

The Abdus Salam International Centre for Theoretical Physics

SMR.1667 - 1

Summer School and Miniconference on Dynamical Mean-Field Theory for Correlated Electrons: Applications to Real Materials, Extensions and Perspectives 25 July - 3 August, 2005

DMFT with the Numerical Renormalization Group I & II

> Ralf Bulla Institut fur Physik Universitat Augsburg Universitatsstrasse 1 86 159 Augsburg Germany

These are preliminary lecture notes, intended only for distribution to participants

NRG for quantum impurity systems

NRG for DMFT problems

 $\underset{o}{\text{Summary and Outlook}}$

DMFT with the Numerical Renormalization Group

Ralf Bulla

Theoretische Physik III Institut für Physik Universität Augsburg

25.-26.07.2005

ICTP Trieste 25-26.07.2005

DMFT with the NRG

Introduction 0 NRG for DMFT problems

Summary and Outlook

Contents

Introduction

Kondo physics single-impurity Anderson model

NRG for quantum impurity systems

basic technical steps calculation of dynamic quantities

NRG for DMFT problems

more technical steps application: the Mott transition

Summary and Outlook

other applications of DMFT/NRG

Intro	oduction

 \cap

NRG for quantum impurity systems

NRG for DMFT problems

Summary and Outlook

Kondo physics

magnetic impurities in metals

 \longrightarrow temperature dependence of resistivity

scattering processes of conduction electrons at magnetic impurities

screening of magnetic moments due to singlet formation

$$\frac{1}{\sqrt{2}} \left(|\uparrow\rangle_f |\downarrow\rangle_c - |\downarrow\rangle_f |\uparrow\rangle_c \right)$$

NRG for quantum impurity systems

NRG for DMFT problems

Summary and Outlook

single-impurity Anderson model

modelling of magnetic impurities in metals here: single-impurity Anderson model [A.C. Hewson, *The Kondo Problem To Heavy Fermions*, CUP 1993]

$$H = \varepsilon_{f} \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} + U f_{\uparrow}^{\dagger} f_{\uparrow} f_{\downarrow}^{\dagger} f_{\downarrow}$$
$$+ \sum_{k\sigma} \varepsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma} + V \sum_{k\sigma} \left(f_{\sigma}^{\dagger} c_{k\sigma} + c_{k\sigma}^{\dagger} f_{\sigma} \right)$$

magnetic impurities in metals
→ Kondo effect
[quantum dots, DMFT]

the model describes:

- formation of local moments: $|\uparrow\rangle_f$, $|\downarrow\rangle_f$
- scattering of conduction electrons
- screening of local moments below temperature scale $T_{\rm K}$

Introduction	
0	
0	

NRG for quantum impurity systems

NRG for DMFT problems

Summary and Outlook

basic technical steps

Numerical Renormalization Group (NRG)

mapping on semi-infinite chain

iterative diagonalization

Introduction

basic technical steps

NRG for quantum impurity systems

NRG for DMFT problems

Summary and Outlook

1. logarithmic discretization

ł

start with the single-impurity Anderson model in a continuous representation

$$\mathcal{H} = \sum_{\sigma} \varepsilon_{\mathrm{f}} f_{\sigma}^{\dagger} f_{\sigma} + U f_{\uparrow}^{\dagger} f_{\uparrow} f_{\downarrow}^{\dagger} f_{\downarrow} + \sum_{\sigma} \int_{-1}^{1} \mathrm{d}\varepsilon \, g(\varepsilon) \mathbf{a}_{\varepsilon\sigma}^{\dagger} \mathbf{a}_{\varepsilon\sigma}$$

$$+ \sum_{\sigma} \int_{-1}^{1} \mathrm{d}\varepsilon \, h(\varepsilon) \Big(f_{\sigma}^{\dagger} \mathbf{a}_{\varepsilon\sigma} + \mathbf{a}_{\varepsilon\sigma}^{\dagger} f_{\sigma} \Big).$$

$$(1)$$

define the hybridization function $\Delta(\omega)$

$$\Delta(\omega) = \pi \sum_{k} V_{k}^{2} \delta(\omega - \varepsilon_{k})$$
(2)

here:

$$\Delta(x) = \pi \frac{\mathrm{d}\varepsilon(x)}{\mathrm{d}x} h[\varepsilon(x)]^2 \tag{3}$$

with $\varepsilon(x)$ the inverse function of $g(\varepsilon)$: $g[\varepsilon(x)] = x$

