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Gas Micro Flows: Examples
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FLOW REGIMES
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Boltzmann
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Gas Micro Flows: Typical Applications
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Experimental Results Micro Channel Measurements
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*Microchannel: 0.51 microns (Bau et al., U Penn, 1988)

* C*=Po,,/Po,, where Po=C,Re
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Pressure Measurements in Early Transition Regime
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A Realistic Geometry: Digital Micro-Mirror Device™
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Challenges

* Fundamental understanding of transport in
slip, transition and free molecular flow
regimes (including the compressibility,
rarefaction, viscous heating & thermal
creep)

» Engineering models for prototype flows

» Simulation methods for gas micro flows &
model verification.

Review of Molecular Magnitudes for Gas Flows

Consider Air at 0°C, and 1 atm
P=nk,T, (Perfect Gas Law)

n~2.69x10% molecules/m= (Number Density)

d=n-3~33x10"m (Mean Molecular Spacing)
d/d >>1 Dilute Gas

d~3.7x10""°m (Molecular Diameter)

A= l/\/zﬂ:nd2 ~ 6.5 x10¥ m (Mean Free Path)

c=+/3RT ~ 486 m/s (Mean Square Molecular Speed)

t.~10-1%s (Mean Collision time)




The Continuum Hypothesis

* How small should a volume of fluid be so
that we can assign it mean properties?

» At what scales will the statistical
fluctuations be significant?

» Are the low-pressure rarefied gas flows
dynamically similar to the gas micro-flows?

Measured density

The Continuum Hypothesis

)
*(Batchelor’s book) 1
Variation due to
molecular Auctuations
Variation associated with ;
spatial distribution 5
of density - Re
*Laocal" value of 4 ._\\_//‘-’-I
fluid density =
Attraction
Volume of fluid to which instrument responds
Type Force Motion | Structure statistics
(molec) | (d_0) (molec)
Solid Strong | <<I ordered quantum
Liquid | Medium | O(1) Semi-order | quantum-+
classical
gas weak >>1 disordered | classical




The Continuum Hypothesis

Dilute Gas | pense Gas
—

: 1% Statistical Fluctuations

| for sample volume that

[ contains 10,000 molecules

I Continuum

At standard conditions, a
sample volume of
3.7x10719 m3 results in

1% statistical fluctuations.
This corresponds to a cubic
volume with side 65nm.

L (microns)

Significant fluctuations

10* 5 May not be able to define
instantaneous continuum
based quantities

|

|

|

|
10° T T T T 1
10" 10° 10? 10" 10

n/n, (number density)

Continuum & Slip Flow Regimes
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Boltzmann Equation : Boltzmann
Navier-Stokes Burnett :
- I—— ; Kn
0.0 0.01 0.1 1.0 10. =

Continuum ~ Slip Transition  Free Molecular




Conservation Laws

p puL
O pu L o2 pud +p+ o .
ot | pus 021 purtiy + 012
E (E+p+on) u+own-ut+aq
Pus
0 {)?.11112 + 091 -0
Bz2 pu3 +p+ o9

(E+p+02)-uy+091 -t + o

Constitutive Equations:
(Navier-Stokes level stress tensor)

Ou;  Ou; 2 0u, ou
N-S _ _ Y% by m 5 _ ms.
%ii 4 (3:1:,; i 0z ) T M0z En C3:{:,,-,, v

Compressible Navier Stokes Equations

p pu pv 0
o |, o piep| o] | 12 325 .
ot pv| ox| puv ov| p+p | Redx H(E+2)
E (E+p)u (E+p)v %u(zz—ﬂvw(@" WU
1o u(f’“‘ +2)
Re@y Sﬂ(zéu_m/

FUQFE v+ p(G+ D) u+ 55

p=(y-1)pT Ideal gas equation of state
E=p (T + % (u?+v?)),

ﬂ_m” T,+5,
TO = U02/CV My T, T+,




GOVERNING EQUATIONS
Compressible Navier-Stokes Equations

* Valid for continuum and slip flow regimes (Kn<0.1)
* Newtonian fluid
* Thermal stresses (derived from Boltzmann) not included

O°T 18T
Ox,0x 3ox; 7

How About the Boundary
Conditions?

10



Why Slip ?

)

Uslip

/] 0(5)
/

Boundary Layer

Knudsen Layer

Tangential velocity of gas near an isothermal surface

Uslip:Ugas on S

US:l[Uﬁ(l—a)UﬁaUW]
2 s

\

Can be used as a
generalized slip
model

Tang velocity of impinging molecules Tang velocity of reflected molecules
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Taylor series expand U,

" — l T | }\ I{I}i | £ Ej_’ U 1 "
o2 an), 2 \dn2/,
1 i 2P
|§{':1 Ty) [TIH | l(m)d [ T(m)s [ } }rr,.-u.,.}.
Rearrange
i i — 2 Ty /1]|| Ejl | Lj ﬂ | P
: Y g, in J 2 \in* )| ’

Uszé[Ui+(1—0')U,1+O'UW]

Nondimensionalize

. 9_g [ (OU
U =Uy = [Ii‘” (r_) ] TI'U.IlCate

in

First Order Slip Boundary Conditions

B 2-0, 1
b e T JRRT, Jm) 2
Thermal
I 2(7;—1)} 1 : )erma Creep
s w O‘T ’y + 1 Rp(zRI—;”/ﬂ)l/z (I‘H. )

Tangential Momentum Accommodation Coefficient

o, = ) is called specular reflection,

T, —T,
o, = .
T,.—7, f',iluﬁ vy as  ay — 0,
on
7, = 1 1s called diffuse reflection.
ar = M Energy Accommodation Coef.
dE; — dE,,

12



Accommodation Coefficients

* Courtesy of Kenny Breuer

12 1 T T L ] 12 T f T f ]
13 : [ S—— S _
[ ) ] L ]
5 0B F Pl L 1 oefL I dgi & & .
< F 1 [ . ]
Sosf 1 So8f Nitrogen g
0.4 [ Argon 1 " oal .
02 F 9 02k ]
D:"""""""""""": D:....l....l....l....l..
0 01 02 03 04 05 0 01 02 _ 03 04 05
Ko K
* c,=0 corresponds to specular reflection r—7
* ¢ =1 corresponds to diffuse reflection o, =——-"
T.—7T
1 w

References: Seidl & Steible (1974); Lord (1976)

Transition Regime Flows

, ' Collisionless
Boltzmann Equation  Boltzmann

Navier-Stokes Burnett

Kn

o

0.0 0.01 0.1 1.0 10.

