

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

Summer School on Design and Control of Self-Organization in Physical, Chemical, and Biological Systems

25 July to 5 August, 2005

Miramare-Trieste, Italy

1668/6

Onset of Collective Behaviour in Globally Coupled Oscillators

Antonio Politi Max Planck Insitute for the Physics of Complex Systems Dresden, Germany

Onset of collective behaviour in globally coupled oscillators

Antonio Politi CNR, Istituto dei Sistemi Complessi, Firenze

Trieste – July 2005

Collaborators: R. LIVI, P.K. MOHANTY, A. TORCINI, R. ZILLMER

- FROM BINARY UNITS TO OSCILLATORS
- FULL AND PARTIAL SYNCHRONIZATION
- TRANSIENT DYNAMICS AND LINEARLY STABLE CHAOS
- DISORDER AND NOISE

A PROTOTYPE SYSTEM: THE KURAMOTO MODEL

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i) + \xi_i (t)$$
$$\frac{1}{N} \sum_{j=1}^N e^{i\theta_j} \qquad \qquad \dot{\theta}_i = \omega_i + Kr \sin(\psi - \theta_i) + \xi_i (t)$$

the order parameter

 $re^{i\psi} =$

NONLINEAR FOKKER-PLANCK EQUATION

$$\frac{\partial \rho}{\partial t} = -\frac{\partial v\rho}{\partial \theta} + D\frac{\partial^2 \rho}{\partial \theta^2}$$
$$v = \omega + Kr\sin(\psi - \theta) \qquad re^{i\psi} = \int_0^{2\pi} d\theta \int_{-\infty}^{+\infty} d\omega e^{i\theta} \rho(\theta, t, \omega) g(\omega)$$

$$\int_0^{2\pi} d\theta \rho(\theta, t, \omega) = 1$$

 $\lambda \approx 1/N$

[O.V. Popovich, Y.L. Maistrenko, P. Tass, 2005]

GLOBALLY COUPLED (Ginzburg)-LANDAU OSCILLATORS

$$\dot{W}_j = W_j - (1 + ic_2)|W_j|^2 W_j + K(1 + ic_1)(\overline{W} - W_j)$$
$$\overline{W} = \frac{1}{N} \sum_{j=1}^N |\overline{W}_j| e^{i\theta_j}$$

(Nakagawa Kuramoto 1994)

PULSE-COUPLED OSCILLATORS

$$\dot{\phi}_j = 1 \quad \phi_i((t_f + \tau))^+) = U^{-1}(U(\phi_i(t_f + \tau) + \varepsilon_{ij}))$$
 At threshold $(\phi = 1)$

Leaky integrate-and-fire-neurons

$$\dot{x}_i = a - \lambda x_i + gE(t) \qquad \qquad E(t) = \alpha^2 \sum_m (t - t_m) e^{\alpha(t - t_m)}$$

[C. van Vreeswijk, PRE, **54** 5522 (1996)]

A MICROSCOPICALLY QUASIPERIODIC DYNAMICS

7

$$\frac{\delta x_b}{v_b} = \delta t_{m-N} = \frac{\delta x_a}{v_a}$$

$$\delta x_b' = \delta x_a \mathrm{e}^{-\lambda T_m}$$

$$\frac{\delta x_b'}{v_b'} = \delta t_m = \frac{\delta x_a'}{v_a'}$$

A MICRO-MACRO APPROACH

$$\pi(t) = \frac{1/N}{\delta(t)} \qquad \qquad \int_{t-T(t)}^{t} \pi(\tau) \, d\tau = 1$$

PERTURBATIVE ANALYSIS ($\lambda \ll 1$)

NOISE ADDITION

11

"TRANSIENT" DYNAMICS

$$\tau \dot{v}_j = L_j - v_j - \frac{\tau}{N} \sum_m \left[G_{j,i(m)}(v_j + E) \right] \delta(t - t_m)$$

[D.Z. Jin, PRL 89, 208102 (2002)]

 v_j , L_j $G_{i,j}$ membrane, resting potential inhibitory synapse conductance time of the *m*th spike emitted by the i(m)th neuron threshold of jth neuron resetting potential

 $\dot{x}_{i} = a - x_{i} - G_{0} \sum_{m} F_{i,i(m)}(x_{i} + r)\delta(t - t'_{m})$ a = 2, r = 4/7

Dilution (a given fraction of links is cut)

 t_m

 Θ_j

 R_{i}

[A. Zumdieck, M. Timme, T. Geisel, F. Wolf, PRL 93 244103 (2004)]
Main difference: destabilizing coupling (positive Lyapunov exponent) + delay

LYAPUNOV STABLE CHAOS

[J.P.Crutchfield, K.Kaneko, PRL, **60** 2715 (1988)]

[A.P., R.Livi, G.-L.Oppo, R.Kapral, Europhys. Lett. 22 571 (1993)]

$$\varepsilon = 2/3$$

15

 $\varepsilon = 0.76$

ANOTHER PHYSICAL SETUP: THE 1D HARD-POINT GAS

(with P. Cipriani)

FUTURE PERSPECTIVES

- THE ROLE OF DELAY
- SYNAMPTIC PLASTICITY
- TOPOLOGY OF THE CONNECTIONS
- DISORDER