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A complete mathematical description of oscillatory Couette flows within the framework of kinetic
theory is not available in the literature. Motivated by this and their vast engineering applications, we
present a parametric study of time-periodic oscillatory Couette flows using the unsteady direct
simulation Monte CarldDSMC) method. Computations are performed as a function of the Knudsen
(Kn) and Stokeg8) numbers, in the entire Knudsen regime Kh00) and a wide range of Stokes
numbers =<7.5). The DSMC results are validated using a recently developed semianalytical/
empirical model that is applicable for quasisteady floys<(0.25) in the entire Knudsen regime,

and for any Stokes number flow in the slip flow regime &W1). In addition, we derived an
analytical solution of the linearized collisionless Boltzmann equation for oscillatory Couette flows,
and utilized this to validate the DSMC results in the free-molecular flow regime. Dynamic response
of the flow, including the velocity profiles, phase angle, wave speed, shear stress, and the penetration
depth for high Stokes number flows are presented. Increasing the Stokes number at fixed Kn, we
observed formation of “bounded Stokes layers,” as expected. However, increasing the Knudsen
number at fixe@B results in “bounded rarefaction layers,” where the penetration depth continuously
decreases with increasing the Kn. Interplay between the rarefaction and unsteadiness contributes to
this interesting flow physics, and also introduces a new characteristic length scale to the problem.
© 2004 American Institute of Physic§DOI: 10.1063/1.1634563

I. INTRODUCTION While substantial literature on steady rarefied Couette
flows exists, a thorough kinetic theory treatment of time-
Oscillatory Couette flow is the simplest approximation periodic Couette flows is not available. Although micro-
for time-periodic shear driven gas flows encountered in variscopic simulation methods such as the Boltzmann solvers or
ous microelectromechanical systetdEMS), such as mi- the DSMC can be used to investigate the flow physics, such
croaccelerometers, inertial sensors, and resonant filiérs. methods are very difficult to apply to engineering problems
Although this classical problem has been investigated exterthat involve unsteady flows due to the computational com-
sively using continuum-based flow modéls, fundamental plexity and storage requirements. The difficulty in numerical
problem arises with miniaturization of device componentssolution of the Boltzmann equation arises due to the nonlin-
and packaging MEMS at subatmospheric presstifesaly-  earity, complexity of the collision integral terms, and the
sis of such conditions requires consideration of rarefactionmultidimensionality of the equation. DSMC is a particle-
effects, which are characterized by the Knudsen number, déyased method for gas flows, and it is applicable to all flow
fined as Kn=\/L, where\ is the gas mean-free-path ahd  regimes® The DSMC uses a stochastic algorithm to evaluate
is a characteristic flow length scale. Based on the Knudsegollision probabilities and scattering distributions. In recent
number, gas flows can beualitatively classified as con- work by Wagner, it has been rigorously proved that the
tinuum (Kn<0.01), slip (0.0xKn<0.1), transition (0.1 DSMC is equivalent to a Monte Carlo solution of an equa-
<Kn<10), and free-molecular (Kn10) flow> Most exist-  tion that is similar to the Boltzmann equation. Although sim-
ing MEMS devices operate in the slip and early transitionpler theoretical models such as the Navier—Stokes equation
regimes. Further miniaturization of device components willwith slip correction and the collisionless Boltzmann equation
push this limit to the transition and free-molecular flow re-can be used in the slip and free-molecular flow regimes,
gimes. Hence, successful design of these microfluidic sysrespectively, there is a lack of theoretical understanding and
tems is faced with the challenge of better understanding ofeliable models in the transition flow regime. Numerically,
micron and submicron scale physics and transport processése DSMC method of Birliremains the simulation tool of
in a wide range of flow regimes. choice to obtain solutions for gas flows in the transition flow
regime. From the time of its introduction, the DSMC method
3Author to whom correspondence should be addressed. Teleptar@: ~ Nas been widely used for simulation of rarefied gas flows.
862-1073; fax(979 862-2418; electronic mail: abeskok@mengr.tamu.edu More recently, the DSMC method has been increasingly used
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to simulate flows in micro- and nanoscale devices. Since u,=ugsin(e t)
. . . B ———— T
most MEMS devices contain moving components, unsteady "

DSMC computations are necessary to study fluid—structurey=t

interaction in such systems. Despite their practical impor- —
tance, analyses of unsteady rarefied gas flows are not com , /) uty.t)
mon in the literature.