The parameter $\Lambda > 1$ defines a set of intervals with the discretization points

$$x_n = \Lambda^{-n} \tag{4}$$

The width of each interval is

$$d_n = \Lambda^{-n} (1 - \Lambda^{-1}) \tag{5}$$

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook o
basic technical steps			

Within each interval we introduce a complete set of orthonormal functions

$$\psi_{np}^{\pm}(\varepsilon) = \begin{cases} \frac{1}{\sqrt{d_n}} e^{\pm i\omega_n p\varepsilon} & \text{for } x_{n+1} < \pm \varepsilon < x_n \\ 0 & \text{outside this interval} \end{cases},$$
(6)

 $(p = 0, 1, 2, ... \text{ and } \omega_n = 2\pi/d_n).$ Now: expansion of the operators $a_{\varepsilon\sigma}$ and $a_{\varepsilon\sigma}^{\dagger}$ in this basis

$$\boldsymbol{a}_{\varepsilon\sigma} = \sum_{np} \left[\boldsymbol{a}_{np\sigma} \psi_{np}^{+}(\varepsilon) + \boldsymbol{b}_{np\sigma} \psi_{np}^{-}(\varepsilon) \right]$$
(7)

$$a_{np\sigma} = \int_{-1}^{1} d\varepsilon \left[\psi_{np}^{+}(\varepsilon)\right]^{*} a_{\varepsilon\sigma} ,$$

$$b_{np\sigma} = \int_{-1}^{1} d\varepsilon \left[\psi_{np}^{-}(\varepsilon)\right]^{*} a_{\varepsilon\sigma}$$
(8)

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook
basic technical steps			

The hybridization term transforms as:

$$\int_{-1}^{1} \mathrm{d}\varepsilon \, h(\varepsilon) \Big(f_{\sigma}^{\dagger} \boldsymbol{a}_{\varepsilon\sigma} + \boldsymbol{a}_{\varepsilon\sigma}^{\dagger} f_{\sigma} \Big) = \sqrt{\frac{\xi_{0}}{\pi}} \Big(\boldsymbol{c}_{0\sigma}^{\dagger} f_{-1\sigma} + f_{-1\sigma}^{\dagger} \boldsymbol{c}_{0\sigma} \Big) \tag{9}$$

The conduction electron term transforms as

$$\int_{-1}^{1} d\varepsilon \, g(\varepsilon) a_{\varepsilon\sigma}^{\dagger} a_{\varepsilon\sigma} = \sum_{np} \left(\xi_n^{\dagger} a_{np\sigma}^{\dagger} a_{np\sigma} + \xi_n^{-} b_{np\sigma}^{\dagger} b_{np\sigma} \right) \\ + \frac{1 - \Lambda^{-1}}{2\pi i} \sum_{n, p \neq p'} \frac{\Lambda^{-n}}{p' - p} \left(a_{np\sigma}^{\dagger} a_{np'\sigma} - b_{np\sigma}^{\dagger} b_{np'\sigma} \right) \exp \left[\frac{2\pi i (p' - p)}{1 - \Lambda^{-1}} \right] (10)$$

In the limit $\Lambda \rightarrow 1$ the term in eq. (10) coupling the states with different *p* and *p'* vanishes.

Neglect the $p \neq 0$ -states in the following and introduce the notation

$$a_{n\sigma} \equiv a_{n0\sigma} , \ b_{n\sigma} \equiv b_{n0\sigma}$$
(11)

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook o
basic technical steps			

The discretized Hamiltonian for the single-impurity Anderson model now takes the form

$$H = \sum_{\sigma} \varepsilon_{\rm f} f_{\sigma}^{\dagger} f_{\sigma} + U f_{\uparrow}^{\dagger} f_{\uparrow} f_{\downarrow}^{\dagger} f_{\downarrow}$$

+
$$\sum_{n\sigma} \left[\xi_{n}^{+} a_{n\sigma}^{\dagger} a_{n\sigma} + \xi_{n}^{-} b_{n\sigma}^{\dagger} b_{n\sigma} \right]$$

+
$$\sqrt{\frac{\xi_{0}}{\pi}} \left[f_{\sigma}^{\dagger} c_{0\sigma} + c_{0\sigma}^{\dagger} f_{\sigma} \right]. \qquad (12)$$