Continuum ~ Slip Transition  Free Molecular
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Conservation Laws

p piiy
E pu |, o pud +p+ o .
ot | pus 021 purtiy + 012
E (E+p+on) u+opn-utaq
Pus
0 {)?.11112 + 091 -0
Bz2 pu3 +p+ o9

(E+p+02)-uy+091 -t + o

Governing Equations: Burnett Equations

Stress Tensor:
A 2 A A 2
w-u[§@%+wgmzd%gﬂﬂwafl

1

o, =2u—+2 | o

/ ox, p ' ox, 0x; Dt Ox;,  Ox, Ox
2
([, L oT  ROTET . ouou
)4 pT ox; 0x,  ° T ox, ox; ¢ ox, Ox;

Where bar defines a non-divergent symmetric tensor:

Zj :(fij+fji)/2_§ijfmm/3

Boundary Conditions: The Burnett equations are derived via a second-order
Chapman-Enskog expansion in Kn, and they require second-order slip conditions.
See Schamberg’s second-order slip models.

14



A Regularized Slip Condition

Perturbation expansion of the velocity field

U = Uy + Knl, + Kn®Us + Kn®U, + O(Knt).

Plug in to the generalized slip model

. 2=oy, |.. (OU Kn® (6°U
Uy = Uy = I —_— —_ - o
' Ty [ L (r’J‘ﬂ. ) . ! 2 (E}n- ).-. } }

(1) - Unls = Uy
. 2—0,
O(Kn):  Uils = ——(Up)s
T
- - 2-0 (1 i T
{Rn~): s = ~ (E[-[] f L']) |5
.o 2 T r 1 " 1 i
O(Kn”) U, = ~ (J.",-'_, f Ei’l t ﬁl’.-[] ) |5
Postulate a regularized slip condition
[t @] ©
o, 1—B(Kn)Kn \ dn
dB .
B(Ekn)=Blg+—oEn+---=b+EKne+---

dRn

For BKn <<I Use Geometric Series Expansion
2—um,

I;H Irh:' - : I{-”

T

alr 1
f;i'ﬂ.[ '

Perturbation expansion of the velocity field

ll.-.-"- = [.-'T[] T .HILU] | I\.’?lzr."_-_: | I‘.Fﬂ.”f.-":; { m{I{Ti‘-l].

bEn + (b + e)Kn” +---].

2)

15



Using (2) We get

O(1) : Uols = U
2—0u
O Kn) : Urls = = z (Un)ls

2 -7,

O(Kn?): Usls = p (bUy + U7)|s
. 2 r = ] 2 Tt
O(Kn?): Usl, = Z (U + bUY + (b + )l
Ty
f:}':l]] : {-ﬂln = Uy
2—0

O(Kn):  Uils = ——(Uh)ls

| 2 1
O(Kn®):  Usfy = — (.—m;' -l ) B

. 2 1 1
OKn?): Uyl = — (r FsUL 4 Er.-';;’) e

Choose to match the second order terms

(&)
_1\on),

. 2w

— U"

o

U,

o The parameter b in equation (2.59) is the ratio of the vorticity flux
to the wall vorticity, obtained in no-slip flow conditions. The value of
b for simple flows can be found analytically.

N N 2—-w, HKn U 2—-a, Kn OU . A
Us =Un = | BEKn dn oy 1 F}I{rrmimlﬁn )

2-0) Kn OU | This is a second-order
Uu,-U,= 1—bKn | on slip BC in Kn.

o Regularized for large Kn

16



Summary of Slip Boundary Conditions

2— oU
= U,-U, zﬂKn— Maxwell 1879
o on

1
= U, =2 [U,+(1-0)U,+cU,| Generalized model

\

2 A2
=) U, ,-U, = @-o) Kna—U+ Kn” 0 12J Second-order Model
¢ o on 2 on

= (U, -U,

g

(2-0) ( Kn ] ou | Regularized model

- _ : U’
o \1-bKknleon Second-order if b= ﬁ

Notes

o In the small Reynolds number limit, i.e., Re < Kn < 1, asymptotic
analysis of the Boltzmann equation shows that a consistent set of
governing equations and boundary conditions up to O{Kn?) is the
Stokes system with second-order slip boundary conditions, see section
15.4.2 and for details {Sone, 2002; Aoki, 2001},

& Rarefaction effects both in the aforementioned limit as well as in the
limit of He ~ O(1) =+ M ~ O(Kn) come in only through the bound-
ary condition. This has been proven rigorously using the Boltzmann
equation i (Sone, 2002).

e The high-order boundary conditions proposed include Maxwell's first-
order slip conditions (2,18, 2.19), as the leading order term. Hence,
these results are correct up to Q{Kn) in the slip flow regime, irre-
spective of the formal order of the utilized slip conditions.

e The general boundary condition for slip (equation (2.43)) converges to
a finite value for large A'n unlike the first-order Maxwell’s houndary
condition.

17



For non isothermal surfaces include thermal creep effects

L. v =1
Ug = %[u;\ F(l = au)uy + optiy] A 3Priy — 1)

4 ~pRT, (=)-

Temperature Jump:-

T -T = 2-or {2_7} Kn (8_T) von Smoluchowski

£ " o, |y+1|Pr oOn
(2-o1) 2y T), /
T = e (D) T, +o, T,
g 4 (2-o1) 2y M A g
Ot Pr (740
Tslip:Tgas on S

Pressure Driven Flows

Slip Flow Regime
Kn < 0.1

18



1-D Analysis of Pressure Driven Gas Microflows

|
f

h

pitt; = palty,  Continuity

(Pi — P)h — 2Lt = M(u, — u;). Momentum (per unit width)

(P, —P) AP _ L7 M(u, — u;)

P, P, h P, hie,

where 22 represents the non-dimensional pressure drop. Concentrating

Fa
on the term % = (patta) /P, and using the continuity equation (u, =

u;pi | po) and the equation of state for an ideal gas (p; /p, = P/ F,, assuming
isothermal conditions) we obtain

AP ZZL T Pty (i 1) .