In the following, we review some of the previous inves- — :
tigations that utilize the DSMC method or the Boltzmann e o s
equation to analyze time-periodic/unsteady rarefied flows. Number density n,
Stefanovet al® used the unsteady DSMC method to investi- y Temperature  T=T,
gate time-periodic oscillatory flows in the near-continuum/ I_X,

slip flow regime (Kn=0.01). The unsteady motion was in- Y=
duced by a combination of longitudinal and transverse time-
periodic oscillations of a surface. These simulations were FIG. 1. Schematic of oscillatory Couette flow.

performed in the limit where the compressibility and viscous

heating are important. Hadjiconstantinou and Gdreiad

Hadjiconstantino{? analyzed sound wave propagation in is initially at rest, and it has an equilibrium number density
micro/nanoscale flows using unsteady DSMC, and verifiedlo, and equilibrium temperaturg, that is equal to the wall
their results by comparisons with the continuum and lineartemperaturer,, .

ized Boltzmann solutions. Sharipoat al!! studied sound Oscillatory rarefied Couette flows are characterized by
propagation in the free-molecular regime using the linearizedhe Knudser(Kn) and Stokegs) numbers. The Stokes num-
collisionless Boltzmann equation. Park and B&elnd Park  ber represents balance between the unsteady and viscous ef-
et al*® applied unsteady DSMC to investigate heat transfeffects. It can also be interpreted as the ratio of the diffusion
in oscillatory rarefied gas flows. In most of these previousand oscillation characteristic time scales, and it is defined
investigations, normal oscillations to the surface are considas

ered. In previous work, we developed a generalized slip-

based empirical model for oscillatory Couette flows that can ol (LZ/V)“2

- - 1w

accurately predict the velocity profiles and shear stress for B v
Kn=12 in the quasisteady flow limif: This new model was
validated using unsteady DSMC results. This previous workyvhere v is the kinematic viscosity and is the oscillation
excluded the high Stokes number rarefied flows, where th@requency. Here, we must note that Stokes number in this
nonequilibrium effects become dominant, especially whercontext isidenticalto the Womersley number used in pulsat-
the plate oscillation frequency is comparable to the molecuing flows*® However, we chose to use the Stokes number
lar collision frequency. This work is an extension of our instead, since our work is on oscillatory shear-driven viscous
previous research, and it is motivated by the lack of oscillaflows, and on Stokes’ second problém.
tory Couette flow studies in the pertinent literature. We performed a series of DSMC simulations of oscilla-
This paper is organized as follows: In Sec. Il, we briefly tory Couette flows for various combinations of Kn apd
review the DSMC method used in this study with specificThe DSMC code used in this study was based on the un-
emphasis on the choice of simulation parameters. Theteady algorithm presented by Bftdthe code has been suc-
continuum-based slip solution for quasisteady flows develcessfully applied to the analysis of microscale heat transfer
oped in an earlier work is summarized in Sec. lIl. In Sec. in oscillating rarefied gas flows in previous wdfk In the
IV, we derive the free-molecular solution for oscillatory Cou- simulations, we utilized the hard sphei¢S) model for mo-
ette flows using the collisionless Boltzmann equation. In Sedecular collision, and the no-time-countédTC) scheme is
V, DSMC results are compared with the slip-model solutionadapted for collision pair selectiériThe choice of the HS
and the theoretical solution based on the collisionless Boltzmodel facilitates easy comparisons with the theoretical solu-
mann equation. Dynamic response characteristics of the meions of the linearized Boltzmann equati8and also enables
dium are presented for a wide range of Stokes numbers in theasier code implementation. We simulated argon (gas-
entire Knudsen regime. Also, the influence of Kn ghi@n  lecular massn=6.63<10 26 kg, hard sphere diametel,s
wall shear stress, and penetration depth are examined. Fi-3.66x 10 1°m) with a reference temperatufie=273 K.
nally, we present the conclusions of our study. The walls are assumed to be fully accommodating. Hence,
the particles are reflected from the walls according to a Max-
Il. PROBLEM DEFINITION AND UNSTEADY DSMC w_elllan _dlstr|but|on with wall velocity and temperatur.e:_
METHOD Simulation parameters are chosen so that the compressibility
and viscous heating effects are negligible. Although the gas
We consider rarefied gas flow between two infinite partemperature increases with increased oscillation frequency,
allel plates that are a distanteapart, where the top plate the maximum temperature rise in the simulations was less
oscillates harmonically in the lateral direction and the bottomthan 2%.
plate is stationary, as shown in Fig. 1. Two plates are main- We have utilized more than 100 simulated particles per
tained at the same temperatdig=273 K. The gas medium cell. The entire domain was discretized into 40—100 equally

@
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spaced cells, to ensure that the cell sia) is smaller than  other, with the exception of statistical fluctuations induced by
the mean free path for all simulations. Finer grid is used forthe DSMC. Statistical scatter of DSMC computations will be
high Stokes number flows to resolve the flow inside theaddressed in the Results and Discussions section.

