

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1669 - 1

CONFERENCE ON STRONGLY INTERACTING SYSTEMS AT THE NANOSCALE 8 - 12 August 2005

Localization of matter waves in 2D-disordered optical potentials

Cord MÜLLER Universität Bayreuth - Physikalisches Institut D-95440 Bayreuth, Germany

These are preliminary lecture notes, intended only for distribution to participants.

Localization of matter waves in 2D-disorderd optical potentials

Cord Müller

Dissipative regime:

Cooling and trapping of cold atoms in speckle potentials [Paris: Boiron et al, EPJ D (1999)] \blacktriangleright $\sim 10^3$ atoms per local field maximum

Coherent regime:

BECs trapped on atom chips [MIT: Leanhardt et al., PRL (2003) ► Orsay: Estève et al., PRA (2004)] Problem: fragmentation

Recent experiments

BEC in optical speckle potential: [Florence: Lye et al., cond-mat/0412167]

Recent experiments

Hannover: [Schulte et al., cond-mat/0507453]

► 1D-transport inhibited by disorder

Interacting vs. free regime

- Observation of "absence of [quantum] diffusion in certain random lattices" [Anderson, 1958]?
- Authors claim "No": simple trapping by large potential bumps

 $\delta V > E$

in Thomas-Fermi regime of strong interaction

 $E = E_{\text{interaction}} \gg E_{\text{kin}}$

Theory: numerics with Gross-Pitaevskii eq.

- ► Low density, fast atoms ⇒ quasi-free regime
- Our approach: 1-particle-dynamics with disorder

$$H = \frac{p^2}{2m} + \overline{V} + \delta V(\mathbf{r})$$

Optical dipole potential

- Atom: Energy $E = \hbar^2 k^2 / 2m$, momentum $\hbar \mathbf{k}$, optical resonance ω_0, Γ
- Light: monochromatic ω_L , laser power P, detuning $\delta = \omega_L \omega_0$
- ► Electric dipole interaction $H_{int} = -\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$
- Induced atomic dipole: potential

$$V({f r}) \propto rac{|{f E}({f r})|^2}{\delta}$$

far off resonance $|\delta|\gg\Gamma$

Inelastic scattering rate

$$\gamma_{
m inel} \propto rac{|{f E}({f r})|^2}{\delta^2} \propto rac{V({f r})}{\delta}$$

Speckle potential

Scalar Gaussian random field E(r)

$$\gamma(\mathbf{r}) = \frac{\overline{E^*(\mathbf{r}' + \mathbf{r})E(\mathbf{r}')}}{\overline{|E|^2}} = 2\frac{J_1(\alpha k_L r)}{\alpha k_L r}$$

 $\alpha = {\it R}/z \ll$ 1: aperture

• Correlation scale $\xi = 1/\alpha k_L \approx 1 \,\mu m$

- Intensity potential *not* Gaussian: $\overline{\delta V^3} \sim \overline{|E|^6} \neq 0$
- Correlation $\mathcal{P}(\mathbf{r}) = \overline{\delta V(\mathbf{r}) \delta V(\mathbf{0})} / \overline{V}^2 = |\gamma(\mathbf{r})|^2$

$$\mathcal{P}(\mathbf{k}) = \mathcal{F}(k\xi/2) \ \Theta(1-k\xi/2)$$

Potential smooth on scale $<\xi$

 Predict 2D-dynamics (marginal dimension) with quenched disorder

$$H = \frac{p^2}{2m} + \overline{V} + \delta V(\mathbf{r})$$

- \blacktriangleright Local conservation law and linear response \Rightarrow diffusion
- Calculate diffusion constant and localization corrections as function of relevant parameters:
 - ► atom momentum *k*
 - laser power P and detuning δ
 - correlation ξ

Quantum transport formalism

- Particle density $p(\mathbf{r}, t) = \langle \mathbf{r} | \overline{U(t)} \rho_0 U^{\dagger}(t) | \mathbf{r} \rangle$
- Resolvent $G(E) = (E H)^{-1} = G_0 + G_0 \delta V G$

Dyson:

$$\overline{G} = G_0 + G_0 \overline{\delta V G_0 \delta V} G_0 + \cdots = G_0 + G_0 \overline{\Sigma G}$$

► Self-energy:

- ▶ Plane waves $|k\rangle$ decay as $\overline{G(r)} \propto e^{-r/2\ell_s}$ ℓ_s : scattering mean free path
- Weak disorder, Born approximation:

$$\Sigma = \overline{\delta V G_0 \delta V} = \bullet \longrightarrow \bullet =: \otimes \longrightarrow \otimes$$

Weak disorder criterion

Correlation energy $E_{\xi} = \hbar^2 / m\xi^2 = 2\alpha^2 E_{\text{recoil}}$

$$\Sigma = \overline{\delta V G_0 \delta V} \ll E : \qquad E \gg \frac{\overline{V}^2}{E_{\xi}}$$

Small quantum reflection at square potential:

Elastic mean free path $k\ell_s$

 $k\ell_{\rm s} \approx 1$: highly disordered medium

 $k\ell_{s} \gg 1$: clean limit.

