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examples of biological function

� Reproduction

Energy utilization

glycolytic flux

Physiological rythms

(oscillations)

Mimicry (patterns)

Biological function is a possible process in an

intact biological system at a certain timescale

and under biological meaningfull conditions.
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skeletal muscle contraction

�

Fast muscle contraction is a

function which is obviously of

importance for survival.

It requires a substantial change

of ATP consumption within

seconds.

Can the associated changes of

flux be understood by current

knowledge of the influence of

metabolites on flux.

. – p.3/29



skeletal muscle contraction

�

Fast muscle contraction is a

function which is obviously of

importance for survival.

�

It requires a substantial change

of ATP consumption within

seconds.

Can the associated changes of

flux be understood by current

knowledge of the influence of

metabolites on flux.

. – p.3/29



skeletal muscle contraction

�

Fast muscle contraction is a

function which is obviously of

importance for survival.

�

It requires a substantial change

of ATP consumption within

seconds.

�

Can the associated changes of

flux be understood by current

knowledge of the influence of

metabolites on flux.

. – p.3/29



metabolome of muscle power plant

. – p.4/29



experimental results on muscle work in humans

NMR measurements of

pCr (phosphocreatine)

P (phosphate) and pH at

(a) 70% MVC

(maximal voluntary contraction)

(b) 90% MVC.

� � � �

Contraction

� � � �

Anaerobic "recovery"

� � � �

Aerobic recovery
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structural hierachy at cellular level

Genome

Proteome

Metabolome

Cellular structure and function
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timescales for cell processes

� Gene interactions (secs - hours)

Protein synthesis and degradation (secs - hours)

Protein interactions (millisecs - hours)

Conformation changes and phosphorylation f.ex
by kinases (millisecs).

Protein function (enzymatic reactions) (millisecs -
hours)
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Modelling of metabolic networks

� Systematic methods for quantitative modelling of
steady states in metabolic networks.

Example on modelling glycolysis in yeast cells
which in many respects is similar to glycolysis in
muscle cells.
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the quest for the oscillophore of yeast cells

Cells of Saccharomyces cerevisiae are grown aerobically in

batch. They are harvested at glucose depletion (diauxic shift)

and then starved for some hours in a buffer. At 5

�

C the cells can

be stored for several days.
. – p.9/29



Oscillations in a closed system

 0  500  1000  1500  2000  2500  3000  3500

Fluorescense from NADH.

Addition of glucose at t=400s. Addition of cyanide at t = 650.
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Continuous oscillations using a flow reactor

OutflowCyanide

Glucose

c

c4

c3

c2

c1

c5
Cell suspens

The reactor is fed with constant flow of cell suspension together with glucose and
cyanide. Oscillations are observed if the cells oscillate in phase. Amplitude depends on

glucose concentration.

40000 40500 41000 41500 42000 42500 43000 43500 44000 44500 45000

[N
A

D
H

]

time / s
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stationary experimental data for the cell suspension

�

Measurements of stationary concentrations

Measurements of fluxes

Measurements of in vitro enzymatic parameters

Measurements of amplitude and phases for metabolite
oscillations

Can a complete model using in vitro
determined parameters explain
the experimental data

NO
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Hopf behavior

Dependence of amplitude on glucose concentrations.
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Hopf dynamics

Quenchings of the oscillations.

13000 13200 13400 13600

↓ + 1.11 mM Glc xa

20000 20200 20400 20600

↓ + 0.098 mM ACA x
b

time / s

The reactor is perturbed with instantaneous additions of

a: glucose and b: acetaldehyde.
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Geometry of quenching

[C]

[B]

[A]

