

The Abdus Salam International Centre for Theoretical Physics

Summer School on Design and Control of Self-Organization in Physical, Chemical, and Biological Systems

25 July to 5 August, 2005

Miramare-Trieste, Italy

1668/25

Flow Distributed Oscillators

Stephen Scott University of Leeds United Kingdom

FDO Patterns in the BZ Reaction

Steve Scott University of Leeds

Chemical Models

- Chemistry can provide "reduced model" of selected aspects of biological or engineering systems
- Chemical systems show feedback and excitability
- Convenient time and length scales
- Easily monitored
- Reaction and diffusion couple in rigorous and intuitive way (in most cases)
- Can begin with virtually homogeneous systems and then incorporate increasing extents of heterogeneity

	Chemistry				
	kinetics and reaction mechanisms				
Biology and Physiology	Nonlinear Che	Nonlinear Chemical Kinetics		Chemical Reactor Engineering	
circadian rhythms	feed	feedback			
neuronal/cardiac rhythms	steady-states oscillations excitability chemical waves		stability/instability yields and selectivity		
hormonal rhythms			optimisation and control		
biochemical oscillators	reaction and diffusion				
mitosis			reactor development		
excitability	chemical	surfaces and	l interfaces		
timing	models of biological	combu	combustion		
signalling	systems	polymers	& gels		
morphogenesis	atmospheric		chemistry		

Mathematics: nonlinear dynamics: modelling, theory and numerics

Turing Patterns

- Turing proposal for "morphogenesis" (1952)
- "selective diffusion" in reactions with feedback
- requires diffusivity of feedback species to be reduced compared to other reactants
- observed in chemical systems

Castets et al. Phys Rev. Lett 1990

Ouyang and Swinney, Chaos 1991

Experimental Realisation

- Chemical system that supports batch oscillations but run under non-oscillatory conditions
- Arrange selective diffusion typically via complexing to immobilised species trapped in gel
- Open reactor configuration

"Turing Patterns" in flames

"thermodiffusive instability"

first observed in Leeds(Smithells & Ingle 1892)

requires thermal diffusivity < mass diffusivity

DIFICI

- differential-flow induced chemical instability
- requires selective diffusivity but can be *any* species

Menzinger and Rovinsky Phys. Rev. Lett., 1992,1993

BZ reaction: **DIFICI** • immobilise ferroin on ionexchange resin • flow remaining reactants down tube • above a "critical" flow velocity, distinct "stripes" of oxidation (blue) appear and travel through tube

pressure regulator reservoir ionexchange column loaded with ferroin

Experiment

 $\lambda = 2.1 \text{ cm}$ $c_f = 0.138 \text{ cm s}^{-1}$ $f = 2.8 \text{ s frame}^{-1}$ $[\text{BrO}_3^{-}] = 0.8 \text{ M}$ [BrMA] = 0.4 M $[\text{H}_2\text{SO}_4] = 0.6 \text{ M}$

Rita Toth, Attila Papp (Debrecen), Annette Taylor (Leeds)

Experimental results

imaging system: vary "driving pressure"

Not possible to determine "critical flow velocity"

Theoretical analysis:

• Dimensionless equations

$$\varepsilon \frac{\partial u}{\partial t} + \phi \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} + \left\{ u(1-u) - fv \frac{(u-q)}{(u+q)} \right\}$$
$$\frac{\partial v}{\partial t} + \delta \phi \frac{\partial v}{\partial x} = \delta \frac{\partial^2 v}{\partial x^2} + u - v$$

 $u = [HBrO_2], v = [M_{ox}]$: take $\delta = 0$ ε and *f* depend on initial reactant concentrations

main results

• DIFICI patterns in range of operating conditions separate from oscillations

Space-time plot showing position of waves

back to dimensional terms : predict $c_{\rm f,cr} = 1.3 \times 10^{-2} \,{\rm cm} \,{\rm s}^{-1}$ For $c_{\rm f,cr} = 2.4 \times 10^{-2} \,{\rm cm} \,{\rm s}^{-1}$ $\lambda = 0.42 \,{\rm cm}$

note: initiation site moves down tube

Kuznetsov, Andresen, Mosekilde, Dewel, Borckmans

Flow Distributed Oscillations

- patterns without differential diffusion or flow
- Very simple reactor configuration: plug-flow tubular reactor fed from CSTR
- reaction run under conditions so it is oscillatory in batch, but steady-state in CSTR

Simple explanation

- CSTR ensures each "droplet" leaves with same "phase"
- Oscillations occur in each droplet at same time after leaving CSTR and, hence, at same place in PFR

explains: existence of stationary patterns

need for "oscillatory batch" reaction

BZ system with f = 0.17 cm s⁻¹

 $[BrO_{3}^{-}] = 0.24 \text{ M}, \text{H}^{+} = 0.15\text{M}$ [MA] = 0.4 M, $[Ferroin] = 7 \times 10^{-4} \text{ M}$

Images taken at 2 min intervals

wavelength = velocity × period

Using simple analysis of Oregonator model, predict: $\lambda \sim \frac{\phi}{[BrO_{3}^{-}]^{1/2}[H^{+}]^{1/2}}$ 40.0 -30.0 λ /cm 20.0 10.0 0.0 5.00 6.00 7.00 {[BrO₃-][H+]}-^{1/2} /M-1 8.00

Doesn't explain some key features

- critical flow velocity
- nonlinear dependence of wavelength on flow velocity
- other responses observed, especially the dynamics of pattern development

Modelling

• Oregonator model:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \phi_P \frac{\partial u}{\partial x} + \frac{1}{\varepsilon} \left\{ u(1-u) - fv \frac{(u-q)}{(u+q)} \right\}$$
$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} - \phi_P \frac{\partial v}{\partial x} + u - v$$

Initial Development of Stationary Pattern

• Oregonator model $\varepsilon = 0.25$ f = 1.0

$$q = 8 \times 10^{-4}$$

 $\phi = 2$

0.4 time units per frame

Space-time plot

t

Experimental verification

BZ system with $f = 0.17 \text{ cm s}^{-1}$ $[\text{BrO}_3^{-}] = 0.2 \text{ M},$ $\text{H}^+ = 0.15\text{M}$ [MA] = 0.4 M, $[\text{Ferroin}] = 7 \times 10^{-4} \text{ M}$

Experimental space-time plot

Complex Pattern Development

more complexity

Perturbations to Boundary Conditions

perturbation time 100 - 105

Oscillatory Perturbation

Experimental

MRI studies of FDO patterns

Use of BZ system as a model to investigate behaviour of reactor Mn-catalysed BZ system: contrast from changes in H_2O relaxation times

Imaging of stationary patterns

distance (cm)

> patterns formed in and above a packed bed of glass beads (tube of 20 mm i.d. filled with 1 mm beads)

field of view of single image was 44.5 x 25 mm, pixel size was 174 x 195 µm

image taken in the centre of the tube

sample moved through the magnet in 2 cm increments over a distance of 18 cm

Figure D

CDIMA reaction

Patterns

but *unsteady*

Acknowledgements

- Annette Taylor (Leeds)
- Gavin Armstrong (Leeds)
- Rita Tóth (Debrecen/Leeds)
- Vilmos Gáspár (Debrecen)
- Melanie Britton (Birmingham)
- British Council/ Hungarian Academy of Science
- ESF REACTOR programme

