

and Cardward Che

Summer School on Design and Control of Self-Organization in Physical, Chemical, and **Biological Systems**

25 July to 5 August, 2005

Miramare-Trieste, Italy

1668/25

Flow Distributed Oscillators

Stephen Scott University of Leeds United Kingdom

FDO Patterns in the BZ Reaction

Steve Scott University of Leeds

Chemical Models

- Chemistry can provide "reduced model" of selected aspects of biological or engineering systems
- Chemical systems show feedback and excitability
- Convenient time and length scales
- Easily monitored
- Reaction and diffusion couple in rigorous and intuitive way (in most cases)
- Can begin with virtually homogeneous systems and then incorporate increasing extents of heterogeneity

Mathematics: nonlinear dynamics: modelling, theory and numerics

Turing Patterns

- Turing proposal for "morphogenesis" (1952)
- "selective diffusion" in reactions with feedback
- requires diffusivity of feedback species to be reduced compared to other reactants
- observed in chemical systems

Castets et al. Phys Rev. Lett 1990

Ouyang and Swinney, Chaos 1991

Experimental Realisation

- Chemical system that supports batch oscillations – but run under non-oscillatory conditions
- Arrange selective diffusion typically via complexing to immobilised species trapped in gel
- Open reactor configuration

"Turing Patterns" in flames

"thermodiffusive instability"

- first observed in Leeds (Smithells $&$ Ingle 1892)

requires thermal diffusivity \leq mass diffusivity

DIFICI

- differential-flow induced chemical instability
- requires selective diffusivity but can be *any* species

Menzinger and Rovinsky Phys. Rev. Lett., 1992, 1993

BZ reaction: DIFICI • immobilise ferroin on ionexchange resin • flow remaining reactants down tube• above a "critical" flow velocity, distinct "stripes" of oxidation (blue) appear and travel through tube

pressure regulator reservoirionexchange columnloadedwithferroin

Experiment

λ *⁼*2.1 cm*c*_f = 0.138 cm s^{−1} $f = 2.8$ s frame⁻¹ $[BrO₃^-] = 0.8 M$ $[BrMA] = 0.4 M$ $[H_5SO_4] = 0.6 M$

Rita Toth, Attila Papp (Debrecen), Annette Taylor (Leeds)

Experimental results

imaging system: vary "driving pressure"

Not possible to determine "critical flow velocity"

Theoretical analysis:

• Dimensionless equations

$$
\varepsilon \frac{\partial u}{\partial t} + \phi \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} + \left\{ u(1 - u) - f v \frac{(u - q)}{(u + q)} \right\}
$$

$$
\frac{\partial v}{\partial t} + \delta \phi \frac{\partial v}{\partial x} = \delta \frac{\partial^2 v}{\partial x^2} + u - v
$$

 $u = [\text{HBrO}_2], v = [\text{M}_{ox}]$: take $\delta = 0$ ε and *f* depend on initial reactant concentrations

main results

• DIFICI patterns in range of operating conditions separate from oscillations

Space-time plot showing position of waves

back to dimensional terms : predict $c_{\text{f,cr}} = 1.3 \times 10^{-2} \text{ cm s}^{-1}$ For $c_{\rm f,cr}$ = 2.4 × 10⁻² cm s⁻¹ λ = 0.42 cm

note: initiation site moves down tube

Kuznetsov, Andresen, Mosekilde, Dewel, Borckmans

Flow Distributed Oscillations

- patterns without differential diffusion or flow
- Very simple reactor configuration: plug-flow tubular reactor fed from CSTR
- reaction run under conditions so it is oscillatory in batch, but steady-state in CSTR

Simple explanation

- CSTR ensures each "droplet" leaves with same "phase"
- Oscillations occur in each droplet at same time after leaving CSTR and, hence, at same place in PFR

explains: existence of stationary patterns

need for "oscillatory batch" reaction

BZ system with $f = 0.17$ cm s⁻¹

 $[BrO₃⁻] = 0.24 M, H⁺ = 0.15 M$ $[MA] = 0.4 M,$ $[{\rm Ferroin}] = 7 \times 10^{-4}$ M Images taken at 2 min intervals

wavelength = velocity \times period

Using simple analysis of Oregonator model, predict:

Doesn't explain some key features

- critical flow velocity
- nonlinear dependence of wavelength on flow velocity
- other responses observed, especially the dynamics of pattern development

Modelling

• Oregonator model:

$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \phi_P \frac{\partial u}{\partial x} + \frac{1}{\varepsilon} \left\{ u(1-u) - f v \frac{(u-q)}{(u+q)} \right\}
$$

$$
\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} - \phi_P \frac{\partial v}{\partial x} + u - v
$$

Initial Development of Stationary Pattern

• Oregonator model ε = 0.25 $f = 1.0$ $q = 8 \times 10$ − 4 $\phi = 2$

0.4 time units per frame

Space-time plot

 \boldsymbol{t}

Experimental verification

BZ system with *f* = 0.17 cm s^{−1} $[BrO₃⁻] = 0.2 M,$ $H^+ = 0.15M$ $[MA] = 0.4 M,$ $[{\rm Ferroin}] = 7 \times 10^{-4}$ M

Experimental space-time plot

Complex Pattern Development

more complexity

Perturbations to Boundary Conditions

perturbation time 100 - 105

Oscillatory Perturbation

Experimental

MRI studies of FDO patterns

Use of BZ system as a model to investigate behaviour of reactor Mn-catalysed BZ system: contrast from changes in H_2O relaxation times

Imaging of stationary patterns

distance (cm)

> patterns formed in and above a packed bed of glass beads (tube of 20 mm i.d. filled with 1 mm beads)

field of view of single image was 44.5 ^x 25 mm, pixel size was 174 x 195 µ^m

image taken in the centre of the tube

sample moved through the magnet in 2 cm increments over a distance of 18 cm

Figure D

CDIMA reaction

ò.

Patterns but *unsteady*

Acknowledgements

- \bullet Annette Taylor (Leeds)
- Gavin Armstrong (Leeds)
- Rita Tóth (Debrecen/Leeds)
- Vilmos Gáspár (Debrecen)
- Melanie Britton (Birmingham)
- • British Council/ Hungarian Academy of Science
- *ESF REACTOR* programme

