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A PHENOMENOLOGICAL MODEL FOR RAREFIED 

GAS FLOWS IN THIN-FILM SLIDER BEARINGS

L

H
0

H
1

U

Organization
Introduction / Motivation

Specific objectives

A Modified slip-corrected Reynolds lubrication equation

Governing Equations

Slip Boundary conditions

Poiseuille flow

Velocity and Volumetric flow rate model

Couette flow

Velocity and Shear stress model

Derivation of the slip corrected Reynolds equation

Lubrication characteristics

Pressure distribution

Bearing load capacity

Velocity profile 

Skin friction

Conclusions and Future Work
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INTRODUCTIONINTRODUCTION

CONFIGURATION OF A COMPUTER HARD DISK DRIVE
Spinning recording medium

Head-stack assembly

Spinning recording medium.

Read/write head positioned nano-meters above the spinning platter. 

Thin gas-lubricated film formed between the slider and rotating disk.

Typical speed 

of rotation: 

10000-20000

rpm
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RECENT TRENDS IN THE HARD-DRIVE INDUSTRY

GOALS:

Higher storage densities.

12 Gbit/in2 100 Gbit/in2

Greater data access speeds.

MEANS:

Minimize the head-disk spacing.

Supress spacing fluctuations 

during operation.

MODELING CHALLENGES:MODELING CHALLENGES:

Almost all conventional physical models have to be modified to 

account for new phenomena at this scale.

Magnetic spacing (h0) becomes comparable to the mean free path ( ).

- Onset of rarefaction

Small length scales involved         microscopic effects like slip-length, gas

surface accommodation, surface roughness etc. become important. 
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OBJECTIVES:OBJECTIVES:

Investigate rarefied gas transport in ultra-thin gas lubricating films. 

Derive a modified slip-corrected Reynolds lubrication equation 

Uniformly valid for a wide range of Knudsen numbers and bearing

numbers

Accurately predict

Velocity profiles

Pressure distribution

Load capacity

Skin friction

in different rarefaction regions for various slider bearing configurations.

OBJECTIVES (contd..)OBJECTIVES (contd..)

Validate the new model by:

Comparisons with the Direct Simulation Monte Carlo (DSMC) results

available in the literature.

Numerical solutions of the uniformly valid Molecular Gas Lubrication 

Equation derived using the Boltzmann equation

Investigate the variation of lubrication characteristics with bearing 

number and the degree of rarefaction.

Address some crucial issues in the nano-scale design of computer 

hard drives.
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REYNOLDS LUBRICATION REYNOLDS LUBRICATION 

EQUATIONEQUATION

Lubrication: Reynolds Equation

L

H
0

H
1

UInertia-free flow if:

Then, leading-order solution:

3

2

0 0

6
( )

dP UL
H P PH

X dX X p HConstant flowrate:

Bearing number

Mass flow rate per unit width in plane 

Poiseuille flows

Mass flow rate per unit width in plane 

Couette flows

In the absence of thermal creep effects, flow in the lubricating

film is a composite of the Poiseuille and Couette flows.

1
L

h
Re

2

2

dy

ud

dx

dp
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(Beskok and Karniadakis, 1996)

Slip Boundary ConditionsSlip Boundary Conditions

n

U
KnUU wg

)2(
Maxwell 1879

First-order slip boundary condition:

Generalized velocity slip boundary condition:

n

U

Kn

Kn
UU wg

- b1

)2(

so

o

U

U
b

'

''

2
= -1

U
wall

du/dn

U
gas

Knudsen layer

Plane Poiseuille flowPlane Poiseuille flow

Momentum equation in the stream-wise direction:

The equation results in the following analytical solution for the velocity 

profile when subjected to the generalized velocity slip boundary 

condition

22

1

2

2
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h

y

h

y

Kn

Kn

dx

dph
yu

v

v
P

2

2

dy

ud

dx

dp
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Correction for rarefaction:

o is the dynamic viscosity

is a rarefaction correction parameter

The generalized velocity slip model cannot accurately predict velocity profiles 

and flowrates in the transition and free molecular regimes.

Navier-Stokes equations invalid in this regime.

To account for increased rarefaction effects

The dynamic viscosity which defines diffusion of momentum due to 

intermolecular collisions must be modified.

