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Complex Systems Biology
cf.  Life as Complicated System:  （current trend)

Enumeration of molecules, processes   
detailed models mimicking the life process

But understanding??

Life as Complex System:
Understand General features  at a System Level

Strategy:
1) Search for universal features in cellular processes : 
extension of Dynamical Systems ＆Statistical Physics
2) Constructive Approach: (Exp & Theory)
` construct simple system to catch  universal features'

as simple as possible

Constructive Biology Project 

geno-pheno type
relationship

Genetic assimilation 
of phenotype 

fluct.and dynamics

Relevance of 
phenotypic fluctuation 

and dynamics
evolution

origin of
heredity;

evolvability

minority
control

in vitro
replication with

enzymatic reaction

replicating
system

Robust adaptation 
without signalling

Adaptive attractor 
selection by noiseArtificial gene network

Spontaneous 
adaptation

irreversibility
robustness

emergence of
differentiation

rule from dynamics

differentiation
of E Coil

by interaction

cell differentiation.
development

condition for
recursive
growth

universal
statistics in

reaction dynamics

replicating cell
with internal

reactions

cell
system

questiontheoryexperimenttheme

ERATO Project  Complex Systems Biology  (2004 -2010,  wiith
Tetsuya Yomo (experimentalist)
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Replicating artificial cell (experiment)
( theory; fluctuation, minority control)

RNA polymerase geneRNA

RNA polymerase

Tranlation in liposome
RNAreplication in liposome

translation replication division

By 菅原ら(東大総合分化）By 菅原ら(東大総合分化）

Continouos division of liposomes
(Sugawara’s group)

（Yomo‘s group)

How recursive production of a cell is sustained？
each cell complex reaction network

with diversity of chemicals;
The number of molecules of each species

not so large
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Fluctuations
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Ｔｏｙ Cell Model with Catalytic Reaction Network 
‘Crude but whole cell model’

（resource）

reaction

catalyze

cell

medium

diffusion

ｋｋ species of chemicals species of chemicals 、、XXoo……XXｋ－１ｋ－１

number number ------nn００ 、、nn１１…… nnｋ－１ｋ－１

some chemicals are some chemicals are penetrablepenetrable
through the membrane with the through the membrane with the 
diffusion coefficient Ddiffusion coefficient D

resource chemicals are thus resource chemicals are thus 
transformed into impenetrable transformed into impenetrable 
chemicals, leading to the growth inchemicals, leading to the growth in
Ｎ＝Σni,   when it exceeds when it exceeds NNmaxmax

the cell divides into twothe cell divides into two

random catalytic reaction networkrandom catalytic reaction network
with the path rate pwith the path rate p
for the reaction    for the reaction    ＸＸii＋Ｘ＋Ｘjj－＞Ｘ－＞Ｘkk+X+Xjj

modelmodel
C.Furusawa & KK、PRL2003

・・・ K >>1 species

dX1/dt ∝ X0X4;   rate equation;
Stochastic model here

(Cf. KK&Yomo 94,97)

In continuum description, the following rate eqn., 
but we mostly use stochastic simulation
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☆☆Growth speed and fidelity in replication Growth speed and fidelity in replication 
are maximum at Dcare maximum at Dc
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diffusion coefficient D

growth speedsimilarity

D = Dc

※similarity is defined from inner 
products of composition vectors 
between mother and daughter 
cells

・・

・・

D

Dc

No Growth

(only resources)

Growth

Zipf’s Law is oberved at D = Dc
nnii (number(number ofof moleculesmolecules））

rankrank

Furusawa &KK,2003,PRL

Average number of each chemical ∝ 1/(its rank)

(distribution of x：ρ（ｘ）∝ｘ ）
-2

number rank
X1 300     5
X2 8000   1
X3 5000    2
X4 700      4
X5  2000    3
…….. (for example)
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α= -1

Confirmed by gene expression data

Mouse ES cell

C. elegans

Mouse Fibroblast Cell

Yeast
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Later confirmed by several other groups
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Formation of cascade catalytic reactionFormation of cascade catalytic reaction

Rank of Rank of nnii

Catalyze 
chemicals of 
higher rank
mainly

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

栄養から直接生成される成分の数
を多くなるようパラメータを変えて、
階層構造が判りやすくした例

１１

２２

３３４４

１：１：minority moleculesminority molecules

２：２：catalyzed by 1, synthesized by resourcecatalyzed by 1, synthesized by resource

３：３：catalyzed by 2catalyzed by 2

：：

★★

nini

With conservation law,
The exponent -1 is explained

Mean-field type (self-consistent) calc.)

