

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1669 - 4

CONFERENCE ON STRONGLY INTERACTING SYSTEMS AT THE NANOSCALE 8 - 12 August 2005

Superfluid regimes in Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France dan University of Amsterdam, Netherlands

These are preliminary lecture notes, intended only for distribution to participants.

Superfluid regimes in Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam

Outline

- Introduction. BCS-BEC crossover
- Strongly interacting regime
- Molecular BEC regime. Interaction between molecules
- Collisional relaxation
- Pauli principle and effect of the mass ratio
- Ideas for future and conclusions

Collaborations: D.S. Petrov (Harvard), C. Salomon (ENS)

Two-component trapped Fermi gas

 $E_F = \frac{\hbar^2 k_F^2}{2m}; \quad k_F = (3\pi^2 n)^{1/3}; \quad E_F \sim N^{1/3} \hbar \omega$ Weakly interacting gas $n |a|^3 \ll 1; \quad k_F |a| \ll 1$ $a < 0 \rightarrow$ Interspecies attraction \rightarrow Cooper pairing at low T $\mathbf{k} \bullet \mathbf{e} - \mathbf{k}$ Superfluid BCS transition $\rightarrow T_c \sim E_F \exp\{-\pi/2k_F |a|\}$ $T_c \ll 0.1E_F$ for ordinary a Very hard to reach

Experiments ⁴⁰K ⁶Li

Dilute limit $nR_e^3 \ll 1$ Ultracold limit $\Lambda_T \gg R_e$ Quantum degeneracy \rightarrow JILA 1998 40 K At present $n \sim 10^{13} - 10^{14} \text{cm}^{-3}$; $T \sim 1 \mu \text{K}$ JILA, LENS Innsbruck, MIT, ENS, Rice, Duke, ETH, Hamburg, Tuebingen Wide resonance a>0BCS $\varepsilon_0 = \frac{\hbar^2}{ma^2}$ S.IR **B**₀ B R weakly bound a>0 Molecules $a \gg \mathbf{R}$ BEC

Feshbach resonance

Superfluid regimes

 $k_F|a| \ll 1 \rightarrow$ BCS If $k_F|a| > 1 \rightarrow$ Strongly interacting regime III $na^3 \ll 1 \rightarrow$ Gas of bosonic molecules $a \gg R_e \rightarrow$ **BEC** of weakly bound molecules $\stackrel{\mathbf{T}_{\mathbf{C}}}{\mathbf{E}_{\mathbf{F}}} \uparrow T_{\text{BEC}} \approx \frac{3.31 \hbar^2}{2 m} (n/2)^{2/3}$ 0.2 BEC BCS **B**₀ BCS-BEC crossover: Leggett, Nozieres-Schmitt-Rink-p.5/15

B

Strongly interacting regime

T = 0 $k_F \gg 1 \rightarrow$ Only one distance scale $n^{-1/3}$ Only one energy scale $E_F \sim \hbar^2 n^2/m$ Universal thermodynamis (J. Ho) Monte Carlo studies $\rightarrow \mu = \beta E_F$ (Carlson et al, Giorgini/Astracharchik, etc.)

Nature of superfluid pairing, Transition temperature, Excitations (Holland, Timmermans, Ho, Griffin, Stringari, Strinati, Tosi, Bulgac, Levine, Pethick, Bruun, Stoof, Cheng, etc.) \rightarrow theory

Experiments

BEC-type behavior of fermionic atom pairs (JILA, MIT) Excitation frequencies and damping rates (Innsbruck, Duke) Pairing gap (Innsbruck), Heat capacity (Duke) Correlations (JILA) Vortices (MIT)

Weakly interacting gas of bosonic dimers

Elastic interaction BEC stability "Old answer" $\rightarrow 2a$ **4-body problem** Exact solution for $a \gg R_e$ (Petrov et al 2003) $\Psi \rightarrow 9$ variables T1 Zero-range approximation $\Psi_{r_1 \to 0} \to f(\vec{r_2}, \vec{R})(1/4\pi r_1 - 1/4\pi a)$ Integral equation for $f = k \rightarrow 0$ s-wave scattering; 3 variables

$$R \to \infty \quad \Psi = \phi_0(r_1)\phi_0(r_2)(1 - a_{dd}/R); \quad \phi_0(r) = \frac{1}{\sqrt{2\pi a}} \exp(-r/a)$$

 $a_{dd} = 0.6a$

Monte Carlo (Giorgini/Astracharchik, 2004) Diagrammatic approach (M.Kagan et al, 2005)

. - p.7/1!

Weakly bound dimers

Weakly bound dimers $\ \rightarrow \$ The highest rovibrational state of the diatomic molecule

Collisional relaxation to deep bound states (~ 1 ms for Rb₂ at $n \sim 10^{13}$ cm⁻³)

Atom-dimer collisions

Pauli principle

$$\alpha_{rel} \sim (k_{eff} R_e)^{2?} \sim (R_e/a)^{2?}$$

Molecule-molecule relaxation collisions

$$\alpha_{rel} = C \frac{\hbar R_e}{m} \left(\frac{R_e}{a}\right)^s; \quad s = 2.55$$

 $au \sim (lpha_{rel} n)^{-1} \sim ext{ seconds}$ (Petrov et al 2003)

Molecules of bosonoc atoms

Suppressed collisional relaxation

Bose-Einstein condensates of molecules

Suppressed relaxation Fast elastic collisions $a_{dd} = 0.6a$

$${}^{6}\mathrm{Li}_{2} \to \frac{\alpha_{rel}}{\alpha_{el}} \le 10^{-4}$$

Efficient evaporative cooling \rightarrow BEC JILA, Innsbruck, MIT, ENS, Rice

Mixtures of Fermi gases

Collisional relaxation

Exact solution for the dependence on a and M/m

 $M \gg m \rightarrow$ Born-Oppenheimer picture

 $x \ll a \rightarrow U_{eff} \approx -0.16\hbar^2/mx^2$ Centrifugal potential $U_c = 2\hbar^2/Mx^2$

Mediated attraction competes with Pauli principle

m

$$\alpha_{rel} \sim a^{-s}$$

s decreases with increasing M/m

Relaxation rate

 $M/m > 12.33 \rightarrow s < 0 \rightarrow \alpha_{rel}$ increases with a $M/m = 13.6 \rightarrow s = -1 \rightarrow \alpha_{rel} \sim a$ $M/m > 13.6 \rightarrow$ fall into center short-range physics

Suppression of relaxation ?

Ideas for future

Idea from Yalle studies of molecules of bosonic atoms

Conclusions

- Remarkable physics of weakly bound molecules in cold Fermi gases
- Novel physics of molecular collisional stability in mixtures of Fermi gases
- Possibilities to create new macroscopic quantum systems