P hE, TR \PR

Since P, = p, AT, and (:’ = vRT ., where ¢, 1s the speed of sound, the above
equation can be simplified as

AP LT AP
—_— = =y M M —, 4.2
P hE . (42)

where M denotes the Mach number at respective locations. Rearranging,
we obtain

AP LT
—1 = v M, M) = 2=—.
7 L A = 2eg

Without further simplification we see that the jpertial terms in the mo-

mentum equation (right-hand-side of equation (4.1)) can be neglected if

M, M, « 1. To this end. we note that:

19



AL MM = -z}ii.

o 1 [1]

L

. In microchannels with ¢ ~ 10% ~ 101 relatively large pressure drops

can be sustained for small Mach number Hows.

Since the Mach number in microflows is usually small, the inertial
effects are small. Therefore, we expect semi-analytic formmulas hased
on balancing the pressure drop with drag on the channel walls to
work reasonably well. (This is not true for micronozzles: see section

6.6.)

It the diffusion term is simplified by approximating the wall shear
stress as T ~ pu/h and recognizing p/ P, ~ \/e,, we obtain

AP

L
(1 =M M;) ~ QE,-‘II,,K?:.). (4.3)

The above relation indicates the relative importance of compressibil-
ity effects in the slip low regime.

In order to identify the relative importance of inertial terms in the mo-
mentum equation compared to the diffusion terms we compare their re-
spective magnitudes

putt /L puh (h) (h)
T —=—|=|=FRe|—|.
I pufh? o \ L L

A similar estimate can be obtained by taking the ratio of inertial terms to
diffusion terms in equation (4.3) as

FOMAM) My hAP | M AP b AP

%"11—01-{”-0 ~ Kn,L P,  Kn;L F L P

where we have used

P, M
Kn,=—H~n;, and Kn~ —
a }:'Q 1 R!’, )
in order to arrive at the third and the fourth equations, respectively, There-
fore, the above two estimates are similar, with an exception of the term

AP P -PF,

R
which is always smaller than unity. This analysis verifies that for relatively
low Re Hows (Re < O(1)) in large aspect ratio channels (L/h 3 1) the
inertial effects in the momentum equation can be neglected. Under such
conditions the momentum equation in the streamwise direction is reduced
to the familiar form

20



AP &u . . %h
dr H dy? ‘ L ‘

Using the second-order effects, we get

S WdP [yt oy 2-0, “ -
L =—— == == F ,
() 20 dr [f# h | a, fo U”]

Mass flowrate

_ " Equivalent
M= p [ U (y)dy, ®(Kn) Result

i

i

A2 s
= 2_::“%[[11j 1)+ 122 ~ 70 (Kn, (I — 1) I{;%gg,_n]].

ITis P, /P,  Alsonote that p/u c A & pKn=p Kn,

21



P,

Moe = smmrr ™ — 1
M 1 2—m, RAn, 192 Ty on? log, 11 @(an)
M. g, M+1 7, T2 1

i slip —1+12 2-0 Knom , — Pifl @(Kn)
no—slip o H+1 f)om

Which one is a better fit to the experimental data?

Increase in the mass flowrate compared to the No-Slip Flow

Kn=0.075 High_Order

[———— En=0.0 a
r——- En=0.165 First-Order /
L ——— Kn=0.1656 High-Order /// ,
| O MIT, He, Kn=0.185 v R
I e Kn-0.185, He /_/x’ ;
4 Kn=0.075, Alr 4 -
Fy )," 5
\>"
L 1

25

> /P
in/ T out

1=0.075
1=0.0
1=0.165 First—Order
1=0.165 High—Order
IT, He, Kn
n=0.165, He
1=0.075, Air
1=0.0, Air

0.165

High—Order

as

We see that the effect of the second order term is to reduce the increase in mass
flowrate due to the first-order slip. This is in disagreement with the experimental
data, since the flowrate increases faster than the predictions of the first order slip

theory in the transition flow regime.

22



Pressure distribution in a micro channel

N —

|
le
[

v |

L

WP 2o,
_ M 2oy 412
S RTTL 12—

(Kng(II - 1) — Kn?log, I},

ITis P, /P,  Also note that p/u «c A & pKn=p Kn,

1

2 -y

2 Kng(1 — P) + 12

T .

1- P?2+12 Kn?log, (P) = B(L — x),

where B is a constant such that P(0} = II. Here we have defined P = P/F,,

i.e., the pressure at a station x normalized with the outlet pressure. The

above equation provides an implicit relation for P the pressure distribution

for a first-order boundary condition is obtained explicitly by neglecting the

second-order terms (({Kn®)) in equation (4.9).

Compressibility vs Rarefaction

- \‘\.. No-Slip

Slip, Kn=0.30

b, Flow, Kn=0.003, [1=-2.02
Kumerical Hip
—————— Kumerlcal Ha—8lip
— —— High Trder
First Order
» UCla, CALTECH Experiments

nm |-

Decrease in the pressure gradient Yet it is still difficult to make

compared to the No-Slip flow comparisons with the
experiments

23



Model Verification Using the DSMC & LB

Tried to validate various slip models using
experimental data, but experimental data have large
noise...

Perhaps we can verify these models by
comparisons with atomistic simulations (DSMC) &
solutions of the linearized Boltzmann equation.
Need to see what happens to the

— Velocity profile?

— Mass flow rate?

— Pressure distribution?

Compare DSMC/LB & continuum based models.

DSMC Simulations in Slip Flow Regime

T 3

WFLOW, Kn =02

———= uFLOW, Ro-Elip
@ DEMC

I 1 1 1 1 I I 1 1 L
a n T a8 ae 1 L] e [} ©a @A 1

. XL L
Using There is a decrease in the
U, = 1 [U/l +(1-0)U,+0 UW] pressure gr.adient compared
2 to the noslip flow

24



—— uFlow 59’?%
o DSMC | %
1.8 - - La E - g ';I;. E
] ] el B
. | g b
I o U A A |
j e 4 b Velocity
| { | i
P | ﬁ ] L g P K, b | profiles are
2 q b ! .
S L4 - - L4 b normalized
= 4 b g b | , by U
= 9 'i 1 [ 4 £ L b Y Uin:
S AN ¥ I Y SR O :
| I i 4 I!p % 4 The channel
0.5 - | - 0.5 |- | 05 | . .
L b | [ inlet is at
b b i # y/h=0
x/L=0.2 %/L=0.5 ¥/ L=0.8
Kn=0.08 - Kn=0.121 Kn=0.15
e T o i ° ]
¥/h v/h v/h

Comparison of various slip models for pressure driven gas flow

(.

