

International Centre for Theoretical Physics

Summer School on Design and Control of Self-Organization in Physical, Chemical, and Biological Systems

25 July to 5 August, 2005

Miramare-Trieste, Italy

1668/2

Dynamics and Control of Cardiac Arrhythmias

Leon Glass McGill University, Quebec - Canada

Dynamics and Control of Cardiac Arrhythmias

Leon Glass Isadore Rosenfeld Chair in Cardiology, McGill University, Montreal, Quebec

Outline

- Dynamics: Paroxysmal rhythms
- Dynamics: Resetting oscillations
- Dynamics: Excitation in a ring
- Dynamics: Universal organization dynamics in excitable media
- Control: Better diagnosis of arrhythmia
- Control: Stimulation to control arrhythmia

BIG PROBLEM TO ASK ME: IF YOU UNDERSTAND CARDIAC PHYSIOLOGY SO WELL, WHY CAN'T YOU FIGURE OUT BETTER WAYS TO TREAT CARDIAC ARRHYTHMIAS IN PATIENTS?

Conduction System of the Normal Heart

Complex ectopic beats precede polymorphic VT in a German Shepherd dog (provided by Dr. S. Moise, Cornell)

Figure 3. Excerpt of 24 hour ambulatory electrocardiographic recording from a 15-week-old female German shepherd with inherited ventricular arrhythmia syndrome. Three simultaneous leads are recorded as a continuous

Complex ventricular ectopic beats before cardiac arrest in the intensive care unit

WE DO NOT KNOW EXACTLY WHAT IS HAPPENING IN THE HEART DURING THESE ARRHYTHMIAS

Physiological properties of real heart cells

- Excitable
- Refractory time (depends on the history)
- Oscillatory (can be reset and entrained)
- Fatigue (less excitable following rapid stimulation – overdrive suppression)
- Heterogeneous

Model System – Embryonic chick heart tissue culture

Thanks to Alvin Shrier my colleague and collaborator for over 20 years.

A Resetting Experiment

Perturbed Cycle Length Curves

Guevara, Shrier, Glass (1986)

Answer: The phase-resetting in a HH-type model is continuous **BUT**

Krogh-Madsen, Glass, Doedel, Guevara (2004)

Rapid Stimulation Leads to a Slower Rhythm (Overdrive Suppression)

Fixed Delay Stimulation

Fixed Delay Stimulation of Cardiac Aggregates Leads to Bursting

delay = 410 msecА 1750 -IBI 1250 (msec) 750 $50 \ \mathrm{mV}$ 250 12090 30 60 time (sec) 2 sec delay = 360 msecВ 1750 -IBI 1250 (msec) 750 25090 30 60 time (sec)

(Kunysz, Shrier, Glass 1997)

Cardiac Alternans in a Rabbit Heart in Vitro (1995)

Alternans and Period-doubling Bifurcations in Atrioventricular Nodal Conduction

JIONG SUN,† FARID AMELLAL,‡ LEON GLASS,†§ AND JACQUES BILLETTE‡

Bursting rhythms in reentrant rabbit preparation (1995)

(Model of tachycardia in WPW patients)

Anatomical Reentry

a. b.

G. R. Mines (1913)

Resetting and Entrainment of Ventricular Tachycardia Associated with Infarction: *Clinical and Experimental Studies*

M. E. JOSEPHSON, D. CALLANS, J. M. ALMENDRAL, B. G. HOOK, R. B. KLEIMAN

Macroscope for studying dynamics in tissue culture (Gil Bub, Alvin Shrier, Yoshihiko Nagai, Katsumi Tateno)

Cell Culture

Incubate 30 White Leghorn eggs for 7 days. Isolate ventricles. Dissociate with DNAse and trypsin. Add inactivating medium and filter. Centrifuge and resuspend in maintenance media. Plate at various densities. Incubate for 1-2 days. Load with dye, perform experiment.