Evolution of Network to satisfy  Zipf’s law?     Yes
Critical D value depends on connectivity in the network;
mutation of network + selection approaches Zipf’s law

Furusawa
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Later, the connectivity in the network approaches
“scale-free” network    through evolution.

statistical properties; embedded into  network structure

Zipf’s law holds,  irrespective of network structure, but

Furusawa、KK, submitted

initial

evolved
４

2

evolutionary embedding 
of dynamics into network

Dynamics (abundance) first, structure (equation for dynamics) later

probability for a  path to 
chemical with  abundances x 
is selected;  q(x) 
transformation of abundance 

distrb.  to connectivity distrib.

So  far average quantity of all components;

Next question: fluctuation by cells:
distribution of each Ni by cells

Each color 
gives
different 
chemical
species

LOG SCALE

Furusawa,..
KK,
Biophysics2005

Log normal distribution !

e.g.
cell1 X1   10000
cell2           8000
cell3         15000
cell4        20000

…..
histograrm
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Experiment; protein abundances measured by fluorescence

Log-normal
Distribution
Confirmed 
experimentally

Furusawa,Kashiwagi,,Yomo,KK

+flow-cytometry

Also studied in GFP synthesis in liposome

☆☆Heuristic explanation of logHeuristic explanation of log--normal distributionnormal distribution
Consider the case that a component X is catalyzed by Consider the case that a component X is catalyzed by 
other component A, and replicate; the number other component A, and replicate; the number ----NNXX、、NNAA

d Nd NXX //dtdt = N= NXX NNAA

thenthen

d log( Nd log( NXX )/)/dtdt = N= NAA

IfIf、、 NNA   A   fluctuates around its mean < NNAA＞, with fluct. η（ｔ）
d log( Nd log( NXX )/)/dtdt = = ＜NNAA＞ ＋＋η（ｔ）

log( Nlog( NXX ) shows Brownian motion ) shows Brownian motion NNX X loglog--normal distributionnormal distribution

too, simplified, since no direct self-replication exists here
But with cascade catalytic reactions, fluctuations are 
successively multiplied, (cf addition in central limit 

theorem.);Hence after logarithm, central limit th.  applied
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☆☆Cascade leads to multiplicative propagation of Cascade leads to multiplicative propagation of 
noise (at  critical region)noise (at  critical region)

ＡＡ ＢＢ ＣＣ ＤＤ ＥＥ

Propagation of fluctuation, feedback to Propagation of fluctuation, feedback to 
itself, leading to logitself, leading to log--normal distribution tail.normal distribution tail.

Cf.  If parallel,Cf.  If parallel,

ＡＡ

Fluctuations come in parallel:Fluctuations come in parallel:

Usual central limit theorem is valid; Usual central limit theorem is valid; 

normal distribution.normal distribution.

Variance  ∝ (average)
2

Also confirmed experimentally (indirectly)
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Questions 
(1)Large phenotypic fluctuation 

relevance to biology ?
ans. evolution (Sato et al., PNAS, 2003)  adaptation,….

--- recall in standard evolutionary genetics,
only the distribution of gene is discussed, by assuming 
unique phenotype from a given genotype

(2) All chemicals have such large fluctuations?  
Important ones are protected??
Origin of heredity (genetic information)
why is there genotype and phenotype

--in terms of dynamical systems
gene:  equation of dynamical systems, parameter,

Phenotype:  variable according to the dynamical 
systems (with fluctuations)

・・・・・

FACS analysis

Mutagenesis

～2,000 clones

～30 clones

5～8 clones

The highest clone

Spectrofluorometer

Spectrofluorometer

1st screening

2nd screening

Eyes

Schematic drawing of selection process

Artificial selection experiment with bacteria
Selection to increase the fluorescence of protein in bacteria

Ito,Yomo,..
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Fluctuation ---- Variance of phenotype of  clone
Organisms with larger phenotypic fluctuation higher evolution 

speed;   
- change of phenotype per generation per mutation --

``Response against mutation+selection’’
Response     Fluctuation

Sato,Ito,Yomo,KK
PNAS(2003)

So-called fluctuation-dissipation theorem in physics:
Force to change a variable x;

response ratio = (shift of x ) / force
fluctuation of x (without force) 

response ratio proportional to    fluctuation
originated by  Einstein’s  paper  a century ago…