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook o
basic technical steps			

2. mapping on semi-infinite chain

$$H = \sum_{\sigma} \varepsilon_{\rm f} f_{\sigma}^{\dagger} f_{\sigma} + U f_{\uparrow}^{\dagger} f_{\uparrow} f_{\downarrow}^{\dagger} f_{\downarrow} + \sqrt{\frac{\xi_{0}}{\pi}} \sum_{\sigma} \left[f_{\sigma}^{\dagger} c_{0\sigma} + c_{0\sigma}^{\dagger} f_{\sigma} \right] \\ + \sum_{\sigma n=0}^{\infty} \left[\varepsilon_{n} c_{n\sigma}^{\dagger} c_{n\sigma} + t_{n} \left(c_{n\sigma}^{\dagger} c_{n+1\sigma} + c_{n+1\sigma}^{\dagger} c_{n\sigma} \right) \right].$$
(13)

hopping matrix elements fall off exponentially: $t_N \propto \Lambda^{-N/2}$

Introduction NRG

basic technical steps

NRG for quantum impurity systems

NRG for DMFT problems

 $\underset{o}{\text{Summary and Outlook}}$

3. iterative diagonalization

define a sequence of Hamiltonians H_N so that

$$H = \lim_{N \to \infty} \Lambda^{-(N-1)/2} H_N \tag{14}$$

Two successive Hamiltonians are related by

$$H_{N+1} = \sqrt{\Lambda} H_N + \Lambda^{N/2} \sum_{\sigma} \varepsilon_{N+1} c_{N+1\sigma}^{\dagger} c_{N+1\sigma} + \Lambda^{N/2} \sum_{\sigma} t_N \left(c_{N\sigma}^{\dagger} c_{N+1\sigma} + c_{N+1\sigma}^{\dagger} c_{N\sigma} \right)$$
(15)

this sequence of hamiltonians is solved by iterative diagonalization:

1st step:
$$\rightarrow E_{m1}, |\psi_m\rangle_1, \langle\psi_m| f_\sigma |\psi_{m'}\rangle_1$$
2nd step: $\rightarrow E_{m2}, |\psi_m\rangle_2, \langle\psi_m| f_\sigma |\psi_{m'}\rangle_2$ 3rd step: $\rightarrow E_{m3}, |\psi_m\rangle_3, \langle\psi_m| f_\sigma |\psi_{m'}\rangle_3$ \vdots \vdots

number of states grows as $4^N \longrightarrow$ keep max \sim 500 states at each RG step

NRG for DMFT problems

Summary and Outlook

results from the NRG

- structure of the fixed points
- thermodynamic quantities (entropy, specific heat)
- dynamic quantities (spectral function, dynamic susceptibilities)

example: flow diagram for the many-particle energies of the single-impurity Anderson model

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook			
0 0	00000000 ●0000	000 00000000	0			
colculation of dynamic quantities						

single-particle Green function

$$G_{\sigma}(z) = \langle\!\langle f_{\sigma}, f_{\sigma}^{\dagger} \rangle\!\rangle_{z} = i \int_{0}^{\infty} \mathrm{d}t \ e^{izt} \langle [f_{\sigma}(t), f_{\sigma}^{\dagger}]_{+} \rangle \tag{16}$$

with the self-energy $\Sigma(z)$:

$$G(z) = \frac{1}{z - \varepsilon_{\rm f} - \Sigma(z)} \tag{17}$$

this self-energy consist of two parts:

$$\Sigma(z) = \Delta(z) + \Sigma^{U}(z) \quad , \tag{18}$$

with $\Sigma^{U}(z)$ the contribution due to the *U*-term spectral function:

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega + i\delta^{+}) , \qquad (19)$$

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook		
0	00000000	000	0		
0	0000	00000000			
calculation of dynamic quantities					

In each iteration, calculate the spectral function for each cluster of size N via:

$$A_{\sigma N}(\omega) = \frac{1}{Z_N} \sum_{nm} \left| {}_{N} \left\langle n \left| f_{\sigma}^{\dagger} \right| m \right\rangle_{N} \right|^{2} \delta\left(\omega - \left(E_{n}^{N} - E_{m}^{N} \right) \right) \left(e^{-\beta E_{m}^{N}} + e^{-\beta E_{n}^{N}} \right)$$
(20)

- T = 0: transitions between ground state and all excited states
- T > 0: in addition:

transitions between excited states

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook o			
calculation of dynamic quantities						

effect of the truncation on the spectral functions of each iteration:

this means: final spectral function = superposition of the data from all iterations

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook			
0 0	00000000 0000●	000 00000000	0			
calculation of dynamic quantities						

finally: broadening of the δ -peaks \longrightarrow Gaussian on a logarithmic scale

$$\delta(\omega - \omega_n) \to \frac{e^{-b^2/4}}{b\,\omega_n\sqrt{\pi}} \exp\left[-\frac{(\ln\omega - \ln\omega_n)^2}{b^2}\right]$$
(21)

results for the single-impurity Anderson model:

Introduction	NRG for quantum impurity systems	NRG for DMFT problems
0	00000000	● 00
0	00000	00000000