Stokes layers, while a coarser grid is used for low Stokes

number flows. In the choice of the simulation time stap)(, [ll. CONTINUUM-BASED SLIP MODELS

we had to consider four different limitations. Firatf has to The Navier—Stokes equation, along with the appropriate

be S|gn|f|carltly §ma||le;r thansthe mdeatnh coII|s”|oq tlmehto Ign'slip boundary conditions, can be used to investigate oscilla-
sure accurale Simulations. second, the cell size shou ry Couette flows in the slip-flow regime. In previous

smaller than the mean free path, and the molecules shou ork ™ using DSMC, we have shown that the continuum-
not move across more than one cell between two consecuti\{%se’d first-order slip,models are invalid beyond=1 for
time steps. HenceA't<Ax./co, Whgre CO:.VZRTE IS th? steady and quasisteady flowg<0.25). In addition, we
most probable velocity. Third, the time period of oscillations have developed an extended slip-flow model that can accu-

Zan l2)e</:om§ Smﬁ Ilerr] than ft_he (;ne_an co_|||3|on f'mDe;S'\r/'l%ncerately predict the velocity distribution and shear stress for
{27/ w. Fourth, choice oL andvin amicroscale DSMC 004y and quasisteady flows in a wide Knudsen number
simulation can result in a relatively small viscous d'ﬁus'onrange (Kr=12). The new model was based on the Navier—

; ; 2. 2 ;

time, Whlch scales as™/v; hence At<L"/v. Ir_1 all simula- Stokes equation with a modified velocity slip boundary con-
tions, the time step has been chosen to satisfy all four COMition. In the following we summarize thismpirical model.
straints. The range of the total simulation time was around 3

tq 18 time periods '(0=277/c9). This ensures thg"[ the tran- Velocity model

sients starting from the quiescent initial conditions decay,

and time-periodic state is achieved. In unsteady DSMC, en- For a small amplitude lateral motion that does not gen-

semble average at each time step replaces the time avera@@te any streamwise pressure gradients, the momentum

used in steady computations. In this study, ensemble averagduation reduces to the following:

ing is_ performed over 500_0 different realizations of the sto- au(y,t) Fu(y,t)

chastic process for each time step. = . 2
In all simulations, amplitude of the oscillating wall is

kept constant atip=100 m/s, maintaining relatively low For a sinusoidal velocity excitation, a velocity response of

Mach number flows so that the compressibility effects areu(y,t)=%{V(y)exp(wt)} is expected, where the symb®l

negligible. The gas number densityyj, excitation fre- denotes the imaginary part of a complex expressi(y,) is

quency(w), and the characteristic system length are ad-  the velocity amplitude at locatiop, andj=\—1. Neglect-

justed to simulate different combinations of Kn agdAl- ing thermal creep effects, the modified velocity slip bound-

though the dimensional parametersutilized in the ary condition becomes

simulations lead to unique values of the Knudsen and Stokes > o au

numbers, we wanted to ensure that there are no other unac- u_uW:—” am\ —, 3

counted nondimensional parameters involved in the problem. Ty ay

For example, ratio of the mean molecular collision timg ( whereu is the gas slip velocityy,, is the wall velocity, and

to the time scale of oscillationsy( ') can be an indication «,, is the modified slip coefficient given by

of nonequilibrium effects. However, it can be shown that _

wt,=5/16,27/v(8 Kn)? for hard sphere gases like argon. ~ @m~ 1-298+0.718tan (= 1.275 Ko, )

This result indicates that for a given Kn amyl the nondi-  This slip boundary condition converges to a first-order slip

mensionalized DSMC results should thgnamically similay ~ condition in the slip flow regime, and it is indeed a high-

regardless of the dimensional parameters used in the simularder slip model for Ke=0.1. This can be shown via a Taylor

tions. To validate the dynamic similarity, we performed sev-series expansion af,, in Kn.** Using Eq.(2) and the slip

eral simulations with various combinations @fandt;. All boundary condition given by E¢3), we obtain the following

these simulation results were indistinguishable from eachime-dependent velocity distribution:

a U ay

|
( ’ sinh(\j BY) + \j BamKn cosi+/j BY)
°(1+] B2aZ Kn?)sinh( ] B) + 2] BamKn costi ] B)

u(y,t)==%

)exﬂjwt)]. ®)

where Y=y/L. This is a general solution for the the above equation is valid folany Stokes number
velocity profile that captures the no-slip solution simplyin the continuum and slip flow regimes (K0.1),
by setting Kn=0, and the first-order slip solution by and it is also valid for quasisteady flowg+0.25) for Kn
setting «,=1.111. In Ref. 14, we have shown that <12.
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B. Shear stress model mo  aKn+2b

