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Key definitions, questions and concepts

H.A.Kacser & J.A.Burns (1973)

Study of of the control of flux in networks of
enzyme-catalyzed reactions in living cells

Biological networks are not random structures but
evolved together with biological function and robustness

What limits the efficiency of metabolism?

Quantitative description of in vivo protein chemistry

“Thermodynamics” of a metabolic stationary state
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rate determining step

What determines the efficiency of metabolism?

E
Metabolic chain: 5 X1 5 Xo 5 X3 —= Xa E X5 —

The rate limiting step of the metabolic chain must be a
non-equilibrium step

(disequilibrium ratio p = Kreq < 1 where T is the actual mass
action ratio of the product concentrations with reactant
concentrations and K., Is the equilibrium constant).

The rate limiting step is the enzyme with less capacity to
work faster i.e. having lowest limiting rate value.

Higher flux by adding metabolites after the rate limiting step.
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Non-equilibrium step.
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Figure 4.1 Displacerment of reactions from egquilibrium in glycolysis in working rat heart
The measurements were of metabolives in working perfused heart supplied with glucose but ro Insulin,
Both exrornal glucose and endogencous glycogen were being used as fuels. Equilibrium constanis weara
corrected to measured Intracellulzr conditions. Key: Ph, phosphorylase; Pg. phospheglucomutase; Tr,
plucose transport; He, hexokinase; Gl, glucose—& -phosphats isomerase; PR, phosphofructckinaze; Pm,
phosphoglycerate mutase; En, enolase; Py, pyruvate kinase, Data from Kashiwaya et gkt

Figure from Fell.
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rate determining step

Enzyme capacity.
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Figure 4.4 Relative enzyme activities in glycolysis in working rat heart

The limiting rates (V) were all measured at pH /.2 in the presence of 150 mM K' and 5 mM Mg’

They are given reatve to the gheoalytic flux, Ja':-“ measured for warking rat hearts using glucose as a

fuel. Key: Ph, phosphorylase; Pg, phosphoglucomumse; Ha, hexolinaze; G, glucose—8—P isomerase;

Pf, phosphofructokinase; Al, aldolase; T, triose phosphate isomerase; Ga, glyceraldehyde-3-phosphate
dekbydrogenase; Pg. phosphoglycerate kinase; Pu, phosphoglycerate murase; En, enolase; Py, pyruvato
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metabolic control analzsis

dh
XS —» ... YIS, ... = X4

What determines the flux at reaction step ydh for a pathway
at a stationary state [S];s7?

Jydh — aJydh [Exase]
Xase 8[Exase] Jydh

Exase IS the activity (concentration) of xase

Flux control coefficient C

The flux control coefficient is a network property

Summation theorem for particular flux >=7, C! = 1
summation is over all reactions in the cell.

.—p.7/26
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metabolic control analzsis MCA

What determines the dependence of rate on substrate?

OVxase [S]
8[5] Vxase

Elasticity coefficient € =

The elasticity is a property of a single enzyme.
For a Michaelis Menten enzyme

—_ V[S] /i rase __ K
vxase = 557 VNI €57 = R, 18]

Connectivity theorem for a particular flux J and a particular
substrate S ST Clek =0
summation is over all enzymes.
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What determines the efficiency of metabolism?
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—

Reversible metabolic chain: S V:l X1 \V:Q X \V:*3 X3+ Xo1=X, =P
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rate determining step

What determines the efficiency of metabolism?