Generalized diffusion coefficient:

Kn
Kn o

1

1
)( (Beskok and Karniadakis, 1999)

Velocity Distribution of Plane Poiseuille Flows

Upper half of the channel is shown

U
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h : Channel height

Po:  Atmospheric pressure

Model accurately predicts both the magnitude and shape of the 

velocity profile
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Modeling FlowrateModeling Flowrate

,,, h
dx

dP
GQ

Volumetric Flowrate

Kn1

Kn6
1

dx

dP

12

h

w

Q

o

3

Using Navier-Stokes w/ Slip

)1(
1

6
1

12

3

Kn
Kn
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1
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210

-1

10
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10
1

Boltzmann eq (Fukui and Kaneko, 1989)

First-Order Slip, Q
P1

Second-Order Slip, Q
P2

Current model, Q
curr

Continuum, Q
con

Correct for Rarefaction

)1)(
1

6
1( Kn

Kn

Kn

Q

Q
Q

cont

P
P

To get (Kn, v): Match the above flow rate model with the Poiseuille flow rate 

database given by Fukui and Kaneko (1990)

Kn
D

2

Shear Driven Flows: Linear Couette Flow 

Knudsen Layer
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Governing equation :
2

2
0

u y

y

( )

Boundary conditions :

u
Uu

v

v
wallg

2

where, is the slip coefficient and is the mean-free path.

= 1 [Maxwell’s classical velocity slip formulation]

= 1.111 [Obtained by Ohwada et.al. for hard-sphere molecules using the     

linearized Boltzmann equation]

Shear Driven Flows: Linear Couette Flow

Based on Navier Stokes

Generalized Slip coefficient

• Extends the validity of first-order slip condition.

• Converges to the first order slip condition for Kn<0.1. 

• Acts as high-order correction for Kn>0.1

58642.0;17488.1;71851.0;2977.1

)(tan

3210

2

1

10
3Knm

Analytical expression for the velocity profile (uc)

D

y

Kn

U
u

v

v

o
c 2

21

2

where, we have defined Kn= /D.

(Bahukudumbi and Beskok, 2002)
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Velocity Distribution of Plane Couette Flows

Current Model

Upper half of the channel is shown

(Bahukudumbi and Beskok, 2002)

Modified Slip-Corrected Reynolds Equation

Velocity profile in the lubricating film:

Plane Poiseuille Flows Plane Couette Flows

Kn

h

y
KnU

h

y

h

y

Kn

Kn
Kn

dx

dph
yu

yuyuyu

o

o

cP

21

)1(

1
)1(

2
)(

)()()(

22

Plane Poiseuille flow velocity Plane Couette flow velocity

Mass flow rate:

hU
Kn

Kn
Kn

dx

dph
M o

o 2

1

1

6
1)1(

12

3.

Note that the mass flow rate of Couette flows is independent 

of Knudsen number.
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Modified slip-corrected Reynolds Equation (contd..)

Taking the gradient of the above equation

hU
Kn

Kn
Kn

dx

dph
M o

o 2

1

1

6
1)1(

12

3.

)(6))
1

6
1)(1(( 3

oo phU
xKn

Kn
Kn

dx

dp
ph

x

In non-dimensional form:

)())
1

6
1)(1(( 3 PH

XKn

Kn
Kn

dX

dP
PH

X

where,
oa

oo

ao hP

LU

P

p
P

h

h
H

L

x
X

2

6
;;;

Also, local Knudsen number (Kn) = Kno/(PH); where Kno is the outlet 

Knudsen number.

Constant Function of x

Modified slip-corrected Reynold’s equation

Burgdorfer’s slip-corrected Reynolds Equation

)())61(( 3 PH
X

Kn
dX

dP
PH

X

Can be deduced from the Modified slip-corrected Reynolds equation

Set

Strictly valid in the slip-flow regime.

Current Model

)())
1

6
1)(1(( 3 PH

XKn

Kn
Kn

dX

dP
PH

X

0b
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LUBRICATION LUBRICATION 

CHARACTERISTICSCHARACTERISTICS

LUBRICATION CHARACTERISTICS

Pressure distribution and Load capacity

Solve the Modified slip-corrected Reynolds equation.

The modified slip-corrected Reynolds equation is

Highly non-linear.