. . aU
l’.-, w = (.T]ILIJ.EEL

Author

., 07U
CaKn (m}s-
Ch C»

Cercignani {Cercignani and Daneri, 1963)

TTI66 [ 09750

Cercignani (Hadjiconstantinou, 2003a)

1.1466 | 0.647

Deissler (Deissler, 1964)

Schamberg (Schamberg, 1947)

Hsia and Domoto (Hsia and Domoto, 1983)

Maxwell (Kennard, 1938)

Equation (2.29)

1.0 9/8
10 | 57/12
1.0 0.5
1.0 0.0
1.0 05

Ulz,y)

dP h®

= [ (L) + (&) +Ci&n 26‘31&'113}

Shows the
. AP h* (1 shape of the
QI_.r} = WQ_;; (E OV K+ 205Kn ) Velocity profile
Tz, 2y & 4+ (WK 20 Kn®
U*(y, Kn) = frl’_'.:: j-!};] _ (=(#)" +++C1Kn+ G in ].
Jx

L4+ O Kn+20:Kn?
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Uy, Kn) =

E = Untodel

Ulz,y) | (£) + £+ C1Kn + 202 Kn”)

Ulx)

Urp.

[]-i O R 4 205 K n?

ERROR
13 T T T T T 4: T T 1) 0.2
- Lin Boltzmann o ercignant
o DEMC L] Current Sludy
. L Deissler
& Maxwell
o Schamberg
o a Heie & Domolo
2-0 oU Kn® 0°U
Ug—Uw—g Kn—+ 3 §
o on 2 on = 0
: -
=
E!’ A
oS - .
1 Kn=0.1
U=l +a-oyU,+ou,]l
— — Hsis & Domoto 7
——— Maxwell
Since the velocity profile e
is parabolic "0 o01 02 03 04 0s
p Y
ERROR
BT T T T T T T | T T] 0.4
= Lin Heoltzmann = Model A
o DsMC L] Model B
o © Cerecignani
- & Maxwell —03
o 0  Schamberg
. 4 Hsia & Domoto
1
B o2
Q
|‘~::\>h “ o
; N
= Q {01
o
| —— Hsia & Domoto
B2 Maxwell
— . Model B o
— Model & 8 : a
84,
Colaa
Kn=0.6 Do;”-m
oL 1 1 1 1 1 1 1 | 1 1
0 01 02 02 D4 05 0 01 02 02 04 05
Y Y
2-0) oU Kn® 0°U 2-0)( Kn \oU
v,-u, =E=D g, S R TV Ny g = B79)
o on 2 On o 1-bKn ) On
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Observations

o I'n the model of equation (2.29) the second-ovder slip contribution

leads to a reduction in the volumetric flowrate compared to the first-
order maodel.

o Other models with second-order slip conditions can predict flowrate
accurately but only at the expense of accuracy in the velocity profile.

_ 2 A2
v, -u, =" g,V K oY
£ o on 2 onm

This inconsistency becomes more dominant for large Kn flows,
and cannot be resolved by simply using a slip correction!

Transition & Free Molecular
Flow Regimes

Kn>(0.1
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Governing Equations: Burnett Equations

Ou, u* ou, u, D ou, _ du, ou o°T
c o = B gy e O R/ L L Y S
Stress Tensor: o, 'uﬁxj P { ' ox, ox, 2(Dz‘ ox; o 8ij  axor,
2
ﬂ[%lapauwsmm waa}
)4 pT ox, Ox; T ox, ox, Ox, 0Ox;

Where bar defines a non-divergent symmetric tensor:
fy=Us+ )/2-8,1,,/3

Boundary Conditions: The Burnett equations are derived via a second-order
Chapman-Enskog expansion in Kn, and they require second-order slip conditions.

(sections 2.3, 4.4 and 5.1 in K & B (2002).

Transition and Free Molecular Flow Regimes and
Knudsen’s Minimum

=
\

! — Smooth Tubes ]

--- Crimped Tubes]

M/ My

En
Knudsen’s Minimum

In 1909, Knudsen
discovered that there is a

minimum, when
Pi - P o

is plotted against the
average pressure!

- 4 AP |2
Mgy = iﬂI{TV R—;

Pipe Flows




Channel Flow Analysis for Kn>0.1 Flows

Analysis of the Burnett Equations for Isothermal FloIv (e=h/L<<1)
| E
I L 1

U2
) 1:| = U, +0(¢)
4 /2
1 l K o anut R) U2 = 2 Kn o Mout ]30“’ U.u y +0(8)
3 P 3 p |

If Kn,,<1 & M, 6 <<l1
P= U, > Parabolic Velocity Profile?

4ry /2 P.
f)y = 3 Knaut Muut( P jUyUyy

P_{l—zﬂy}{ M?

{Jut out

N

A Unified Flow Model for Pressure
Driven Gas Micro Flows

Ula,y) = F(i—P .ﬂ-»h-)\) [ (£)2 4 l ] HU ] Parabolic profile w/ U
r h. s

. (dP Y. i 2—a, Kn .
Ulr,y) _I(E,M,h,)t) [ () +(3) 4 (a—) m] Regularized model

r B 2— 0oy Kn )
M) st T ) Tk Averaged velocity

e Normalized velocity
7

e () + £+ B
Uy, Kn) = Ulx,y)/U(x) = . . Ll
LI vy 5Ty
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Transitional & Freemolecular Flow Regimes via
Direct Simulation Monte Carlo (DSMC)

I o DSMC

e Lin. Boltzmann |

Velocity Distributions

({22
Ut oKy =| ) \h) 1=b K

1 Kn
—+
6 1-bKn

ops 04

Universal Velocity Scaling

Centerline Velocity

Slip Velocity

/\ Boltzmann
e DSMC Data

n

0.5 1 8 10

U(Y,Kn) =

-0 _—, Maxwell’s

b=—1 —— New Model
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~Q/(dP/dx)

Modeling Flowrate

: : —— Volumetric Flowrate

ol - 0D Q:G(vﬂ’,ﬂ,h,aj
e DSMC dx

Using Navier-Stokes w/ Slip

- 3
.0 h dP[“_ 6Kn }
1-bKn

w _12,u dx

Correct for Rarefaction

Q:—hzdp[u 6Kn_ | (kn)
1 W 12udx 1—bKn e
e o EE e T -

Kn Rarefaction Coefficient

Rarefaction Coefficient (Cont.)