Het= 3 aKnProKn+b - 2amKn),

In Ref. 14, we derived an empirical shear stress model
that is uniformly valid in the entire Knudsen regime for ~ a=0.530, b=0.603, c=1.628, (6)
steady, and quasisteady oscillatory Couette flows. The modelhere . is the dynamic viscosity. Using the effective vis-
was based on an effective viscosity given below: cosity, the shear stress at the oscillating plate is given by

du(y,t))  moUp akn+2b

(Tay)gs= Ker dy |,_, 2L aKn®+cKn+b

(1+2a,Kn)

cost(\j B) + Vi Bam Knsini(j B)
(1+] B2a? Kn?)sinh(\j B) + 21/j Bam Kn cosh\j B)

x%| | ViB expl(j ot). 7

In the limit of 83— 0, the model reduces to shear stress forby the velocity and temperature of the plates. Here, we as-
steady Couette flows. In Sec. V, we present comparisons beume that the amplitude of velocity oscillations is less than
tween the model predictions and the shear stress obtainelde speed of soun¢h condition that is approximately satis-
from the DSMC simulations at various Kn aygconditions.  fied by our DSMC resuljs This enables linearization of the
collisionless Boltzmann equation and the boundary condi-
tions. Following the work of Sone, the velocity distribution
function can be decomposed into its equilibrium and fluctu-

IV. FREE-MOLECULAR SOLUTION . 19
ating components as follows$:

In this section, we derive the velocity distribution and
shear stress for oscillatory Couette flows in the free- f=fo(1+¢), (11
molecular flow limit (Kr=10). Our objectives are to pro-
vide a theoretical solution to compare and validate ouwhere ¢ is the normalized fluctuation. We can obtain the
DSMC results, and enhance our understanding of flow physjjnearized forms of the Boltzmann equation and the bound-
ics in this regime. As the Knudsen number is increased, inary conditions by substituting E¢11) into Egs.(8), (9), and
termolecular collisions become negligible compared to thé10) and neglecting all the higher-order termsdgn
molecule/surface collisions. Therefore, the flow can be mod-

eled using the collisionless Boltzmann equation given as a_(ti)Jr 7}(9—¢=0, (12)
ot © y
—+7p—=0,
a $o=d(y=0)=0; 7>0, (13
where f is the velocity distribution function andy is the
cross-flow(y) component of the molecular velocity. Due to éL=p(y=L)=2«%¢u,; »<O. (14

the simple geometry changes only in the cross-flow direc-

tion, and there are no external force fields. We assume than this study, we are interested in the streamwise component
both top and bottom walls are fully diffusive, and a sinu- of the velocityu and the shear stresswhich are defined as
soidal excitation is exerted on the top waly=€L). The follows:

boundary conditions for Eq8) are

3 —
f(y=0)=fo=—gp exif — k(&4 P+ 2)); 70, = | eotodzanas (19
©)
P T=pof Engfodédnds, (16)

F(y=Liuw) = —ap exi = k%(£2+ (- uw)*+ {)];
where [(---)dédnd{ shows integration over the velocity

7<0, (10 space, ang is the mean density given kpy=nym, with ng
whereu,,= U sin(wt) andx = ym/2kgT.. Here T, is the ini-  being the equilibrium number density, anubeing the mo-
tial equilibrium temperaturekg is the Boltzmann constant, lecular mass. We apply Laplace transformation to 8@)
and¢ and{ are the streamwise and spanwise components ¢nd the boundary conditions Eqd.3) and (14) in order to
the molecular velocity, respectively. Diffuse reflections of calculate the integral formulations of the velocity and shear
gas molecules from the surfaces require that the reflectesfress given by Eq¢15) and(16). The Laplace transformed
molecules have a Maxwellian distributidg, characterized variablesg, @, and7 are given as
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n n T JO
7<0, 17 1 polp
= —— ——sin(wt) =17, sin(wt). (25)
0= [ £dfodedna (18) 2w «

The magnitude of gas velocity on the oscillating plate and
the corresponding shear stress amg=ug/2 and 7,

7= pof Endfodédnds, (19 =1poUov2kgT,,/, respectively. This shows that on the os-
cillating surface, thenagnitude of the gas velocity and shear

wheres is the Laplace transformation variable. After elimi- stress for oscillatory Couette flows reaches the same

nating & from Egs.(17), (18), and (19), we obtain integral asymptot_ic Iir_nit as their ;teady counterpart, wHénwa.
formulations forti and+ as follows: This finding is also confirmed by the DSMC studies pre-

sented in the following section.

