently. For example in the one-band
Hubbard model at half filling and large U “low” actually means T = 0, since here
an insulating state is realized and the effective low-energy scale is zero. On the
other hand, for large U but a doping of say 30% “low” means something of the
order of the band width W , since here the effective energy scale is of the order
of W . Between these two extremes the breakdown occurs at lower and lower
temperatures as one approaches half filling.
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