

Summer School on Design and Control of Self-Organization in Physical, Chemical, and Biological Systems

25 July to 5 August, 2005

Miramare-Trieste, Italy

1668/5

Reproduction, Adaptation, and Evolution as a Universal Feature of Dynamical Systems with Growth

Kunihiko Kaneko University of Tokyo, Japan

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Complex Systems Biology

cf. Life as Complicated System: (current trend)
Enumeration of molecules, processes
detailed models mimicking the life process
But understanding??

Life as Complex System:

Understand General features at a System Level

Strategy:

Search for universal features in cellular processes :
extension of Dynamical Systems & Statistical Physics
Constructive Approach: (Exp & Theory)

construct simple system to catch universal features' as simple as possible

Constructive Biology Project				
	theme	experiment	theory	question
•	replicating system	in vitro replication with enzymatic reaction	minority control	origin of heredity; evolvability
	cell system	replicating cell with internal reactions	universal statistics in reaction dynamics	condition for recursive growth
	cell differentiation. development	differentiation of E Coil by interaction	emergence of differentiation rule from dynamics	irreversibility robustness
	Spontaneous O adaptation	Artificial gene network	Adaptive attractor selection by noise	Robust adaptation without signalling
	evolution	Relevance of phenotypic fluctuation and dynamics	Genetic assimilation of phenotype fluct.and dynamics	geno-pheno type relationship
ERATO Project Complex Systems Biology (2004 -2010, wiith Tetsuya Yomo (experimentalist)				

In continuum description, the following rate eqn., but we mostly use stochastic simulation

.

$$dn_i/dt = \sum_{j,\ell} \operatorname{Con}(j, i, \ell) \epsilon n_j n_\ell / N^2$$

-
$$\sum_{j',\ell'} \operatorname{Con}(i, j', \ell') \epsilon n_i n_{\ell'} / N^2$$

+
$$D\sigma_i(\overline{n_i}/V - n_i/N),$$

where $\text{Con}(i, j, \ell)$ is 1 if there is a reaction $i + \ell \rightarrow j + \ell$, and 0 otherwise, whereas σ_i takes 1 if the chemical *i* is penetrable, and 0 otherwise. The third term describes the transport of chemicals through the membrane, where $\overline{n_i}$ is

Heuristic explanation of log-normal distribution Consider the case that a component X is catalyzed by other component A, and replicate; the number -- $N_{X^{n}} N_{A}$ $d N_{X} / dt = N_{X} N_{A}$ then $d \log(N_{X}) / dt = N_{A}$ If, N_{A} fluctuates around its mean $< N_{A} >$, with fluct. (t) $d \log(N_{X}) / dt = < N_{A} > +$ (t) log(N_{X}) shows Brownian motion $\Rightarrow N_{X}$ log-normal distribution too, simplified, since no direct self-replication exists here But with cascade catalytic reactions, fluctuations are successively multiplied, (cf addition in central limit theorem.);Hence after logarithm, central limit th. applied

Gaussian Distribution

$$P(x;a) = Ne^{-\frac{(x-\beta(a))^2}{2\alpha(a)}}$$
Change of distribution by the change of parameter $a \rightarrow a + a$

$$P(x;a + \Delta a) = N'e^{-\frac{(x-\beta(a+\Delta a))^2}{2\alpha(a+\Delta a)}}$$

$$= N'e^{-\frac{(x-\beta(a))^2}{2\alpha(a)} + \varepsilon^{(1)}(a,\Delta a)(x-\beta(a)) + \frac{1}{2}\varepsilon^{(2)}(a,\Delta a)(x-\beta(a))^2}$$
where

$$\varepsilon^{(1)}(a,\Delta a) = \frac{\beta(a + \Delta a) - \beta(a)}{\alpha(a)}$$

$$\varepsilon^{(2)}(a,\Delta a) = \frac{\alpha(a + \Delta a) - \alpha(a)}{\alpha(a)^2}$$

then

$$\begin{array}{l} \left\langle x \right\rangle_{a+\Delta a} - \left\langle x \right\rangle_{a} = \varepsilon^{(1)}(a,\Delta a)\sigma_{a}^{2} \\ \sigma_{a+\Delta a}^{2} - \sigma_{a}^{2} = \varepsilon^{(2)}(a,\Delta a)(\sigma_{a}^{2})^{2} \end{array} \right. \\ \text{If change of a is not large} \\ \varepsilon^{(1)}(a,\Delta a) = b\,\Delta a \\ \text{b; constant} \end{array} \\ \left\langle x \right\rangle_{a+\Delta a} - \left\langle x \right\rangle_{a} = b\,\Delta a\,\sigma_{a}^{2} \end{array} \\ \text{Response ratio is proportional to fluctuation} \end{array}$$

In the talk, we have proposed

novel Mechanism of Spontaneous Adaptation (without the use of signal transduction) based on stochastic fluctuation.

Here I omit this part since the results are not yet published (I can tell you privately if you are interested)

Summary

 How is recursive production of cells possible in the amidst of diversity and fluctuations?

→ Universal Statistics: amplification and regulation of fluctuations. (Zipf's law and lognormal distribution)

·Biological relevance of such large fluctuations?

→ Phenotypic Fluctuation Evolution Speed

 Spontaneous adaptation with noise to select a state with higher growth in advance

All are 'universal features' in steady growth system!