2 2( ) ( )a a a
a

x x x x x
a

δ+∆< > − < >
∝< > =< − < > >

∆

P(x;a)   x variable,  a: control parameter
change of the parameter a 

peak of P(x;a)  ( i.e.,<x>average ) shifts

Generalization::(mathematical formulation)
response ratio of some variable x against the change 

of parameter a versus     fluctuation of x
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(1)

(2)
2
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( )
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a a aa a
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β βε
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α αε
α

+ ∆ −
∆ =
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Change of distribution by the change of parameter a a+△a
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=
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2
(1) ( 2) 2
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2 ( )
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α
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−
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+ ∆ =
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(1) ( , )a a b aε ∆ = ∆

then (1) 2

2 2 (2) 2 2

( , )

( , )( )
aa a a

a a a a

x x a a

a a

ε σ

σ σ ε σ
+∆

+∆

− = ∆

− = ∆

2
aa a a

x x b aσ
+∆

− = ∆

Response ratio is proportional to fluctuation

If change of a is not large

b; constant
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Artificial selection experiment with bacteria
for enzyme with higher catalytic activity
for some protein with higher function

Change in gene    (parameter; a) ⇒

``Response’’ ------ change of phenotype <x>
(e.g.,fluorescence intensity)    

per generation per (synonymous) mutation rate
Fluctuation ---- Variance of phenotype x of  clone   

Fluctuation in the phenotype x of clone
⇔ speed of evolution to increase <x>
(proportional or correlated)

(Evolution Speed per generation)

Naïve expectation:
Just propt to mutation rate

Fluctuation-response relation
Phenotype fluct. × mutation rate

Sato,Ito,Yomo,KK, PNAS 2003
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• Confirmation by numerical evolution experiment 
by the reaction-net cell model

Mutate the network (‘gene’) with mutation rate μ,  
(rewire the path of the network with the rate) 
and select such network

having highest concentration ｃ of 
a given specific chemical

Measure the phenotypic fluctuations of clone
concentration distribution is log-normal, so we 
choose log ｃ as a variable

Confirmation of Fluctuation Dissipation 
Theorem by reaction-network cell model

Furusawa,KK 2005

μ=0.01
0.03

.0.05

Fluctuation of x=log c

Increase in average x
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（１）the use of log(fluorescence), because
log x   is close to Gaussian distribution in experiments

(２)： relationship between 
phenotype fluctuation of clone    vs evolution speed

in contrast to   
phenotype fluctuation by gene variation (mutation)    vs. 

evolution speed (standard population genetics)
relationship??

what phenotype can vary  what gene can change 
fluctuation of variable  (micro)  vs
variation of equation (genetic evolution)

Indeed, by assuming also gene a variable, and  P(x,a)
as 2 variable distrib., a general relation between 
geno- and   pheno-type fluctuations is obtained
(KK,Furusawa submitted) theory of genetic assimilation

self-consistency  between micro & genetic levels

• In the talk  I derived general relationship 
between the phenotypic fluctuation of 
clone vs phenotypic fluctuation by genetic 
change.

• This leads to a theory of geno-pheno
relationship at fluctuation level

• Since the contents are not ye published
(under review), they ar omitted here. Please 

ask me if you are interested in
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In the talk, we have proposed
novel Mechanism of Spontaneous Adaptation 

(without the use of signal transduction) 
based on stochastic fluctuation.

Here I omit this part since the results are not yet 
published ( I can tell you privately if you are 
interested)

Summary
・How is recursive production of cells possible in 

the amidst of diversity and fluctuations? 
Universal Statistics: amplification and 

regulation of fluctuations.    (Zipf’s law and  log-
normal distribution)
・Biological relevance of such large fluctuations?  

Phenotypic Fluctuation ∝ Evolution Speed
・ Spontaneous adaptation with noise to select a 

state with higher growth in advance
All  are ‘universal features’ in steady growth 

system!
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• Collaborators:
Chikara Furusawa （Reaction network of 

cell(Zipf‘s law,Log-normal), Cell-differentiation)
Katsuhiko Sato (fluctuation-response 

relationship) 
experiments：

Tetsuya Yomo
Akiko Kashiwagi, Takao Suzuki, Yoichiro Ito

( Yomo’s group)
・Most papers mentioned here are available at
http://chaos.c.u-tokyo.ac.jp

(PNAS,2003;PRL2003;…)