Closed form solutions for the most general case do not exist.

Solved numerically using a second-order accurate finite 

difference method.
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FINITE DIFFERENCE FORMULATION

)())
6

1)(1(( 3 PH
xKnPH

Kn

PH

Kn

dX

dP
PH

X o

oo

We set =PH and transform the above equation

EQUATION:

BOUNDARY CONDITIONS: P(X=0)=1 and P(X=1)=1  XXHH )1(1

)1(,
)(

)7)((

0)(

1121

21

HCC
Kn

KnKn
C

C
dX

d
HC

dX

d

o

oo

If the function (X) be expanded about a point Xk using a Taylor’s series expansion, 

we can get the derivatives of at Xk

....
12

2

...
62

2

2

11

2

2

2

11

xxxx
kkk

xxx
kk

X

XdX

d

X

XdX

d

FINITE DIFFERENCE FORMULATION (contd…)

DISCRETIZED EQUATION:

n

k

nnn
n

k

nnn

n

n

k
X

HCC

X

HC

X

HCC

X

HC

HC

X
1

112

2

1

1
112

2

1

1

2

1

2

)1((

2

)1((

2

We used N=400 equally spaced grid points in the stream-wise direction. 

X is the grid spacing=0.0025

Iterations are continued until the “convergence indicator”, is sufficiently 

small (typically 10-14).

Grid independence studies were performed.

Residuals of the global conservation of mass was monitored. 

All calculations were performed to double precision accuracy. (16 

significant digits)

n

k

n

k

n

k

1
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FINITE DIFFERENCE FORMULATION (contd..)

)H(CC,
)Kn(

)Kn)(Kn(
C

)C(
dX

d
HC

dX

d

o

oo
1121

21

1
7

0

Above equation is discretized using a second-order accurate finite difference 

approximation

Resulting set of non-linear equations solved using a direct iteration/ Picard

method

Iterative method 

Seeks approximate solutions to the discretized equations by linearization

Initial solution at the start of iteration is important

Based on our qualitative understanding of the solution behavior.

Solution from a linearized Reynolds equation is used as the initial 

solution.
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First-order slip
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First-order slip

(c)

Kn
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=4.167

Slider Bearing Pressure Distribution
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H
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H
1

U

L

x
X,

p

p
P

Hp

UL6

o

2

oo

Accurate Predictions of Pressure 

distribution in different rarefaction

regions for various Knudsen numbers.
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Slider Bearing Pressure Distribution (cont..)

L

x
X,

p

p
P

Hp

UL6

o

2

oo

Accurate Predictions of Pressure 

distribution in different rarefaction

regions for various Knudsen numbers.
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Boltzmann eq.

Continuum

First-order slip

Second-order slip

Current model

(Bearing number)

Asymptotic
Asymptotic

Load capacity as a function of bearing number ( )

L

H
0

H
1

U

w`

Non-dimensional load capacity:

1

0

'

)1(
1

dXP
LbPLbP

w
W

aa

Load capacity of the slider bearing:

Represents vertical load acting on 

the slider bearing. 

Determines the position of the 

flying head. 

The head will not accurately read 

or write if it flies too high and will 

catastrophically crash into the 

spinning platter if it flies too low.

Do=0.5
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Load capacity as a function of Knudsen number
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Inverse Knudsen Number, D
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Stream-wise location of the load capacity
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0

X
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X=0.9

Actual velocity profile in the slider bearing, Kn0=1.25, =61.6

Actual velocity profile in the slider bearing, Kn0=4.167, =1264
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SKIN FRICTION (SHEAR DRAG):

U
o

x,u

y,v
h

o

L

CV

P

Psin

Pcos

xy

Runner surface

Flying slider

Shear force on the flying slider:

dAdAdF Poiseuillecouettexyx )(

w

o
a

oo

oo
couette

RT

U
p

PHbPHcKnaKn

PHbKnaKn

2)(

2
22

2

627666.1;602985.0;529690.0 cba

SKIN FRICTION (SHEAR DRAG) (contd..):

U
o

x,u

y,v
h

o

L

CV

P

Psin

Pcos

xy

Runner surface

Flying slider

hy

po
Poiseuille

dy

du

Kn)1(

Friction Coefficient:

2

2

1
o
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f

U

C
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2
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2
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y