Physical Meaning /: Switch over of characteristic length in
definition of apparent diffusion coefficient

Absolute Viscosity: |1 =~ PAV

e | h

Free Molecular Flow Diffusion Coef: 1 ~ phv

1 _ _PVA Ky
I/h+1/A 1+Kn 1+Kn

C.(K)=14+0aKn, o =0o(Kn)

A Hybrid Model: p = pv

A similar model can be developed by considering the intermolecular
and molecule/wall collision frequencies. See Karniadakis & Beskok, sec. 5.3.2

31



Rarefaction Coefficient

- C.(Kn)=1l+a Kn
v pant ST a=0 a Kn=0
- 4o
o e 3 a=a, as Kn= o
L2 . - . ~
) ‘::A‘ 2 1
w2 a=a,—tan" (a,Kn")
0 . T
9 a, & B are empirical parameters
A A AR=4
B3 A AR=2
P A AR=1
Kn

Flowrate Scaling in Arbitrary Aspect-Ratio Rectangular Ducts
(Based on the Free Molecular Limit)

w AR=W/'h
=
= o )
~ o M _CUR) 4 gy 148K
= M,, 6Kn 1-bKn
. WW AP
£ | FM ZRT” I
N o [1 B 192F[_:_’ue1 o0 L;lllt.[;iizf_ata);}
100 i=1,3,5,...

Knudsen’s Minimum
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Flowrate Scaling in Arbitrary Aspect-Ratio Rectangular Ducts
(Based on the Continuum Limit)

; S
¢ First-Order Theory
3 A
S
/'/ i
g ° - 3
. A - .
" - » | M 6Kn
o, 4; A g —CURta Kn){l-ﬂ—l K
] o~ o —
. g e T !
: gl e o .
K/ ‘." /”{/ P 3 i
’// .//.( cam = |1 1‘32{.:!?] z L;mh{r:.,izlf.{fi’.:}
. /.K’\ A ) AT | ﬁ. =135, B
L * //'(’ |
T ® AR—=
i A AR=4
4 AR-2
L AR=1
oL - PR | A |
0 0.1 0.2 0.3 0.4
Kn

Channel Flow, Nonlinear Pressure Distribution

02 T T T T
_t"fuwu%\:”n
0.15 |- |
P/Po
(=3
& Pcomp
< o1
a
Pic
=L
0.05 - o uFLOW Slip ] 0 XL :
o uFLOW No-Slip
-—- Analytic O(Kn)
—— Model (b=—1, &=0)
0 Model (b=-1, @=2.2) \
o ez ex s es s es
X/L
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Regarding the new model

* Model accurately predicts the volumetric
flowrate, velocity and pressure distribution
for rectangular ducts (and circular pipes) in
the entire Knudsen regime, including the
Knudsen’s minimum.

» The new model is based on the hypothesis
that the velocity distribution remains
parabolic in the transition regime, which is
supported by the asymptotic analysis of
Burnett equations.

o The general slip boundary condition {equation (2.43)) gives the cor-
rect non-dimensional veloeity profile, where the normalization is ab-
tained using the local channel averaged velocity, This eliminates the
flowrate dependence in modeling the velocity profile. For channel
flows, using equation {2.39), we obtain b = —Lin the slip How regime.
Evidence based on comparisons of the model with the DSMC and
Boltzmann solutions shows that b = —1in the enfire Knudsen regime.

In order to model the Howrate variations with respect to the Knud-
sen number, Kn, we introduced the rarefaction correction factor as
U, = 14+ akn. This form of the correction factor was justified using
two independent arguments: First, the apparent diffusion coefficient;
and second, the ratio of intermolecular collisions to the total molec-
ular collisions. We must note that a cannot be a constant. Physical
considerations to match the slip flowrate require o = 0 for Kn < 0.1,
while o = v, in the free molecular How regime. The variation of o
between zero and a known ag value is approximated using equation
(4.34) that introduced two empirical parameters oy and 7 to the new
madel.
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Therefore, the unified model employs two empirical parameters (o) and
) and two known parameters b = —1 and ag. Although this empiricism
i= not desired, the o value in O, varies from zero in the slip flow regime
to an erder one value of o as Kn — oo, Finally, the model is adopted
to the finite aspect ratio rectangular ducts using a standard aspect ratio
correction given in equation (4.353).

Modeling Roughness in Micro-Geometries

500.0 nw

1000 nm

500

5.0 HanoScope Contact AFH

Scan size 10,00 pm
Setpoint ou
Ll 2.5  Scan rate 4.022 Hz
I = 1
215——_ — Humber of sawples 2
5.0 T
7.5 o
10.0
It

*Regularized roughness
*Equivalent effect
*Random walls
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Modeling Roughness Effects

* Model the extra chaotic motion due to the rough boundary using
correlation function of surface inhomogeneities

L aa m U IS

¥ Y
R el AT

- faalmidnied

£(x,2) &(x,2); , lower & upper wall inhomogeneities

 Use Migdal transformation from nuclear physics
Y = L[y —1/ 2[&2 (X,Z) - al (X,Z)]]
L- [Eal (Xa Z) + E.>2 (Xa Z)]

* Renormalize the viscosity to account for extra diffusion

* Solve new equation in simple domain

Roughness Effect on Pressure Drop

900 4

- F,=10
—a— amceth
—+—— In-Plese
—=a—— Qut-Phase
—8— Smeoth [1.21)

850

B00

In-Phase Channel with aspact ratio of 20 1 7504

Pressure (Dimensionless)

700

Slip Compressible Flow N
c=1.0

650 4

3006

1o 2 E3 4o
Streamwise Distance (Dimensicnless)

* Re =0.36; with enhanced viscosity Re =0.276
» Enhanced viscosity factor: 1.31

Courtesy of Karniadakis
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Viscous Heating

U Temperature
T=300K —— »~ N

301,016
300.972

= _ 200.927
' s 300.883
' 300.839 AT =1K
300.795
oT
300.751 6
300.707 —~10 (K/ m)
300.663 on
300.618
300.574
300.53
300.486
300442 j(n JT5)-v,dS
300.397
300.353 cs
300.309
300.265
300.221
NO-SLIP 300.177
300,133
Re=5.0 300,088
M=0.29 300.044
300

Thermally Induced Flows:
Thermal Creep/Transpiration

(O. Reynolds & Maxwell)
h>T
T x &
Mass Flux from hot & cold ends are: muny ey and  mnecs

. P
Using P =pRT and Fl =1.