ﬂ=if owexp(—%(L—y)—xzn’@)dn", (20
JrJo 7 V. RESULTS AND DISCUSSIONS
K (= s In this section, we present our DSMC results in the slip,
%:Po—f Gy 7" exp( _ —,,(L—y)—xzn”z)dﬂ"' transition, and free-molecular flow regimes. The DSMC re-
Vi Jo 7 sults are validated using predictions of the corresponding
(21) analytical models in the slip and free-molecular flow re-
gimes. Effects and onset of statistical scatter in the simula-
tions are discussed. Shear stress and penetration depth varia-
tions as a function of the Stokes and Knudsen numbers are

where G, is the transformed function ofi,,. Finally, the
inverse Laplace transform providasnd r as a function o

andt
presented.
Up ([~ . k(L—=y) oy . . .
u(y,t)= \/—_ T sint— ———/exp(— 7' %)d7%’, A. Slip-flow regime and quasisteady flows
a Jk(L=y
(22) Figure 2 shows variation of the normalized velocity am-
plitude between the two surfaces. We compare the DSMC
pollo [ . K(L—Y) results with the predictions of the extended slip m&tifer
m(y,t)= T N )/tﬂ' sin t— T (a) quasisteady flows in the entire Knudsen regime, dnd
a Kk(L=Yy

slip flows for a wide range of Stokes numbe<t7.5). The
X exp —n'?)dy’. (23 velocity amplitudes are obtained by measuring the magni-
tude of the maximum velocity at different cross-flgw lo-
The gas velocityli,, 4(t) and shear stress on the oscillating cations. Note that the generalized velocity model given by
(top) wall are calculated as Eq. (5) converges to the first-order slip model for K@.1.
Hence, only the predictions of the extended slip model are
shown in the figure. For quasisteady flows, the velocity am-
plitude distribution always passes througly/I(,u/ug)
=(0.5,0.5), and results in a linear velocity distribution with
equal amount of slip on the oscillating and stationary walls.
The extended slip model accurately matches the DSMC ve-

T g(H=U(L,t)= j—% fom sin(wt)exp — k27"2)d 7"

Ug . .
=?s|n(wt)=uW]gSIn(wt), (24
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(a) Dynamic response of medium (b) Velocity histories at various points
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locity profile for a wide range of Knudsen numbers (Kn posed on the oscillating walThe general representation of
<12). However, it fails to predict the Knudsen layers thatthe velocity signal at any arbitrary locatignis given by

are captured by the DSMC results, as expected from any UV 1) = Un Sin ot + 26
continuum based model. The extended slip model is also v, .) oSi(wt+), . (. )
valid for high Stokes number flows in the continuum andwhere is the phase angle. Expanding and rearranging Eq.
slip-flow regimes due to the use of the Navier—Stokes equa26), we obtain

tions in its derivation. Figure () shows that the DSMC _ . .
u(y,t)=ug| sin(wt)cosy+ cog wt)sin
results accurately capture the slip-flow limit even for large (/1) =gl sin(wt)cosy gwt)sing]
Stokes numbers. For high Stokes number flows there are =A(y)sin(wt) + B(y)coq wt), (27)

deviations from the linear velocity profile, and the velocity where
amplitude distribution loses its symmetry beyog8ie- 1.0 for

Kn=0.1 flow. High Stokes number caseg=*5) result in A(Yy)=ugsinyg, B(y)=ugcCosiy. (28
bounded Stokes layers, where the flow is confined to a nea
wall region. Significant velocity slip can be observed with
increased Stokes number beyond the quasisteady flow limit, _,
while the slip velocity for quasisteady flows is independent ~ #(Y)=tan =} ==

Ay
of the Stokes number, as can be deduced by comparing the ) . 10 ]
B=<1.0 cases with th=5 cases in Fig. @). Following Hadjiconstantinod? we use ay-square fit to de-

Figure 3 shows the dynamic response characteristics fdermine the coefficientd andB, given by Eq(28), using the
high Stokes number slip flow (Km0.1 and8=5.0). Snap- DSMC results. I_:or a detaile_d exposition pkquare fits and
shots of velocity distribution at different times are shown inthe corresponding expressions to evaluateand B, the
Fig. 3(@). With the exception of velocity slip, dynamics is reader is referred to HadjiconstantinBand Pres®t al?°
similar to that of no-slip continuum flows. The velocity dis- A theoretical expression for the phase angle of the ex-
tribution predicted by the extended slip model and thetended slip model can be derived using E2f). The result-
DSMC simulations are in good agreement, despite a sligh@Nt €xpression is given by
phase difference between the DSMC and the model. In the Q,Q;—Q,Q,
context of this work, the phase angle is definedrasfrac- y=tan ! f}
tion of the time period by which the signal felt at any stream- QuQs+Q2Qs
wise position lags or leads the reference velocity signal imwhere

The phase angle can then be determined from(E8). as

B(y) 29

(30
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tude, plotted in log scale in Fig.(®), shows exponential

Q1=q1+£(q3—q4), Q2=q2+£(q3+q4), decay in the amplitude with small alterations whgf
V2 V2 =<0.1, due to the presence of the stationary wall. It can be
p=Ba,Kn seen that the slip model result and DSMC solution are con-
sistent.