Summary and Outlook

more technical steps

Hubbard model

$$H = U \sum_{i} c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow} - t \sum_{\langle ij
angle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma}$$

DMFT: self-consistency

Introduction

0

NRG for DMFT problems ○●○ ○○○○○○○○○ $\underset{\circ}{\text{Summary and Outlook}}$

more technical steps

methods to solve the effective impurity model

	method	year	large U	low T	systematic	energy resolution	max # of orbitals	comp. effort
QMC	quantum Monte Carlo	'92	~	~	+	?	~10	\$\$\$
IPT	iterated perturbation theory	'92	_	+	+	+	?	\$
NCA	non-crossing approximation	'93	+	~	?	+	~10	\$
ED	exact diagonalization	'93	+	~	+	_	2	\$\$
NRG	numerical renormalization group	'96	+	+	+	log mesh	2	\$\$
LMA	local moment approach	'99	+	+	?	+	?	\$
DMRG	density matrix renormalization group	'03	+	+	+	lin mesh	?	\$\$\$
PQMC	projective quantum Monte Carlo	'04	~	+	?	?	?	\$\$\$

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems ○○● ○○○○○○○○	Summary and Outlook o
more technical steps			

now: use NRG for the calculation of Σ_{AM} within the DMFT selfconsistency

what is different to the NRG for the standard SIAM?

• input $\Delta(z)$ defined via

$$\longrightarrow = rac{1}{z - \varepsilon_f - \Delta(z)}$$

corresponding to an energy dependent density of states of the free conduction band

• output $\rightarrow \Sigma_{AM} = U \langle\!\langle f_{\sigma} f_{\bar{\sigma}}^{\dagger} f_{\bar{\sigma}}, f_{\sigma}^{\dagger} \rangle\!\rangle_{z} / \langle\!\langle f_{\sigma}, f_{\sigma}^{\dagger} \rangle\!\rangle_{z}$

R. Bulla, A.C. Hewson, and Th. Pruschke J. Phys.: Condens. Matter **10**, 8365 (1998)

ICTP Trieste 25-26.07.2005

DMFT with the NRG

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook
application: the Mc	itt transition		

Phase diagram of V₂O₃

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems ○○○ ○●○○○○○○○	Summary and Outlook o
application: the Mott transition			

Hubbard model with DMFT/NRG: Spectral functions for T = 0

R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook	
0	00000000 00000	000 00 0 00000	0	
application: the Mott transition				

Spectral function for T = 0: Bethe vs. hypercubic lattice

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems ○○○ ○○○●○○○○○	Summary and Outlook o	
application: the Mott transition				

quasiparticle weight

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook	
0	00000000 00000	000 0000•0000	0	
application: the Mott transition				

self-energy

Introduction o o	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook o
application: the Mott transition			

phase diagram of the Hubbard model at half filling

ICTP Trieste 25-26.07.2005

DMFT with the NRG

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook	
0 0	00000000 00000	000 000000000	0	
application: the Mott transition				

spectral function for finite temperatures ($T > T^*$)

smooth crossover from metallic-like to insulating-like solution

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook	
0 0	00000000 00000	000 000000000	0	
application: the Mott transition				

spectral function for finite temperatures ($T < T^*$)

hysteresis!

Introduction	NRG for quantum impurity systems	NRG for DMFT problems	Summary and Outlook
0	00000000 00000	000 00000000	0
application: the Mott transition			

self-energy (finite temperatures)

Introduction o o

summary

the numerical renormalization group for

- quantum impurity systems
 - Kondo effect
 - single-impurity Anderson model
- Iattice models within DMFT
 - Hubbard model
 - Mott transition

further reading

- R. Bulla, The Numerical Renormalization Group Method for correlated electrons, Adv. Solid State Phys. 40, 169 (2000)
- R. Bulla, Dynamical Mean-Field Theory from Quantum Impurity Physics to Lattice Problems, cond-mat/0412314 (Phil. Mag. 2005)

Summary and Outlook

other applications of DMFT/NRG

other applications of DMFT/NRG

- magnetic phases of the Hubbard model
 R. Zitzler *et al.*, Phys. Rev. Lett. **93**, 016406 (2004)
- multiband Hubbard models
 Th. Pruschke, conference: 01.08, 10:00
- lattice models with coupling to phonons
 R. Bulla, conference: 02.08, 16:50
- Hubbard model with disorder
 K. Byczuk, conference: 02.08, 15:45
- periodic Anderson model Th. Pruschke, R. Bulla, and M. Jarrell, Phys. Rev. B 61, 12799 (2000)
- Kondo lattice model

T.A. Costi and N. Manini, J. Low. Temp. Phys. 126, 835