2

mnicy 1 T e B P/ Ta 0.5 B T 0.5 o
mnacs  pp \ 1 BT =\7 <1,

Hence, there is creeping flow from cold to hot
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U, = 3[(2 - 0)Us + oU,] + U

U.

WP dP 2o, )
+6-—""(Kn - I«;n-)] +

1 3 peh dT
" 12uRT dr 7,

We conclude that thermal ereep can change the mass Howrate in a chan-
nel. If the pressure gradient and the temperature gradient along the channel
walls act along the same direction the flowrate is decreased; otherwise the
Howrate is increased.

o Therefore, it is possible to have non-zero flowrate in a microchannel
even in the case af zero pressure gradient.

* Also there can be no net flow under a pressure difference

Thermally Induced Flows: Thermal Creep

e
T=300 K T=400 K £ Kn-0.965
,d 104 4
/
/
i
| .
‘
ii 102 "'
i . i
Kn=0.,122
3 - e e een 8 e
a? Lev’
| . - OEBO--O0-5-00
= 1 oo-o-coo-o ;._nr}-':sng,ﬂ_?“ﬁ rasio Kn 0,052

0o b o0t 0 en®™ A

T=300 K T=400 K

Kn,=0.365

Stoaty State

(6)

Similar ideas are used in Knudsen compressors ~ Uc

38



A Unified Slip Model for
Shear Driven Flows

Ali Beskok

Texas A&M University
Mechanical Engineering Department

College Station, TX 77845
abeskok@tamu.edu

in collaboration with
Pradipkumar Bahukudumbi & Jae Hyun Park

Shear Driven Flows: Linear Couette Flow

Knudsen Layer

y=D72

- i Slip length

¢ Knudsen layer




Shear Driven Steady Flows:

Linear Couette Flow

2
Governing equation : 0"u(y) = () «—— Based on Navier-Stokes
oy*
Boundary conditions :
2-0 ou
u-u, = “oh—
o, ay

where, a is the slip coefficient and A is the mean-free path.
a=1 [Maxwell’s classical velocity slip formulation]

a=1.111 [Obtained by Ohwada et.al. for hard-sphere molecules using the

linearized Boltzmann equation]

Analytical expression for the velocity profile (u.)

2U, y
14227% oxn P

(&)

v

where, we have defined Kn=\/D.

Generalized Slip coefficient
O, = Bo + B1 tanil(Ban&)

B, =1.2977;B, =0.71851; B, = —1.17488; B, = 0.58642

» Extends the validity of first-order slip condition.

» Converges to the first order slip condition for Kn<0.1.




Velocity Distribution of Plane Couette Flows

05

e The Model is

04

j

¥

valid for Kn<12.

« It is appropriate

1 for (nearly)
] isothermal flows,
] hence M<0.3
03 -
[ i
EaS |
Current Model |
0.2 -
RS HEdat . Upper half of the
» Boltzmann data : channel is shown
0.1 = = = Firstorder slip t
0 A R IR B
0.4 05 0.6 07

Viscous Heating: Plane Couette Flow Temperature Distribution

L
>§
I VA VAN R

M=1.0

400

380 =0-90

L L L L L B

HS Model viscosity
dependence on T

1/2
e ﬂ(%)

|_340 - M=0.70 _:
/\ Temperature
320 Kn=1.12 —| Jump
B M-0.50 ]
300 £ 1
B M=0.30 ]
280 M=0.10 B
= M=0.05 4
1 I I I T -
260 0.2 0.4 0.6 0.8
Y

A significant increase in mean temperature with Mach number is observed,

indicating dominant viscous heating effects




0.5

0.45

0.4

0.35

0.3

> 0.25

0.2

0.1

0.05

Viscous Heating Induced Compressibility Effects

» I I I T T :\ ]
o 7,7
= &'///,"/ =
o Current model //',// -'/-' B
- > Boltzmann (2 i -
= — — - DSMC, Ma=0.05 A R
5 — . —-— DSMC,Ma=0.3 4° 7 7 ]
N — — — DSMC, Ma=0.7 7y ]
— — - DSMC, Ma=1.0 AP E
n 4 ]
= /// .
= i E
B /e 1
= 74 E
- /,.-’ ]
g / 7 ]
g /o Kn=1.12 ]
- 2 .
- Y ]
B Za 1
- 7 =
F 5
. Ll Ll Ll Ll .
0 0.1 0.2 0.3 0.4
u(:IUwaII

New Velocity model is
valid for Ma<0.3.

Upper half of the
channel is shown

Variation of Normalized Slip-Length with Knudsen Number

Non-dimensional Slip length (1)
w

T T IR |

UL |

First-order |
Current model |
DSMC

O

k:(«/;/Z)Kn )

|

co o b b b b T

107 10

/ _u(y=D/2)-U

N

ou
poul)
y
[, =aKn
Distance from the wall, where
the extrapolated bulk flow

velocity is equal to the wall
velocity.

Uwall
Lk —
m\\ - I Slip length
P : Knudsen layer
duidn N




Shear-Stress Model :

» Least-square fit to linearized Boltzmann solution of Sone ef a/ (1990).
» Uniformly converges to correct asymptotic limits as Kn— 0 and Kn—> oc.

» Accurate prediction of shear stress for Kn<co and for Ma<0.3.