Kn

Kn
Kn

dx

dph
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v
P

PH

Kn
Kn o

Pressure drag:

1

0

dXsinPFDP
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Gas Damping/Lubrication: Reynolds Equation

L

H
0

H
1

U

2

0Re 1
H

L
Inertia-free flow if:

General equation:

2

2

dp u

dx xThen, leading-order solution:

3

2

0 0

6
( )

dP UL
H P PH

X dX X p H•Constant flowrate:

Bearing number

32
[1 6 ] ( )v

v

dP
Kn H P PH

X dX X
•Slip-Flow:

Uh
t

h
p

h
612

3

For generalized model by Fukiu & Kaneko, see Karnidakis & Beskok, sec 7.1

Squeezed Film Damping

Normal Motion

Only

Fext= driving forces, electrostatic &

gas damping forces 

M

e
is an effective viscosity (Veijola et al., 1995)
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Accelerometer Frequency Response 

Time Response

Squeezed Film Damping

Courtesy of T. Veijola

Coupled Domain Simulations: Squeeze  Film Damping

Courtesy of T. Veijola

• Generalized Reynolds equation

with electrostatic actuation.

• Dynamic response of a micro

accelerometer with holes.

•Titling rectangular accelerometer

•Gap of 2 microns

spring-like
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Coupled Domain Simulations: Squeeze  Film Damping

CONCLUSIONS:

Derived a Modified slip-corrected Reynolds lubrication equation 

valid for:

0 < Kn < 12

Low subsonic compressible flows. (Ma < 0.3)

Any Bearing Number

Accurate predictions of

Velocity profiles

Pressure distribution

Load capacity

Shear drag force
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CONCLUSIONS (cont..)

Validation by

Solutions of generalized lubrication equation

DSMC

Crucial issues in the nano-scale design of computer hard drives

Lift force/Load capacity - Directly related to flying height of slider.

Shear drag/ Skin friction - Accurate modeling of shear drag forces 

induced by air resistance to track access motion of sliders -

required for accurate prediction of actuator power consumption.
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Gas Flow Through Short Channels 

and  Filters

&

External Flows

Gas Transport  ModelingGas Transport  Modeling

•Continuum & Slip Flow Regimes:

Navier-Stokes Equations

Slip Boundary Conditions

•Slip, Transitional & Free Molecular:

Direct Simulation Monte Carlo 

n

U
KnUU wg

)2(

TAMU Micro Fluidics Laboratory

)(
Pr1

22

n

TKn
TT

T

T
wg
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MicroMicro--FiltersFilters

TAMU Micro Fluidics Laboratory

Applications:Applications:

Micro-Filters

• Detection of airborne bio/chemical entities

• Environmental monitoring applications 

Micro-Nozzles

• Thrust generators for space satellites. 

Current Research:Current Research:--

• Run -Flow (Navier-Stokes solver) for

• Variety of micro-constriction geometries and inlet conditions.

• Determine a fixed aspect ratio for geometric similarity.

• Perform grid independence tests

• for determining the reliability of the numerical results.

• Perform parametric studies

• as a function of the Knudsen number, Reynolds number, and the 

inlet conditions.

TAMU Micro Fluidics Laboratory
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Model Details

TAMU Micro Fluidics Laboratory

Lref L h t

6 micron 6 3.6 2.4

4 micron 4 2.4 1.6

2 micron 2 1.2 0.8

1 micron 1 0.6 0.4

Dimensions (micron)

h/Lh/LOpening RatioOpening Ratio

Mesh:-

• More concentrated at 

locations where gradients 

are expected

• Inlet and Outlet domains 

have been extended to avoid 

I/O boundary effects

Overall Domain Grid zoomed at blockage area

TAMU Micro Fluidics Laboratory
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Elemental Boundaries 4th order expansion

TAMU Micro Fluidics Laboratory

6th order expansion 8th order expansion

Spectral Element Discretization:Spectral Element Discretization:

Expansion is based on 

Gauss-Lobatto-Legendre-Collocation

Points

Parametric Study:Parametric Study:--

• Local Temperature

• Local Velocity

• Local Density

• Integral Quantities such as;

