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Dynamics of Metal Electrodissolution
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Fast positive feedback loop through the potential (negative 

differential resistance)

Slow negative feedback loop through surface concentration(s)

of chemical species due to mass transport 
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Population of Electrochemical Oscillators:
Coupling weak via electrolyte: added globally
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Populations of Oscillators: 

Emerging Coherence and Clustering

Emergence of Order through Global Coupling

Kiss, Zhai, Hudson, Science 296, 1676 (2002) 

Zhai, Kiss, Hudson, Ind. Eng. Chem. Res. 43 (2), 315-326 (2004).

Mikhailov, Zanette, Zhai, and Hudson, Proc. Natl. Acad. Sci. USA

101 (30), 10890-10894 (2004). 

Cluster Formation and Itinerancy

Wang, Kiss, Hudson, Chaos 10, 248 (2000) 

Kiss, Hudson, Chaos 13, 999 (2003) 

Predicting Entrainment with Experiment-based Phase Models

Kiss, Zhai, Hudson, Phys. Rev. Lett. 94, 248301 (2005).

Populations of Oscillators:

Engineering of Chemical Complexity

Review article

Kiss, István Z and John L. Hudson, AIChEJ 49, 2234-2241 (2003).

Desynchronization

Zhai, Kiss, Tass, Hudson Phys. Rev.E. 71 065202(R) (2005).

Forcing

Wang, Kiss, Hudson, Phys. Rev. Lett. 86, 4954 (2001); 

Wang, Green, Hudson, J. Phys. Chem 105, 7366 (2001)

Feedback

Wang, Kiss, Hudson, Phys. Rev. Lett. 86, 4954 (2001) 

Wang, Kiss, Hudson, Ind. Eng. Chem. Res. 41, 330 (2002)
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Nickel Electrodissolution in Sulfuric Acid:

Dynamics of One Oscillator

Current time seriesBifurcation diagramType/conditions

Smooth
R = 452 

c = 3 M

Relaxation
R = 652 

c = 3 M

Chaotic
R = 906 

c = 4.5 M
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Nickel Electrodissolution in Sulfuric Acid:

Dynamics of One Oscillator 
(R = 652 , c = 3 M )
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Population of Smooth Oscillators

(no added coupling)

Frequency distribution

Snapshot of phase space 

reconstructed using 

Hilbert transform.
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Smooth Oscillators

Effect of global coupling on frequencies
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Smooth Oscillators

The effect of global coupling on order
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Smooth Oscillators: The Effect of Global 

Coupling on Variance of Order Parameter
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Mikhailov, Zanette, Zhai,. Kiss, Hudson, PNAS 101 (30), 10890-10894 (2004). 

Multimodal Population of Smooth Oscillators

Resonant clustering
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Resonant Clustering in External Forcing of a 

Coupled Unimodal Population (K = 0.044)

b = 0 mV

External forcing: V(t) = V0 + b sin(2 ft)

b = 3.3 mV b = 4.6 mV b = 5.3 mV
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Oscillator quenching Desynchronization

Suppression of collective oscillations

Two possible routes:

External Pulse Stimulation
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Effect of pulse on collective signal in a synchronized population

PS

Strong Pulse Intensity

Type-0 Phase Resetting

Weak Pulse Intensity

Type-1 Phase Resetting

Intermediate Pulse Intensity

Phase Singularity PS

Single pulse administered at phase singularity ( P =0.35)

Snapshots of 

phase space

Order magnitude 

vs. time

Pulse at t 7 s,.

Coupled Oscillators: Phase Models

j: phase of oscillator j, j = 1…N

j: inherent frequency
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Assumption:

j,kjkjk HH,H

Example: 

j,kj,k sinH Kuramoto, 1975

Once H( ) is  known, many of the synchronization properties can 

be predicted.

What is H( ) in experimental systems and does it predict 

synchronization correctly?

jkH , : interaction function

Experimental Determination of Response 

Function Z( )

Waveform Response Function

Z( ) = ( ) / X

where

( ): the phase advance due to a perturbation at  phase 

X: perturbation (electrode potential in this example)

: phase, = 2 t/T, t: time from maximum, T: period of the oscillation

Experimental Determination of Interaction 

Function H( )

Interaction function Odd part of H
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phase difference, K: intensity of diffusive coupling
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Relaxation Oscillators: Extent of Relaxation Character
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Stable Mutual Entrainment of Two 

Oscillators with Positive and Negative Coupling

‘Smooth’

Positive Coupling Negative Coupling

Prediction
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Populations: cluster states in phase models
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Coexistence of one- cluster and two- cluster states
in moderately relaxational oscillators

One cluster Two clusters (52+12)

PerturbationK = 1.5

Stable 2- clusters and 3- clusters
in strongly relaxational oscillators
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Current Distribution on the 64-Electrode Array
= 0.725

(40+24)(30+34) (45+19)

Chaotic Itinerancy = 0.73)

Number of elements in the two largest clusters

Changes in Cluster Configurations
Series of transitions 

of groups.

The system has a 

‘memory’. 

Elements are loyal 

to their sub-clusters, 

and the sub-clusters 

to the clusters.

Chaotic Itinerancy ( = 0.4)

Number of clusters vs. time

Changes in Cluster Configurations

Substantial rearrangements, no 

loyalty.
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Feedback 
64-electrode array, 
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Conclusions

Laboratory experiments with populations of periodic and 

chaotic chemical oscillators show phase transitions to coherent 

states, resonant clustering, and stable and itinerant dynamical 

differentiation. 

Phase models obtained from experiments are useful tools for 

predicting behavior of sets of oscillators. Interaction functions 

bridge local dynamics to emergent collective behavior.

Collective properties of populations can be tuned through 

global interactions, external forcing, and feedback.
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