2RT,
Free-molecular shear stress : z'xy o = —pOU
’ T
, U
Continuum shear stress : Txy cont = -2 H—
’ D

where, the dynamic viscosity u= f%poﬂ is independent of pressure.
T

Shear-stress Model (contd..):

Ty aKn® +2bKn
= 7Z.xy = 2
T akn” +cKn+b

Ty n 1 akn +2b
Teom | 2aKn®+cKn+b

a=0.529690;b = 0.602985;c =1.627666

Asymptotic expansions for Kn—oo and Kn—0

v a Kn a
2c—a

B _(—Zb—cjc
_py2bze a 12+O(Kn’3)
Kn as Kn—o0

( P )C—Za
m, =1+ Kn+ Kn* +0(Kn’)
’ 2b 2b

A=2¢ 52601~ —2a

as Kn—0




Normalized Shear-Stress Variation with Kn
: 1 \\HH' 1 \\HH' 1 \\HH' 1 \\\\H:
1+ i ——
ook k= («/n/2)Kn 4  Free-molecular:
= 7 ] 2RT
08F v - Txy,oo == oUo =
n a T
o7k Free Molecular E
- Scaling 1 Continuum:
06 =
li;‘ = ] Uo
| ™ Current model T T . = —2”,
05 — = = Asymptotic solution - Xy,cont D
= > Linearized Boltzmann ]
B ==« ==« = 4-moment method ]
|— = «— = Free-molecular limit -
04 - O Dbsmc R Model:
03F T Kn’ +2bKn
- Y —nq = a
02f we  aKn’+cKn+b
0.1 f_ a=0.5297 ;b =0.6030 ;c =1.6277
: r \\HH' L \\HH' L \\HH' L \\\H;I
10* 10" 10° 10" 102
k
Normalized Shear-Stress Variation with Kn

0.9

0.8 >

0.7 O
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Continuum
Scaling

_Txy /Txy,cont

0.3

o
N

o
o
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Shear Stress & Velocity Model Correlation

_ ) _ _ (E)il of steady flow
Define an effective VISCOSIty' &

aKn + 2b

(1+ 20, Kn)

Shear stress of
steady flow

T model

Hege = ( d7u j
dy model

Laterally Oscillating MEMS Structures

Nguyen and Howe (1999): Comb-micro-resonator

Comb Transducers

7 SEM of a 100-KHz folded-beam,
&y <=  comb-micro-resonator

U,sin{e t)

Electrostatic-Comb Folded-Beam
Transducers dig Suspension

y A
Kn=2=
I e )

e

SIRTRRNY b SITRLRY
X

Rt SR B

Movable
Shuttle

Oscillatory Couette Flow




Motivations

U Recent experiments in ultra high vacuum chambers (P < 10 mbar)
to achieve high quality factor Q (Yang, et al., 2000).

—> Expect significant rarefaction effects.

U Recent micro-resonators at 10-100 MHz (Mattila, et al., 2002; Wang
et al., 2000). Comparable to gas collision frequency (~1 GHz).

—> Expect strong nonequilibrium effects.
II‘ Accurate analysis of oscillatory Couette flow in the

entire Knudsen regime and wide frequency range is
essential for improved design.

Organization

* Develop empirical models for velocity slip & shear stress for
steady Couette flows, using hard-sphere direct simulation
Monte Carlo (HS-DSMC),

* Extend the empirical model to quasi-steady oscillatory Couette
flows and validate using the HS-DSMC,

* Using HS-DSMC, study high-frequency oscillatory Couette flows,
and validate the DSMC results for Kn—co, using the analytical
solutions of the unsteady collisionless Boltzmann equation.




Schematic of Oscillatory Couette Flow

Uysinfe t)
e

Planar floating mass

Y

e

T AT
A

Oscillatory Couette Flow

Nondimensional parameters

Kn = & : Knudsen #

B=,—: Stokes #

Continuum-Based Approach
Ju _ v d%u

Physical Parameters: ot ay’

v, ®, A, h
u-u, = 2-o, ocha—u ; y=0,h

G, oy
Velocity Response:
u(y,t) = Im{V(y)exp(jot)} Usinta §
«—>

®h?

A%

Stokes number

B=

Hlanar floating mass

y

h
Y = yh
X

B R B A B0 B
AN SRR
3 NN

u(Y)=C,sinh(\[jBY)+C, cosh(y[jAY) Sl

Solution with the generalized slip boundary condition:

sinh(\/jBY) ++/jBar,, Kn cosh(,/jBY)

u(Y) = Im{U

o, :Generalized slip coefficient

U, : Amplitude of lateral oscillations.

* (1+ jBat,, "Kn?)sinh(;/jB) + 24/jBat,, Kn cosh(/jB)

exp( jmt)}




Quasi-Steady Flow: Kn=0.1, $=0.25

-Kn=0.1, p= 0.25]

0.5

-05

3o
-D.S-
0 025 05 075 1 ; M w
iL [
* [yiL=0.99 |
i :

Quasi-Steady Flow: Kn=10, §=0.1 os ° malnea

‘[Kn=10, 3= 0.1] £ E E E

o \Pﬁﬁﬁ yiL = o?oé %‘?@éb

ufu,
|
J
|

o5 T T ol
o3 :
) i 1’
19 0.25 0.5 0.75 1 o3}
XL ; &ﬁ }
sl |3IHL = 0.
1




Nomalized velocity amplitude

Model Summary for Quasi-Steady Flows

1 B <0.25 = Quasi-steady

Slip on the top and bottom walls
are equal, and the velocity profile
passes through (V,Y)=(0.5,0.5)

| The velocity model is valid for
{ Kn<12, for $<0.25.

= = = = model

0.5 0.75 1

Bahukudumbi, Park, Beskok, Microscale Thermophysical Engineering, Vol 7(4). 2003.

Normalized velocity amplitude Normalized velocity amplitude

Normalized velocity amplitude

o

o

2
T

o

(@a)p=0.1,Kn=25 '@ b= 0.25, Kn= 0.4 f

e

Normalized velocity amplitude

H o H
‘\%‘\

| l \
s

329

2s¢

§go \
L L

055

075

\
\
v
Normalized velocity amplitude

55
yih

Normalized velocity amplitude
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High Frequency Oscillations
in

Slip Flow Regime

High Frequency Slip Flows (Kn < 0.1 & f§ > 0.25)

1

[Kn=0.1,p=5.0

05

ufu
o
\

-0.5

0 0.25 05 0.75 1
y/L
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yiL

Phase [degree]

Details of Dynamic Response (Kn = 0.1 & § = 5.0)

(a) Dynamic response of medium

(b) Velocity histories at various positions
8 T

075

t=0.75T, t=0.25T,

t=0.5T,

DSMC
~ = =~ model

Kn=0.1,p=5.0
/

g 04

ulu,

yiL=09
—e— ylL=1.0

Kn=01,p=5.0

Slip Flow Regime

« Exponential decay
of velocity amplitude

* Constant wave speed
and linearly varying
phase angle in most of

%35

|
04 0 04
ulu,

(c) Phase variation throughout medium

. 1 |
0.8 0.25 05
ot/2n

(d) Log-plot of velocity amplitude

the domain.