Q3=0;— P20, +v2p(83—04),

Qu= 08+ P21+ V2p(da+a), 1. Effects of statistical scatter
Figure 3d) aids in better visualization of statistical scat-
ter in the DSMC results, which is insignificant for this case
even near the stationary waly/(L<0.1). Note that the nor-

q =sinr(i& co 1B
! v L vz L _ _ :
malized amplitude does not drop below 1% of the maximum

R i B signal for this case. In our simulations we have observed the

ga=sinh —=|Co ’ onset of statistical fluctuations, when the normalized signal

amplitude drops below 1% of the maximum signal. Some of

_ r( 1 ,By) g( 1 By) our DSMC results presented later in this section exhibit sta-
g,=sinh — C ,

tistical fluctuations. In order to explore the statistical fluctua-
tions induced by finite sampling in the presence of thermal

5 e fluctuations, we follow the recent work of Hadjiconstantinou

qzzcos;—( _> sm( _> et al?* According to theequilibrium statistical mechanics
V2 V2 the ratio of excitation velocity, to the thermal fluctuation

u’ for an ideal gas is given BY?
q cos?‘( ! 'By)co{ ! ,By)
3 — —T7 | u
- VyYNo, (31
V((uh?)

q3=cos>‘( ﬁ) Cog( ﬁ) where Ma is the Mach numbely is the ratio of specific

V2 V2 heats, and\, is the average number of particles per single

cell. The velocity fluctuation is defined as’'=u—{u),
q4=sinr(i ﬂ) in(i ﬂ) whereu is the instantaneous velocity aKd) is the average
va L)’ velocity. Since the unsteady DSMC algorithm uses ensemble
average oveiM repeating runs, the “noise-to-signal” ratio

N r( ﬁ) . ( B) E, can be expressed as
G4=sinh —|sin| — .
S Ja(CI (32
Figure 3b) shows the velocity time history at various ! Ug MayyMN,

streamwise locationsy(L) in the flow domain. The velocity
signal at differenty/L locations exhibit reduced amplitudes
and different phase angles. Note that the peak values of t
velocity signal in Fig. &) correspond to the velocity ampli-

Based on the above definition, and our typical simulation
mearameterSL(oz 100 m/s,M =5000,N,= 100, andy=5/3),
we obtainE,=3.4x10 3. Considering that the above ex-

tudes in Fig. 2. In Fig. @), the phase angle predicted by the pression is obtained for a medium in equilibrium, the noise

extended slip model and DSMC show similar trends. How-leveI in our study is e>'(pe<.:ted to be hjghgr due to the pres-
ever, the initial deviation ay/L=0.9, due to the Knudsen ence of strong nonequilibrium effects in high Stokes number

layer effects, offsets the DSMC results from the model Solu_rareﬂed flows.

tion. The phase angle variation is essentially linear in most OE
the domain except within the Knudsen layers near the walls:
The wave propagation speed (phase spegdcan be com- Figure 4 shows the effect of Stokes number on the ve-
puted from the phase angle variation using the relaton locity amplitude in the transition flow regime. At fixed Kn,
=w/(Ayl/Ay). Consequently, the phase speed, computedhe slip velocity increases with increasipgFor Kn=1.0, it
using the above definition, is constant in the region of lin-can be seen that beyot= 0.25 the quasisteady approxima-
early varying phase angle. tion breaks down. We observe a “bounded Stokes layer”
The extended slip model predicts a wave propagatiortype of behavior for8=5 in both figures. Comparing the
speed ofc’=1.770, which is in good agreement with the Kn=1.0 and Knr=2.5 cases, we find that the slip velocity
corresponding DSMC prediction af =1.790. the classical increases with increasing Kn at constghtFor a fixed Kn,
Stokes’ second problem without the stationary wall also prethe Stokes layer thickness decreases with increg8irichis
dicts a very similar wave propagation spegd=1.777. The is an expected result.
phase speed is not constant near the walls due to the presence The effect of Kn on the velocity amplitude for moderate
of Knudsen layers. In addition, the phase speed decays ne8tokes number conditions is shown in Fig. 5. It can be seen
the stationary wall, due to the interference between the incithat the slip velocity magnitude on the oscillating wall in-
dent and reflected signals. The normalized velocity amplicreases with increasing Kn for a fixed Stokes number. For

. Transition flow regime
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o

FIG. 4. Effect of 8 in transition flow
regime.