Intensity propagation

• Particle density $p(\mathbf{r}, t) = \langle \mathbf{r} | \overline{U(t)} \rho_0 U^{\dagger}(t) | \mathbf{r} \rangle$

Intensity propagation kernel (Bethe-Salpeter eq.)

$$\Phi = \overline{G^{\mathsf{R}} G^{\mathsf{A}}} = \overline{G^{\mathsf{R}} \overline{G^{\mathsf{A}}}} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{A}}} U} \Phi$$

$$= \overline{G^{\mathsf{R}} \overline{G^{\mathsf{A}}}} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{A}}} U} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{R}}} U} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{R}}} U} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{R}}} U} + \overline{G^{\mathsf{R}} \overline{G^{\mathsf{R}}} U} + \overline{G^{\mathsf{R}} U}$$

Diffuson: classical Boltzmann dynamics

$$\Phi(k,q,\omega) = rac{1}{\mathrm{i}\omega + D_{\mathrm{B}}(k)q^2}, \qquad D_{\mathrm{B}}(k) = rac{\hbar k \ell_{\mathrm{tr}}(k)}{2m}$$

• Transport mf path: $\ell_{tr} = \ell_s/(1 - \overline{\cos \theta})$

Scattering anisotropy

Phase function $f(\theta)$ peaked into forward direction:

Only cold atoms far below recoil see an effective δ -correlated isotropic scattering potential.

Beyond Boltzmann: Weak localization

Cooperon: maximally crossed diagrams

► Reduced diffusion constant $D = D_B - \delta D$. In 2D

$$\frac{\delta D}{D_{\rm B}} = \frac{2}{\pi k \ell_{\rm tr}} \int_{L_0^{-1}}^{\ell_{\rm s}^{-1}} \frac{q^1 \mathrm{d}q}{q^2} = \frac{2}{\pi} \frac{\ln(L_0/\ell_{\rm s})}{k\ell_{\rm tr}}$$

Cutoff $L_0 = \min(\text{system size } L, \text{ phase coherence } L_{\phi})$

Controlled decoherence

- Electronic negative magnetoresistance: $\frac{d\rho}{dB} < 0$
- Atoms: spontaneous emission of photons

- Transport quantities $\overline{V}, \ell_s, \ell_{tr}, D_B = f(P/\delta)$.
- $\Rightarrow \text{ Change of intensity and detuning at fixed } P/\delta:$ controlled dephasing $L_{\phi} \propto \delta^2/P^{3/2}$ and $\frac{\mathrm{d}D}{\mathrm{d}P} > 0$

Weak localisation in speckle potentials

- Strong scattering (kℓ_s small) in large sample (L ≫ ℓ_{tr}) under phase coherence (L_φ ≥ L) with limited (€) laser power P ?
- ► Size L = 2 cm, detuning $\delta = 10^6 \Gamma$, aperture $\alpha = 0.1$, atom wave numbers $k\xi = 1.25$, 1.5, 1.75, 2.0, 2.25, 2.5

Towards strong localisation

► L_0 at the threshold $\delta D/D_B = 1$ is the localization length

$$\xi_{\mathsf{loc}} = \ell_{\mathsf{s}} \exp(\pi k \ell_{\mathsf{tr}}/2)$$

For Rb⁸⁷, $k\xi = 1.25$, $\alpha = 0.1$, $\delta = 10^{6}\Gamma$:

- Multiple coherent scattering of cold matter waves in optical speckle potentials
- Sizable weak localization corrections. Strong localization reachable.

- ► Open issues:
 - * Realistic thermal wavepackets or condensed clouds (no Fermi surface!)
 - * Self-consistency in anisotropic case
 - * Only perturbative predictions. What happens in the critical regime? Numerics, field theory, ...
 - * Add interactions !

Acknowledgements

This work: cond-mat/0506371

Robert Kuhn (Bayreuth/Nice) Christian Miniatura (Nice) Dominique Delande (Paris) Olivier Sigwarth (Bayreuth) Cord Müller (Bayreuth)

Quantum Transport of Light and Matter