* Interactions between

200

g
T

3
8
T

g

T
Kn=0.1,3=5.0

N o psmc
N — = = = model

<Wave propagation speeds> ~

Kn=0.1,=5.0

L
Normalized velocity amplitude
3

two surfaces result in
variations of the wave
speed deeper in the
domain

* All predicted by the
analytical model.

[ Stokes' 2nd prob. :1.7772 A ] .
model :1.7701 N éw
DSMC :1.7909 % o Ds:l(l:
1 1 1 107 1 1 - 7|7 — o
0.25 05 075 I 0.25 05 075
yiL yiL
Kn Layer

Nommalized velocity amplitude

Model Summary for High Frequency Slip Flows
(Kn<0.1 & 2>0.25)

(| S e e e e e e e e

1
b)Kn=20.1
|
i |
[ |
| |
DSMC
- = = - model
04
0.25

The velocity model is

also valid for

Kn < 0.1, for p > 0.25

— High frequency slip flow.

For B > 5.0, we observe
bounded Stokes layers
in the slip flow regime.
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Time history of shear stress at the oscillating wall

Current model
0.2 ——— o DsmC 02 i L—— °

R R 0.15

i
\;

0.15F

0.1

0.05

0,

t,/ (WU h)

0,05

/(U h)
o _e—o'“‘?
| o—e |
S

'
b
I
3

0.1F

s
5

\
1
\1
x
1
Y

-0.15; *® ¥

-0.15f
- Kn =2.5, 3=0.1 - w Kn=2.5, g=o.25 w
02— 2 3 02— I
ot/ (2 ) wt/ (2 )
Shear stress on the oscillating plate:
The shear stress model is valid for: . du oscillating
a) Kn < 0.1 & > 0.25 > High frequency slip flow Ty = Hetr d
b) Kn <12 & B <0.25 — quasi-steady flow y y=h

High Frequency flows in the transition
and free molecular flow regimes
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Phase [degree]

Details of Dynamic Response (Kn = 5.0 & § = 2.5)

(a) Dynamic response of medium

(b) Velocity histories at various positions

ulu,

03

T

Kn=50,p=25

05 025 0 025 0.5
ulu,

(c) Phase variation throughout medium

(d) Log-plot of velocity amplitude

400 Froagen,

@
g
8

N
8
8

100

Normalized velocity amplitude

Kn=5.0,3=2.5 ©
/

T T

Kn=50,p=25

0.4 06 08
yiL

L L
0.25 05 0.75

Transition Flow Regime

* Bounded Stokes layer type
behavior

* Non-exponential decay
of the velocity magnitude

* Variable wave speed

Dynamic Response of Free Molecular Flow

05
= E—
‘{[Kn=10,p=2.5]
025
g0
=1
025
055 0.3 o5 075 1

Park et al, Physics of Fluids, 2004

Transitional/Free Molecular
Characteristics

* Bounded layers (p & Kn)

* Non-exponential decay

of the velocity magnitude

* Variable wave speed

« Slip Velocity increases with

(B & Kn)

* As Kn— oo, slip velocity and

shear stress for oscillatory
flows reach to the steady free
molecular solution
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Details of Dynamic Response (Kn = 10, 8 = 2.5)

(a) Dynamic response of medium

(b) Velocity histories at various positions

Kn=10,p=25
075 04 B Y.
Transitional/Free Molecular
. . Flow Regimes
S, 05 E g 14
s * Bounded Stokes layer type
025 - 0.4 - _ - .
et ¥4 behavior
— yiL=09
~ = — — Free mol. sol. Kn=10,p=2.5 —e— ylL=1.0
0 0. L L L
o ul, ‘” e " « Non-exponential decay
(c) Phase variation throughout medium (d) Log-plot of velocity amplitude Of the VelOCIty magnltude
900 T T 10° T T T
Kn=10,p=2.5 Kn=10,p=2.5 .
- . 4 * Variable wave speed
5 60 ‘\\ B E‘m‘f . smc
g S E ~ = = = Free molecular solution
s R, 8
9 Y g
T 300 - B % E
E
2
o DsSMC
= = = — Free molecular solution
B 5 UIS U.!/S 10° 0. I25 0'5 0. !/5
yiL yiL
Effects of Kn for fixed

Normalized velocity amplitude

075 — — — —

05— - - -7 —-——~—

025 = £ - —— - T
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Increasing Kn for fixed 3 results in
bounded rarefaction layers!
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Penetration Depth Variation for Bounded Layers
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Solution of the Boltzmann
equation and the DSMC

both predict that the shear
stress in oscillatory flows in
the free molecular flow regime
reaches

1 2k, T,
Trm :Epouo W

as (Kn — ).
This is the value for the
steady Couette Flow!
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Slip Velocity
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Viscous Dissipation

U Viscous dissipation : D = s J.ZTt 7, (0t)u, (ot)d(@t)

 J0
U Dimensionless Dissipation : D’ = D
D
T o Ko U, : absolute viscosity of fluid
Dcd =—Ug| /—
® L

D4 is from steady Couette Flow

2k, T

In the free molecular flow limit 7, = lp0 u, Box
2 m
1
Ug w :EUO
I »_om
This gives: D™ = EKn as Kn—> o
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Effects of Kn & B on Viscous Dissipation
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Conclusions

* We have developed an unsteady DSMC algorithm to study laterally
oscillating gas micro flows.

* We have developed analytical models for:
a) Quasi-steady flows (B < 0.25) at any Kn
b) Slip flows (Kn <0.1) at any 8
These models predict the flow dynamics and dissipation accurately.

* DSMC results are verified using the unsteady, Boltzmann solutions
Shear stress and slip velocity for oscillatory Couette flows
converge to that of the steady Couette flow for Kn — oo

* For B> 0.25 and Kn > 0.1, DSMC data shows rich nonequilibrium
physics that can’t be predicted by the existing analytical models.
First observation of the bounded rarefaction layers
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