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examples of biological function

* Reproduction

» Energy utilization
glycolytic flux

« Physiological rythms
(oscillations)

* Mimicry (patterns)

* Biological function is a possible process in an
Intact biological system at a certain timescale
and under biological meaningfull conditions.
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-_— skeletal muscle contraction

* Fast muscle contraction is a
function which is obviously of
Importance for survival.
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-_— skeletal muscle contraction

* Fast muscle contraction is a
function which is obviously of
Importance for survival.

* It requires a substantial change
of ATP consumption within
seconds.

* Can the associated changes of
flux be understood by current
knowledge of the influence of
metabolites on flux.
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metabolome of muscle power plant

PROXIMAL GLYCOLYSIS
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eerrimentaI results on muscle work in humans
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Figure 3 Effect on PCr, P, and pH of isometric contraction and recovery
during ischaemia followed by aerobic recovery
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structural hierachy at cellular level

Genome

!

Proteome

!

Metabolome

|

Cellular structure and function



timescales for cell processes

Gene Interactions (secs - hours)
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timescales for cell processes

Gene Interactions (secs - hours)
Protein synthesis and degradation (secs - hours)
Protein interactions (millisecs - hours)

Conformation changes and phosphorylation f.ex
oy kinases (millisecs).

Protein function (enzymatic reactions) (millisecs -
Nours)
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Modelling of metabolic networks

Systematic methods for quantitative modelling of
steady states in metabolic networks.
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Modelling of metabolic networks

Systematic methods for quantitative modelling of
steady states in metabolic networks.

Example on modelling glycolysis in yeast cells
which Iin many respects is similar to glycolysis in
muscle cells.
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the quest for the oscillophore of yeast cells

Cells of Saccharomyces cerevisiae are grown aerobically in
batch. They are harvested at glucose depletion (diauxic shift)
and then starved for some hours in a buffer. At 5°C the cells can
be stored for several days.
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Oscillations In a closed system

[

0 52)0 1OIOO 15;00 20IOO 25;00 30IOO 3500
Fluorescense from NADH.

Addition of glucose at t=400s. Addition of cyanide at t = 650.
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Continuous oscillations using a flow reactor

Glucose

Cyanide

>®@

Outflow

Cell suspens
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The reactor is fed with constant flow of cell suspension together with glucose and
cyanide. Oscillations are observed if the cells oscillate in phase. Amplitude depends on

glucose concentration.
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stationarz ex[:_)erimental data for the cell susEension

Measurements of stationary concentrations
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stationarz eerrimentaI data for the cell SusEension

Measurements of stationary concentrations
Measurements of fluxes
Measurements of in vitro enzymatic parameters

Measurements of amplitude and phases for metabolite
oscillations

Can a complete model using in vitro
determined parameters explain
the experimental data

NO
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Hopf behavior

Dependence of amplitude on glucose concentrations.

square of amplitude / a.u.

20 25 30 35
[Glcylo/ mM
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Quenchings of the oscillations.

Hopf dynamics

a 1+1.11mMGlc
13000 13200 13400 13600
b | | | | | | | |
1+0.098 MM ACA
20000 20200 20400 20600
time/s

The reactor is perturbed with instantaneous additions of

a: glucose and b: acetaldehyde.
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Geometry of quenching

S ssub
[C]
A C—~
<
L s cum
///// usub
> [B]

[A]

Hopf bifurcation in 3 dimensional concentration space. ssub and usub are the stable and
unstable subspace of the unstable stationary state s. L is the stable limit cycle
embedded in the center-unstable manifold cum tangent to usub at S. csm is the
center-stable manifold of s tangent to ssub at S.
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—_— network for reactions in flow reactor
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direct optimization method

Kinetic equations: % = > UstVr

Cg IS concentration of species s

v IS the stoichiometric matrix
V, is the rate of reaction r
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Selected reaction rates v,
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Other reaction rates are Michaelis-Menten or mass action.
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direct optimization method

Kinetic equations: & = 3" vs v,
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direct optimization method

Kinetic equations: & = 3" vs v,

Rate expression
rate parameter

'

The rate has the form: v, = V,g,(c,K,)

Intrinsic parameters
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direct optimization method

Kinetic equations: & = 3" vs v,

Rate expression
rate parameter

'

The rate has the form: v, = V,g,(c,K,)

Intrinsic parameters
Null space: > ve,v;* =0

.—p.19/29



direct optimization method

Extreme currents in a 3 dimensional reaction space
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direct optimization method

Extreme currents for glyco

a — b C

Eferm Eglyc

I

ysis at Hopf point.
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E* = aiEgerm + a2k glyc 1 a3Ejact + asEstor

.—p.21/29



direct optimization method

a: Select a;, ¢ and K
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direct optimization method
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Calculate Jacobian and find eigenvalues.
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direct optimization method
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Calculate Jacobian and find eigenvalues.

If not Hopf then select new parameters and goto
Scale V, such that w is right

Calculate right and left eigenvectors of Jacobian and

amplitudes and phases of oscillations and quenchings.
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direct optimization method

Select a;, ¢> and K

Calculate Jacobian and find eigenvalues.

If not Hopf then select new parameters and goto
Scale V, such that w is right

Calculate right and left eigenvectors of Jacobian and
amplitudes and phases of oscillations and quenchings.

