

SMR.1670 - 4

INTRODUCTION TO MICROFLUIDICS

8 - 26 August 2005

Lubrication

Microfilters

A. Beskok Texas A&M University. U.S.A.

Organization
Introduction / Motivation
Specific objectives
A Modified slip-corrected Reynolds lubrication equation
Governing Equations
Slip Boundary conditions
Poiseuille flow
Velocity and Volumetric flow rate model
Couette flow
Velocity and Shear stress model
Derivation of the slip corrected Reynolds equation
Lubrication characteristics
Pressure distribution
Bearing load capacity
Velocity profile
Skin friction
Conclusions and Future Work

> Investigate rarefied gas transport in ultra-thin gas lubricating films.

>Derive a modified slip-corrected Reynolds lubrication equation

Uniformly valid for a wide range of Knudsen numbers and bearing numbers

➢Accurately predict

- Velocity profiles
- Pressure distribution
- Load capacity
- **Skin friction**

in different rarefaction regions for various slider bearing configurations.

OBJECTIVES (contd..)

➤Validate the new model by:

>Comparisons with the **Direct Simulation Monte Carlo (DSMC)** results available in the literature.

>Numerical solutions of the uniformly valid Molecular Gas Lubrication

Equation derived using the Boltzmann equation

Investigate the variation of lubrication characteristics with bearing number and the degree of rarefaction.

> Address some crucial issues in the nano-scale design of computer hard drives.

Modified slip-corrected Reynolds Equation (contd..)

$$\dot{M} = -\frac{\rho h^3}{12\mu_o} \frac{dp}{dx} (1 + \alpha Kn) \left[1 + \frac{6Kn}{1 + Kn} \right] + \frac{1}{2} \rho U_o h$$
Function of x
Taking the gradient of the above equation

$$\frac{\partial}{\partial x} (ph^3 \frac{dp}{dx} (1 + \alpha Kn)(1 + \frac{6Kn}{1 + Kn})) = 6\mu_o \frac{\partial}{\partial x} (phU_o)$$
In non-dimensional form:

$$\frac{\partial}{\partial X} (PH^3 \frac{dP}{dX} (1 + \alpha Kn)(1 + \frac{6Kn}{1 + Kn})) = \Lambda \frac{\partial}{\partial X} (PH)$$
where,

$$X = \frac{x}{L}; H = \frac{h}{h_o}; P = \frac{p}{P_a}; \Lambda = \frac{6\mu_o U_a L}{P_a h_o^2}$$
Also, local Knudsen number (Kn) = Kn_o/(PH); where Kn_o is the outlet Knudsen number.

LUBRICATION CHARACTERISTICS

LUBRICATION CHARACTERISTICS

- Pressure distribution and Load capacity
 - O Solve the Modified slip-corrected Reynolds equation.
- > The modified slip-corrected Reynolds equation is
 - O Highly non-linear.
 - O Closed form solutions for the most general case do not exist.

Solved numerically using a second-order accurate finite difference method.

FINITE DIFFERENCE FORMULATION
EQUATION:
$$\frac{\partial}{\partial X} (PH^3 \frac{dP}{dX} (1 + \alpha \frac{Kn_o}{PH}) (1 + \frac{6Kn_o}{PH + Kn_o})) = \Lambda \frac{\partial}{\partial x} (PH)$$

BOUNDARY CONDITIONS: $P(X=0)=1$ and $P(X=1)=1$ $H = H_1(1-X) + X$
We set ψ =PH and transform the above equation
 $\frac{d}{dX} \Big[C_1 H \frac{d\psi}{dX} - (C_2 + \Lambda) \psi \Big] = 0$
 $C_1 = \frac{(\psi + \alpha Kn_o)(\psi + 7Kn_o)}{(\psi + \alpha Kn_o)}, C_2 = C_1(1-H_1)$
If the function $\psi(X)$ be expanded about a point X_k using a Taylor's series expansion, we can get the derivatives of ψ at X_k

$$\frac{d\psi}{dX} = \frac{\psi_{k+1} - \psi_{k-1}}{2\Delta X} - \frac{(\Delta X)^2}{6}\psi_{xxx} + \dots$$
$$\frac{d^2\psi}{dX^2} = \frac{\psi_{k+1} - 2\psi_k + \psi_{k-1}}{(\Delta X)^2} - \frac{(\Delta X)^2}{12}\psi_{xxxx} + \dots$$

$$\frac{d}{dX} \left[C_1 H \frac{d\psi}{dX} - (C_2 + \Lambda) \psi \right] = 0$$
$$C_1 = \frac{(\psi + \alpha K n_o)(\psi + 7K n_o)}{(\psi + \alpha K n_o)}, C_2 = C_1 (1 - H_1)$$

> Above equation is discretized using a second-order accurate finite difference approximation

Resulting set of non-linear equations solved using a *direct iteration*/*Picard method*

Iterative method

Seeks approximate solutions to the discretized equations by linearization

Initial solution at the start of iteration is important

O Based on our qualitative understanding of the solution behavior.

 ${\rm O}~$ Solution from a linearized Reynolds equation is used as the initial solution.

CONCLUSIONS (cont..)

- Validation by
 - Solutions of generalized lubrication equation
 - DSMC
- Crucial issues in the nano-scale design of computer hard drives
 Lift force/Load capacity Directly related to flying height of slider.
 - Shear drag/ Skin friction Accurate modeling of shear drag forces induced by air resistance to track access motion of sliders required for accurate prediction of actuator power consumption.

$$\begin{array}{l} \textbf{Sphere in a Pipe} \\ \textbf{Stokes Flow, Sphere moving in a pipe w/velocity U (Haberman & Sayre, 1958)} \\ \\ \textbf{F}_{D} = \frac{6 \pi \mu U R \left(1 - 0.75857 (\frac{D}{H})^{5}\right)}{\left(1 - 2.1050 \frac{D}{H} + 2.0865 (\frac{D}{H})^{3} - 1.7068 (\frac{D}{H})^{5} + 0.72603 (\frac{D}{H})^{6}\right)} \\ \\ \textbf{Stokes Flow, Stationary sphere in a pipe with maximum flow velocity U} \\ \\ \\ \textbf{F}_{D} = \frac{6 \pi \mu U R \left(1 - \frac{2}{3} (\frac{D}{H})^{2} - 0.20217 (\frac{D}{H})^{5}\right)}{\left(1 - 2.1050 \frac{D}{H} + 2.0865 (\frac{D}{H})^{3} - 1.7068 (\frac{D}{H})^{5} + 0.72603 (\frac{D}{H})^{6}\right)} \\ \end{array}$$