 $0.5 \times 10^3 \, / cm^2$

1.0x10³/cm²

2.0x10³/cm²

Dynamics in a Ring of Cardiac Cells

Pacemaker

Nagai, Gonzalez, Shrier, Glass, PRL (2000)

Reentry

Cardiac Ballet

FitzHugh-Nagumo Model of Propagation

$$\begin{aligned} \frac{\partial v}{\partial t} &= -(v+.1)(v-.9)(v-.039) - w + D\frac{\partial^2 v}{\partial r^2} + I, \\ \frac{\partial w}{\partial t} &= (.005v - .01w + .0005)R(\zeta, v), \\ \frac{dz}{dt} &= -\gamma_{\alpha} z + (\Delta z)\delta(t-t_{AP}), \\ \zeta(z) &= \frac{.015}{z+1.}, \\ R(\zeta, v) &= \begin{cases} \frac{(1-\zeta)}{1+10e^{-10(v-.1)}} + \zeta, \text{ Pacemaker cells} \\ 1 & \text{Otherwise} \end{cases} \end{aligned}$$

Dynamic Changes with Time in Culture

 $^{\prime }lpha$ glycyrrhetinic acid

density

Universal organization: Fatigue vs Coupling

Simulating bursting dynamics as a function of connectivity

1)Add spontaneous activity by giving excitable cells a probability of firing. 2) Add fatigue by giving each cell a fatigue variable η where a) if the cell just became excited, $\eta_{i,j}(t+1) = \eta_{i,j}(t) + F$, b) Otherwise, $\eta_{i,j}(t+1) = \chi \eta_{i,j}(t)$, where $0 < \chi < 1$ (exponential decay) Now a cell is activated if $\eta_{i,j} + \theta < active/inactive$

Target patterns ('periodic')

bursting

One mechanism for paroxysmal rhythms

- Initiation by reentry in heterogeneous excitable systems
- Termination as a result of "fatigue" loss of excitability

Control: Use quantitative methods to better identify arrhythmia and assess the risk for sudden cardiac death

• Warning: Methods are still controversial

T-wave alternans

Rosenbaum et al., NEJM (1994)

T-wave Alternans Predicts Arrhythmia

Questions for discussion: What mechanisms might link T-wave alternans to increased risk for VT? Would the same mechanisms lead to inducibility of VT using premature stimuli in the EP lab?

Point D2 Dimension

Skinner, Pratt, Vybiral (1993)

National Resource for Complex Physiologic Signals A. Goldberger, Director

http://www.physionet.org

Heartprint of a Patient

PHYSICAL REVIEW E 66, 031901 (2002)

Complex patterns of abnormal heartbeats

Verena Schulte-Frohlinde,^{1,2,*} Yosef Ashkenazy,^{1,3} Ary L. Goldberger,² Plamen Ch. Ivanov,¹ Madalena Costa,² Adrian Morley-Davies,⁴ H. Eugene Stanley,¹ and Leon Glass⁵

Heartprint of Another Patient

Can you detect atrial fibrillation based on the RR intervals?

http://www.aboutatrialfibrillation.com

Use Histograms of ΔRR Intervals to detect AF

Tateno and Glass (2001)

Data Analysis: MIT-BIH arrhythmia database (From PhysioNet)

Control of Cardiac Chaos

Garfinkel, Spano, Ditto, Weiss, Science (1992)

Control Cardiac Alternans in a Rabbit Heart in Vitro (1997)

Target Unstable Fixed Point

Stimulate to Control Alternans

Conclusions

- Model cardiac systems can display complex rhythms. The types of the dynamics and the organization as a function of parameters governing the system are understood in some simple cases. These examples provide a challenge for "realistic" models of cardiac tissue.
- In intact animals, we need to study complex arrhythmia in detail in individuals since there is more than one mechanism.
- It will be possible to classify the mechanisms of complex arrhythmia, and perhaps it will be possible to better stratify risk.