If fit to experiments are better than previous best fit then store
parameters.
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direct optimization method

Select a;, ¢> and K

Calculate Jacobian and find eigenvalues.

If not Hopf then select new parameters and goto
Scale V, such that w is right

Calculate right and left eigenvectors of Jacobian and
amplitudes and phases of oscillations and quenchings.

If fit to experiments are better than previous best fit then store
parameters.

select new parameters and goto
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Parameter optimization

¢s/mM as/a 0s/deg | qs/qaca, | ¢s/deg
Gley 1.55 (1.6) 0.013 135 5.3 (11) 355 (4)
Glc 0.57 1.83 12 19 81
G6P 4.2 (4.1) 15.8 (21) 190 (260) | 1.7 67
F6P 0.49 (0.5) 2.16 (2.7) 178 (250) | 1.7 72
FBP 4.64 (5.1) 22.2 (26) 32 (70) 4.4 218
GAP | 0.115 (0.12) | 0.295 (0.04) | 30 7.0 255
DHAP | 2.95 (2.5) 6.97 (0.5) 38 7.9 195
BPG | 0.0003 (n.d) | 0.002 136 0.53 287
PEP 0.04 (0.04) | 0.023 (0.07) | 18 1.1 286
Pyr 8.7 (8.7) 4.06 (7) 79 125 180
ACA | 1.48 0.894 196 2.5 268
EtOHy | 16.5 0.035 114 0o (n.p) undef
EtOH | 19.2 1.22 26 00 undef
Glyc 4.2 1.68 98 00 undef
Glycx | 1.68 0.005 188 oo (n.p) undef
ACA, | 1.29 0.037 (0.3) | 284 (200) | 1 (1) 181 (172)
CNZ 5.2 5x107° 193 2400 (n.p) | 271
ATP 2.1 (2.1) 10.8 (8) 139 (180) | 0.50 289
ADP | 1.5 (1.5) 6.32 (9.4) 319 (0) 1.0 290
AMP |0.33(0.33) | 4.5 (3.6) 319 (0)
NADH | 0.33 (0.33) |1 (1) 0 (0) 0.68 106
NAD* | 0.65 (0.65) | 1 (0.6) 180 (180)

Comparison of optimized model with experimental results (in paranthesis).
cs : concentrations of the stationary state. a; : relative amplitudes of oscillations. 6
angles of oscillations. g : relative quenching amplitudes. ¢ : quenching phases.
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Control coefficients for amplitude and frequence

The quest for the oscillophore can be closed by calculating
control coefficients for the oscillations from the comprehensive
model.

Control coefficient for square amplitude and frequence

a? _ 10a? wie _ E Ow,
'y = E5E Cp® = -%F
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The quest for the oscillophore can be closed by calculating
control coefficients for the oscillations from the comprehensive
model.

Control coefficient for square amplitude and frequence

a? _ 10a? wie _ E Ow,
'y = E5E Cp® = -%F

The control coefficients satisfy summation rules which can
be obtained from the timescale invariance of trajectories by
differentiating «? with a scale factor A for time
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Control coefficients for amplitude and frequence

The quest for the oscillophore can be closed by calculating
control coefficients for the oscillations from the comprehensive
model.

Control coefficient for square amplitude and frequence

a? _ 10a? wie _ E Ow,
'y = E5E Cp® = -%F

The control coefficients satisfy summation rules which can
be obtained from the timescale invariance of trajectories by
differentiating «? with a scale factor A for time
8a® _ 8a® O(hEr) h=1 8a? 1 _ 2 _
aih _ Zr B(haE,n) oh _ Zr 8—%7~E7“ — Zfr FaEr =0
Similarly

0 hE,. h=1 c _ c
% — Z’r 8?;;%1) (8h, ) — Zr g%lr Er — Wie¢ Zr Cgi — Wic
suchthat }  Cpc =1
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Control of amplitude and frequence
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H0|c_)f intergretation of controlcoefficients

Stuart-Landau equation: z = (iwg + o)z + gZ|Z|2

Control coefficients for Hopf:
dRe(\) _ dRe(A) _
dp/po  dp_ 9p

wie — @n(w) _ 1dw) _ 1 q”’
CPI ~ dln(p)  w o (OJ,_OJQ )
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Conclusion on control of function

The function of a gene Is always mediated through
spatial or temporal control of the enzymes of
metabolic networks.
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Conclusion on control of function

The function of a gene Is always mediated through

spatial or temporal control of the enzymes of
metabolic networks.

One enzyme usually control several functions.

Control of a specific function can sometimes be
achieved by carefully engineered simultaneous
control of many enzymes.

Control coefficients of a metabolic network
depends on the stationary state.
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Conclusion on modelling

A model Is satisfactory If it describes all available
experimental data.
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Conclusion on modelling

A model Is satisfactory If it describes all available
experimental data.

Measurements of stationary concentrations are
usually not sufficient to discriminate between
different sets of model parameters.

The simples dynamic information is obtained from
small instantaneous perturbations of the state of
niological systems.

-rom a timeseries of responses to random
perturbations with all metabolites you can
determine the Jacobian.

.—p.28/29
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