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FDO Patterns in the BZ Reaction

Steve Scott
University of Leeds



Chemical Models
• Chemistry can provide “reduced model” of selected 

aspects of biological or engineering systems 
• Chemical systems show feedback and excitability
• Convenient time and length scales
• Easily monitored
• Reaction and diffusion couple in rigorous and intuitive 

way (in most cases)
• Can begin with virtually homogeneous systems and then 

incorporate increasing extents of heterogeneity



Biology and 
Physiology

circadian rhythms

neuronal/cardiac 
rhythms

hormonal rhythms

biochemical oscillators

mitosis

excitability

timing
signalling

morphogenesis

Nonlinear Chemical Kinetics

feedback
steady-states
oscillations
excitability

chemical waves
chemical patterns

reaction and diffusion

Chemical Reactor 
Engineering

stability/instability
yields and selectivity

optimisation and 
control

reactor development

Chemistry

kinetics and reaction 
mechanisms

surfaces and interfaces

combustion

polymers & gels

atmospheric chemistry

Mathematics: nonlinear dynamics: modelling, theory and numerics

chemical 
models of 
biological 
systems



Turing Patterns
• Turing proposal for “morphogenesis”

(1952)
• “selective diffusion” in reactions with 

feedback
• requires diffusivity of feedback 

species to be reduced compared to 
other reactants

• observed in chemical systems

Castets et al. Phys Rev. Lett 1990 Ouyang and Swinney, Chaos 1991



Experimental Realisation

• Chemical system that supports batch 
oscillations – but run under non-oscillatory 
conditions

• Arrange selective diffusion typically via 
complexing to immobilised species trapped in 
gel

• Open reactor configuration



“Turing Patterns” in flames

“thermodiffusive instability”
- first observed in Leeds
(Smithells & Ingle 1892)

requires thermal diffusivity < 
mass diffusivity



DIFICI

• differential-flow induced 
chemical instability

• requires selective 
diffusivity but can be any
species

Menzinger and Rovinsky
Phys. Rev. Lett., 1992,1993



BZ reaction: DIFICI

• immobilise ferroin on ion-
exchange resin

• flow remaining reactants down 
tube

• above a “critical” flow velocity, 
distinct “stripes” of oxidation 
(blue) appear and travel through 
tube

pressure
regulator

reservoir

ion-
exchange
column
loaded
with
ferroin



Experiment

λ = 2.1 cm
cf = 0.138 cm s−1

f = 2.8 s frame−1

[BrO3
−] = 0.8 M

[BrMA] = 0.4 M
[H2SO4] = 0.6 M 

Rita Toth, Attila Papp (Debrecen), Annette Taylor (Leeds)



Experimental results

imaging system: vary “driving pressure”
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Theoretical analysis:

• Dimensionless equations
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main results
• DIFICI patterns in range of operating conditions 

separate from oscillations

f

absolute
instability

convective instab.

no
instability

no 
instab.

2
1

21+

ε

]H][BrO[
[MA]

3
+−

φcr = 0

φcr →∞

φcr increasing
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Space-time plot showing position of waves

note: initiation site moves down tube

back to dimensional 
terms :

predict

cf,cr = 1.3 × 10−2 cm s−1

For
cf,cr = 2.4 × 10−2 cm s−1

λ = 0.42 cm



Flow Distributed Oscillations

• patterns without differential 
diffusion or flow

• Very simple reactor 
configuration:

plug-flow tubular 
reactor fed from CSTR

• reaction run under conditions 
so it is oscillatory in batch, but 
steady-state in CSTR

Kuznetsov, Andresen, Mosekilde, Dewel, Borckmans



Simple explanation

• CSTR ensures each 
“droplet” leaves with 
same “phase”

• Oscillations occur in 
each droplet at same 
time after leaving 
CSTR and, hence, at 
same place in PFR



explains:
existence of stationary 
patterns

need for “oscillatory 
batch” reaction

BZ system with f = 0.17 cm s−1

[BrO3
−] = 0.24 M, H+ = 0.15M

[MA] = 0.4 M, 
[Ferroin] = 7 × 10−4 M Images taken at 2 min intervals



wavelength = velocity × period

Using simple analysis of Oregonator 
model, predict:

2/12/1
3 ]H[]BrO[

~ +−

φλ



Doesn’t explain some key features

• critical flow velocity
• nonlinear dependence of wavelength on flow 

velocity
• other responses observed, especially the 

dynamics of pattern development



Modelling

• Oregonator model:
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Initial Development 
of Stationary Pattern

• Oregonator model
ε = 0.25
f = 1.0
q = 8 × 10−4

φ = 2

0.4 time units per frame
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Direction of 
flow

bluered



Space-time plot



BZ system with 
f = 0.17 cm s−1

[BrO3
−] = 0.2 M, 

H+ = 0.15M
[MA] = 0.4 M, 
[Ferroin] = 7 × 10−4 M

Experimental verification



Experimental space-time plot



Complex Pattern Development
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more complexity



Perturbations to 
Boundary Conditions



Decreasing u,v on boundary:  time 100 - 101



perturbation time 100 - 105



Oscillatory Perturbation



Experimental



MRI studies of FDO patterns
Use of BZ system as a model to investigate behaviour of reactor

Mn-catalysed BZ system: contrast from changes in H2O relaxation 
times
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Imaging of stationary patterns 

field of view of single image was 44.5 x
25 mm, pixel size was 174 x 195 µm

image taken in the centre of the tube

sample moved through the magnet in 2 
cm increments over a distance of 18 cm

patterns formed in and above a packed 
bed of glass beads (tube of 20 mm i.d. 
filled with 1 mm beads)
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CDIMA reaction

Patterns

but unsteady
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