o
g
Normalized velocity amplitude

Nommalized velocity amplitude

B=1.0, quasisteady flow behavior is observed for#h1 reaches 210° ay/L=0 in Fig. 6c), the same value is
[velocity amplitude distribution is linear and passes througHeached ay/L=0.75 in Fig. 7c), and aty/L=0.8 in Fig.
(y/L,ulug)=(0.5,0.5)]. Hence, the quasisteady flow ap-8(C). This indicates that the phase speed, as defined earlier in
proximation also depends on the Kn, as can be deduced B}is paper, increases with increasiggand Kn. It is also
comparison of Figs. 4 and 5. The most interesting observaworthwhile to compare the level of statistical scatter between
tion in Fig. 5 is the emergence of ébdunded rarefaction these three results. Statistical scatter in Fig)) & insignifi-
layer” with increasing Kn. By this name we emphasize that cant, since the normalized velocity amplitude does not drop
this behavior is due to the rarefaction effects alone, and ndbelow 1% of the signal. However, with increasiggand Kn,
due to the influence of the Stokes number, which is kepthe normalized velocity amplitude drops below 1% outside
constant. Transition to this bounded rarefaction layer occurghe “bounded layers,” and the statistical scatter becomes im-
even at moderate Stokes number flojgee Fig. %a)] by  portant, as can be observed in Figgd)7and &d). These

increasing the Kn. However, these effects are more profindings are consistent with our predictions based on Eq.
nounced when the Stokes number increases, as can be qg).

duced by comparing Figs(& and 5b).
Figures 6, 7, and 8 show the dynamic response of the. Free-molecular flow regime

system for moderate and high Stokes number flows in the o )
transition flow regime (Kr=1.0, 8=2.5; Kn=1.0, 8=5.0, Validation of the DSMC results in the free-molecular

and Kn=5.0, B=2.5). Here, we will not present detailed flow regime is presented in Fig. 9. We compare the normal-
discussions of the dynamic system response for the ingized velocity amplitudes obtained from the DSMC with the
vidual cases, since the behavior is qualitatively similar tosolution of the linearized collisionless Boltzmann equation at
that of Fig. 3. Comparing Figs(# and 7a), we observe that different Stokes numbers. The free-molecular solution plot-
a more pronounced Stokes layer forms by increasing théed in this figure is obtained from E¢22). Overall, a very
Stokes number. Alternatively comparing Figga)gand 8a),  good agreement between the DSMC results and the free-
we observe a more pronounced bounded rarefaction layemolecular solution is obtained. Here, we must note that we
when the Kn is increased. In all three cases, reduced velocitytilized DSMC with finite Kn, instead of the test particle
amplitudes and different phase angles are observed at diffeMonte Carlo Method TPMC) commonly utilized for colli-

ent streamwise locations. Note that, while the phase anglsionless flow$. The DSMC results in Fig. @), show statis-

*[(b)p=25] T

o
Y
o

FIG. 5. Effect of Kn for moderateg8
condition.

Nommalized velocity amplitude
e °
(4] w

Nommalized velocity amplitude
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FIG. 6. Dynamic details for Ks 1.0
and B=2.5 flow.

FIG. 7. Dynamic details for Ks 1.0
and 8=5.0 flow.
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FIG. 8. Dynamic details for K 5.0
and 8=2.5 flow.

FIG. 9. Velocity amplitudes for free-
molecular flow regime.
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tical scatter associated with a high Knudsen number simulggroblem should be based on the penetration dépttather
tion. However, agreement between the theory andhan the separation distance between the two plates. This
simulations are remarkable in Figgb®-9(d). would require redefinition of the nondimensional parameters
In Figs. 10 and 11, we compare the dynamic response dfn and B, based on the penetration depth (kKmn\/é8,B’
the medium obtained from the DSMC results and the colli-= \/w 8%/ v). However, there are no functional relations for
sionless Boltzmann equation solutions for Kh0, 3=1.0, variation of § as a function of Kn ang3. Hence,a priori
and Kn=10, 8=2.5 cases. Predictions of the velocity pro- estimation of the penetration depth is not possible. For the
files, phase angles, and the slip velocities are presented in tisake of consistency, Kn andé are defined using the plate
figures. As observed in Fig. @), both methods capture the separation distance throughout this work. Hence, no switch
bounded rarefaction layer equally well. Due to the onset ofs made in the characteristic length scale. However, change
statistical scatter outside this layer, we plotted the DSMUn the characteristic length scale has physical implications.
phase angle only foy/L=0.65, in Fig. 11c). Nevertheless, For example, the actual Knudsen number for these cases can
the DSMC and Boltzmann solutions match remarkably wellbe found by Krn=Kn L/§. Figure 12 shows variation of the
with in the bounded layer, confirming the accuracy of ournormalized penetration depti®/L) with Kn and 8. For the

DSMC results. cases not shown in this figure, the signal does not attenuate
enough to observe a bounded layer. The penetration depth
D. Penetration depth decreases with increasing, as expected. The penetration