L S

usub

ssubcsm

cum

Hopf bifurcation in 3 dimensional concentration space. ssub and usub are the stable and
unstable subspace of the unstable stationary state S. L is the stable limit cycle
embedded in the center-unstable manifold cum tangent to usub at S. csm is the
center-stable manifold of S tangent to ssub at S.
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network for reactions in flow reactor

x

ATP
23: consum

x

x

CN-

x

9: lpPEP

15: lpGlyc

22: storage

1: inGlc

16: difGlyc

17: outGlyc

20: lacto

21: inCN

19: outACA 14: outEtOH

13: difEtOH18: difACA

ADP

x

ADP

ATP

+NADNADH

+NAD

ADP

ATP

+NADNADH

12: ADH

ATP

ADP

EtOH

ATP

ADP

24: AK
ATP + AMP 2 ADP

Glc

Glyc

Glyc

ACA

GAP

G6P

F6P

FBP

BPG

Glc

ATP ADP

DHAP

NADH

PEP

Pyr ACA EtOH

8: GAPDH

10: PK
11: PDC

7: TIM

6: ALD

3: HK

4: PGI

5: PFK

2: GlcTrans

Intracellular reactions
Extracellular reactions
Transport across cellular membrane

ODE model at metabolome level
20 variables
24 reactions
60 parameters
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direct optimization method

�

Kinetic equations:

��� �
�� � �

�	��
 � � �


�� is concentration of species s

� is the stoichiometric matrix

�	� is the rate of reaction �
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Selected reaction rates ��
�

Other reaction rates are Michaelis-Menten or mass action.
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direct optimization method

� Kinetic equations:

�� �
�� � �

�	� 
 � � �

Rate expression
rate parameter

The rate has the form:

intrinsic parameters

Null space:

Extreme currents:
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direct optimization method

Extreme currents in a 3 dimensional reaction space

v
1

3
v

v
2

E2

E1
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direct optimization method

Extreme currents for glycolysis at Hopf point.

a b c d

�

ferm
�

glyc

�

lact

�

stor

� � � � ��� �
ferm

� ��� �

glyc

� ��� �

lact

� ��� �

stor
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direct optimization method

a: Select ��� , �
� �

and

�

b: Calculate Jacobian and find eigenvalues.

c: if not Hopf then select new parameters and goto a

d: Scale such that is right

e: Calculate right and left eigenvectors of Jacobian and
amplitudes and phases of oscillations and quenchings.

f: If fit to experiments are better than previous best fit then store
parameters.

g: select new parameters and goto a
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Parameter optimization

Comparison of optimized model with experimental results (in paranthesis).

��� � concentrations of the stationary state. � � � relative amplitudes of oscillations.

�
� :

angles of oscillations. �� � relative quenching amplitudes.

�
� � quenching phases.
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Control coefficients for amplitude and frequence
The quest for the oscillophore can be closed by calculating

control coefficients for the oscillations from the comprehensive

model.

�

Control coefficient for square amplitude and frequence

� �
�

� � � � �
�

� �

� ��
	 � �

�
��
	

� ��
	� �

The control coefficients satisfy summation rules which can

be obtained from the timescale invariance of trajectories by

differentiating with a scale factor for time

Similarly

such that
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Control of amplitude and frequence
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Hopf interpretation of controlcoefficients

�

Stuart-Landau equation:

��� � �� ��� � � 	 
 � ��� � 
 � 
 �

�

Control coefficients for Hopf:�� � �� �

��� � �� �
�� � �� �

��� � � ��

� ����� �
���� � � �

���� � � � �



�
� � � �

� � � � �



��

�
� � �� � � ��

�   
�  

!
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Conclusion on control of function

� The function of a gene is always mediated through
spatial or temporal control of the enzymes of
metabolic networks.

One enzyme usually control several functions.

Control of a specific function can sometimes be
achieved by carefully engineered simultaneous
control of many enzymes.

Control coefficients of a metabolic network
depends on the stationary state.
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Conclusion on modelling

� A model is satisfactory if it describes all available
experimental data.

Measurements of stationary concentrations are
usually not sufficient to discriminate between
different sets of model parameters.

The simples dynamic information is obtained from
small instantaneous perturbations of the state of
biological systems.

From a timeseries of responses to random
perturbations with all metabolites you can
determine the Jacobian.
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