Vn

. . . Vi (') V3
Reversible metabolic chain: S=Xi=Xo=X3:-- X1 =

: : J;
At steady state v; = J allowing the short notation CJ.J =C¢2
J

If E; is only affected by X;_; and X; the connectivity theorem gives

J ] J +1 _
Cjej —I—Cj lej =0
_ | I ] A+l
From this we have Cj = C 11 | |i j(— L)

n e!
1

1
and using > CjJ = 1 we get CjJ = —
0, T (- )
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Reversible metabolic chain: S=2Xi=2X0=2X3-- Xp1=Xp = P

: : J;
At steady state v; = J allowing the short notation CJ.J =C¢2
J

If E; is only affected by X;_; and X; the connectivity theorem gives

J ] J +1 _
Cjej —I—Cj lej =0
_ | I ] A+l
From this we have Cj = Cn+1 | |i j(— L)

€.
[

1
and using > CjJ = 1 we get CjJ = —
0, T (- )

In case ej < 0 (product inhib.) and ej:+1 > 0 (substrate activ.) we have CjJ > 0

if ej:H small (saturation) then CJ.JJrl large and E;; controls flux.

if |ej:| small (irreversible reaction) then CjJ large and E; controls flux.
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Irreversible metabolic chain:
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At steady state v; = J allowing the short notation CjJ = CJE",
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rate determining step
Irreversible metabolic chain:

S X BXo B Xz X1 B X, P

At steady state v; = J allowing the short notation CjJ = CJE"J,

E; Is not affected by X; such that ej = 0 The connectivity

theorem gives C?, ;™" = 0 such that ¢l =0.

The summation theorem gives C{ = 1 such that all control is
by E;.

.—p.10/26
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Irreversible metabolic chain with negative feedback:

SAX; B Xy B X3+ X1 B X, B P
BN Y,
E; Is not affected by X; such that ej = 0. Forj < nthe

connectivity theorem gives CJJHeJJr1 = 0 such that C,; = 0.
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Irreversible metabolic chain with negative feedback:

SAX; B Xy B X3+ X1 B X, B P

oA J

E; Is not affected by X; such that ej = 0. Forj < nthe
connectivity theorem gives CJJHeJJrl = 0 such that C,; = 0.

X, is an inhibitor of E; giving €. < 0

The connectivity theorem gives Ciel + Cn+1€”+1 = 0 and the
summation theorem gives C{ + C,; =
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rate determining step

Irreversible metabolic chain with negative feedback:

SAX; B Xy B X3+ X1 B X, B P

oA J

E; Is not affected by X; such that ej = 0. Forj < nthe
connectivity theorem gives CJJHeJJrl = 0 such that C,; = 0.

X, is an inhibitor of E; giving €. < 0

The connectivity theorem gives Ciel + Cn+1€”+1 = 0 and the

summation theorem gives C + CnJr1

n+1 el
We get C{ = ninl ~and G, = R

P |
—€n €n

.—p.11/26
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mutant heterozygotes,gene dosage,antisense RNA
2. Alteration of activity by environmental means
3: Titration with enzymes
rat liver homogenates Cyx=0.79,Copr=0.0, Cprx=0.21
4: Titration of activity by inhibitors
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Determination of control coefficients

Experimental determination of flux control coefficients by
manipulation of enzyme activity.

1: Alteration of gene expression
mutant heterozygotes,gene dosage,antisense RNA
2. Alteration of activity by environmental means
3: Titration with enzymes
rat liver homogenates Cyx=0.79,Copr=0.0, Cprx=0.21
4: Titration of activity by inhibitors

Control coefficients from computer models

Control coefficients from elasticities
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alteration of gene expression
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Figure 6.2 Dependence of arginine synthesis flux in Neurospora on enzyme levels

The results are those of Flint et al.”* with my best—fit hyperbolic curves. Most of the points were
obtained by forming heterokaryons with different ratios of wild—type and mutant nuclei. In each graph,
however, the point at the lowest enzyme activity is not a heterokaryon, but a partial revertant from the
mutant. (a) The dependence of the flux to arginine through argininosuccinate lyase on the activity of
ornithine carbamoyltransferase, both expressed as a % of wild—type levels. (b) The dependence of the
same flux on the activity of argininosuccinate lyase itself.