– Mass flow rate

– Drag Force

– Global Heat Transfer

– Viscous Heating

TAMU Micro Fluidics Laboratory

Effect of 

Rarefaction 

Compressibility

Reynolds number
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Slip:-

TAMU Micro Fluidics Laboratory

X X

Y

Y

Stream wise Velocity variation along X-X at the middle of blockage

• Finite Slip velocity at the wall due to Rarefaction

• Maximum velocity occurs at mid section, which increases as a result of rarefaction

(Re 7.0)

X

v
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Slip Kn
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No slip

••Inlet velocity is increasedInlet velocity is increased

••L is reducedL is reduced

(Re 7.0)
X X

Y

Y

u

u
u*

Rarefaction Effect:-

* All of the curves collapsed to one normalized data
* Area under the normalized curve is same

X

N
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z
e

d
v
e
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c
it
y

0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

Kn

0.014

0 .02

0.046

0.11

• Higher Knudsen number flows have larger slip velocity on the wall, and the velocity profiles are more flattened.

• Flow is not fully-developed.
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b)  4 microns
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a)  6 microns
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(Re 7.0)

Rarefaction Effect on Skin Friction

• Shear stresses decrease as a 

result of rarefaction

a)  6 microns
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 b)  4 microns
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(Re 7.0)

Rarefaction Effect on Pressure Distribution

• Reduced pressure difference 

between the top and bottom 

surfaces
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Rarefaction Effect:-

Re

(P
in

-
P

o
u

t)
(k

P
a

)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

6 MICRON (NO SLIP)

4 MICRON

2 MICRON

1 MICRON

6 MICRON (SLIP)

4 MICRON

2 MICRON

1 MICRON

• Pressure drop in slip flows is smaller than the corresponding no-slip cases

Compressibility EffectCompressibility Effect
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0.28
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• Maximum velocity is in the middle of the channel and increases substantially with Ma.

• Temperature drops drastically in the middle of the channel for high Mach number cases
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Compressibility Effect:Compressibility Effect:--

X X

Y

Y

X

R
h

o

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

0.905

0.91
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0.92

0.925

0.93

0.935

0.94

0.945

0.95

Ma

0.28

0.23

0.12

0.08

• Large density variations for high Mach number cases

Drag ForceDrag Force

• Drag Reduction due to Rarefaction

• Drag on the body Increases with Reynolds number

• Viscous Forces are about 1/2 in magnitude compared to 

Pressure forces and hence play key role in design 

consideration
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TAMU Micro Fluidics Laboratory

Viscous Heating:Viscous Heating:--

• Viscous heating increases with the Reynolds number
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Scaling Laws For Micro Filters

Yang et al., 1999

Yang et al., 2001

Mott et al., 2001

Ahmed & Beskok, 2002

h/Lh/LOpening RatioOpening Ratio
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Scaling Laws For Micro Filters

Ahmed & Beskok, 2002

For general filter geometry, 

2.833 should be a function 

of t/h. Also we expect 

explicit Kn dependence in 

a more generalized case.

h/Lh/LOpening RatioOpening Ratio

ConclusionsConclusions

Velocity slip and temperature jump increase with the Knudsen number.

Drag reduction, due to Rarefaction (both pressure-drag and skin friction).

Viscous-drag can be as high as 50% of the pressure-drag. Hence it is an 

important factor to be considered in design. 

Large density variations across the geometry are due to compressibility. 

Viscous heating causes significant heat generation heat transfer 
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External Flows

Flow Past a Cylinder

Kn=0.015

Re=1 & 10

Re=100

U

Slip Velocity Shear Stress

Viscous Normal Stress

Flow Past a Cylinder

In slip surfaces the viscous 

normal stresses achieve finite 

values and increase proportional

to the Knudsen number

The total normal stress (viscous

normal stresses and pressure)

do not vanish as the rarefaction

effects increase 
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Flow Past a Sphere (External Flow)

Stokes Drag

Kn<0.1, Emerson & Barber, 2002

Sphere in a Pipe

Stokes Flow, Sphere moving in a pipe w/ velocity U (Haberman & Sayre, 1958) 

Stokes Flow, Stationary sphere in a pipe with maximum flow velocity U 
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Variation of normalized total drag

as a function of the Kn

Sphere in a Pipe

Variation of normalized total drag as 

a function of the blockage at Kn=0.1 

DSMC Study