Figure from Fell.
.—p.13/26



alteration b

0.10

0.08

0.06

Glycolytic flux

0.04

0.02

0.00

Enzyme activity

Figure 6.8 Dependence of glycolytic flux in a rat liver homogenate on added enzymes
The enzymes added were hexokinase (C1) and phosphofructokinase (A). The results are those of Torres
et al.2*® with computed best—fit rectangular hyperbolas. The leftmost point on each curve represents
the original activity in the homogenate. The phosphofructokinase activity has been multiplied by a factor
of 10 for display purposes. Titration with glucose—6—phosphate isomerase gave no change in flux.

Figure from Fell.

y titration with enzymes
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_____ measurements of elasticities

In vivo modulation (Kacser& Burns)
.. — 2PG *"B* pEP — .., ve = f(2PG, PEP) = J

Measure from three different experiments
AJy =J1 —Je, A2PG; =2PGy —2PG., APEP, = PEP; — PEP,
Ady = Jo — J., A2PG9 =2PG2 —2PG., APEP, = PEP> — PEP,
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AJy =J1 —Je, A2PG; =2PGy —2PG., APEP, = PEP; — PEP,
Ady = Jo — J., A2PG9 =2PG2 —2PG., APEP, = PEP> — PEP,

By differentiation of J;, J2 and J. from three different experiments we have

~~ 8 e 6 e ~ 8 e 8 e
AJ1 ~ 8211)3GA2PG1 + 8PUEP APEP;, Ady =~ 8211)3G A2PGo + 8P1])5‘PAPEP2
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Ady = Jo — J., A2PG9 =2PG2 —2PG., APEP, = PEP> — PEP,

By differentiation of J;, J2 and J. from three different experiments we have

AJy m 52%- A2PGy + 52%5 APEPL, AJy ~ 59%- A2PGs + 5225 APEP;
Scaling these equation by division with J. gives

AJi, _ e A2PG, , e« APEP; AJo _ e A2PGy . e APEP,
7. X €pcapa. t€prp pEp, A T2 R €peSpa.. T €PEP PED,

: L .
These equation can now be solved for the two elasticities €5, and €% 5 p
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kinetic eguations for a metabolic network

Kinetic equations: % = > UstVr

Cg IS concentration of species s
U is the stoichiometric matrix

V, is the rate of reaction r
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kinetic eguations for a metabolic network

Kinetic equations: % = > UstVr

Cg IS concentration of species s
U is the stoichiometric matrix

V, is the rate of reaction r
Vv, constitutes an r dimensional rate space R.

The stationary states are the null space of v in R

SS __
ZI’ I/S)rvr T O

The null space is a convex cone in R bounded by
extreme currents.
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example of stationary states in rate space

Two extreme currents in a 3 dimensional rate space
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network for "glycolysis" in flow reactor
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extreme currents of stationarz states

Extreme currents for glyco
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control of extreme _currents
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control of extreme _currents

Eglyc

Joutaca
CEr

1.8

1.6 |

AV
wnsuod

10]S
MO|}-NO
0}oe|
MO|}-eoYy
1}-eoy
Mojj-oA19
1-0A1H
2A1Hd|
MOJ}-HOM3
N-HOV3
Hav
oad

Md
d3ddi
HAdvo
IdL

aiv
Mdd

19d

MH
3-91D
MO|}-0|9

.—p.21/26



control of extreme _currents
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control of extreme _currents

Estor

Jstora ge
Ce

AV
wnsuod

10]1S
MOJ}-NO
0)oe|
MOJj-eoY
1}-eoy
Mo}-2A19
1-0AH
2A19d|
MOJ}-HOMS
N-HOM3
Hav
oad

Md
d3addi
Hadv®o
IdL
aiv
Mdd
19d

MH
1919
MOJ-019

.—p.23/26



control of flux at HoEf Eoint
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perspectives

Flux control coefficients describe the influence of
genetic manipulation on metabolic flux at a
stationary state
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perspectives

Flux control coefficients describe the influence of
genetic manipulation on metabolic flux at a
stationary state

Redirection of flux requires simultaneous changes
IN many enzyme activities

|s a stationary state a valid description of a
biological system.

On long timescales changes in metabolite
concentrations feed back on gene expression.
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