It is important to note that the bounded Stokes and rargepth asymptotes to different values in the free-molecular

efaction layers observed in the results create a new IengﬁﬂnIt for different Stokes numbers. For fixgél the penetra-

scale in the problem. This new length scale is related to théIon depth decrea'lses by ,lyncreasmg the Kn, reflecting the
Ikgounded rarefaction layer” concept presented above. It can

thickness of the Stokes/rarefaction layers, and becomes pab ) ) :
ticularly important for high values of Kn oB. The Stokes e seen from _F_|g. 12 thad/L o 1/Kn for_a__g|ven,8. This
layer thickness §~ \/v/w), also referred to as the “penetra- f|gL_Jre_ also clarifies the n_eed for a redefinition of the charac-
tion depth” is defined as the distance from the moving wallterstic length scale for higi8 and Kn flows.
where the velocity amplitude decays to 1% of its excitation
value (U/uy=0.01). Most flow is confined within this layer,
and the moving wall no longer interacts with the stationary =~ Shear stress for oscillatory Couette flows exhibits two
wall. For these cases, the characteristic length scale of thdistinct behaviors in the continuum and free-molecular flow

E. Shear stress

(a) Dynamic response of medium (b) Velocity histories at various points
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FIG. 11. Dynamic details for Ka 10
and 8=2.5 flow.

regimes. Using the classical constitutive laws utilized in thefor low Kn values. This is expected, since the shear stress is
Navier—Stokes equations, the continuum shear stress is givgmoportional to the velocity gradient, which increases v@th

especially due to the formation of bounded Stokes layers. In
the free-molecular flow limit, shear stress reaches the same

by
)
Tcont— #HST )

where puys is  the

hard-sphere

viscosity ufs

(33

asymptotic limit of the steady plane Couette flow regardless

of the Stokes number, as shown in Eg5). In Fig. 13, we

= 5/16dﬁ5\/m ksT./7). The hydrodynamic approximation
of shear stress is proportional to the velocity gradi@migu-

lar deformation rate for 1D floy This representation is also 1
valid in the slip-flow regime with the appropriate velocity
slip corrections. The free-molecular shear stress can be ob

tained from Eq.(25) as

1 2kgT,
TFM= 5 Polo p—

Note that this iSdentical to the free-molecular shear stress,
obtained for steady plane Couette flof¥sin Fig. 13, we
present the effect of Kn and on the wall shear stress using 2
the DSMC results. We plot the shear stress normalized with @
the free-molecular and continuum shear stress values, t(s
show that the DSMC results uniformly approach the correct §
asymptotic limits. We also compare the DSMC results with Z
our empirical model for quasisteady oscillatory flows given
by Eq. (7). Good agreements between the empirical model 0
and the DSMC results are observed for quasisteady flows
(B8=<0.25). Beyond the quasisteady flow regime there is a
significant increase in the shear stress magnitude, especially

observed a similar behavior in the DSMC results. Interest-

$ in Stokes’ 2nd Problem
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FIG. 12. Effects of Kn ang3 on penetration depth.
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FIG. 13. Effects of Kn angB on wall
shear stress.
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ingly, the DSMC data reached the asymptotic shear stredhis regime, where the wave speed is constant outside the
value in the transition flow regime for large Stokes numberKnudsen layer, and the velocity amplitude decays exponen-
cases. This behavior is a manifestation of our definition otially as a function of the distance from the oscillating sur-

Kn which is constant regardless gf If we consider chang- face. However, there are small deviations from this behavior
ing the characteristic length scale from the distance betweewithin the Knudsen layer. Such deviations are captured by
the two plates(L) to the penetration length), we would the DSMC, but they cannot be modeled using continuum-
observe that the effective Knudsen number for such cases abased approaches. In the transition and free-molecular flow
indeed in the free-molecular flow regime. For example, forregimes we observed that the signal decay is not exactly
the Kn=2.5, B=7.5 case, the penetration depfi0.19. exponential and the wave speed is not constant anymore.
(see Fig. 12 Hence, the effective Knudsen number for this These are interesting deviations, which are also validated

case is about K& 17. using the analytical solution of linearized collisionless Bolt-
zmann equation in the free-molecular flow limit. In all simu-
VI. CONCLUDING REMARKS lations, the results have consistently shown that the slip ve-

. - . . ._locity and wave propagation speed increase with increased
Time-periodic Couette flows are studied in the entlreKn gnd,B propag P

Knudsen regime and a wide range of Stokes numb_ers using An interesting behavior is observed when the Kn is in-
t_he u_nsteady DSMC method. To our knowled_g_e this is tr_'ecreased while the Stokes number is fixed. For such cases, the
f'rSt. time that unsteady DSMC have_been ut|I_|zed for t_h's lip velocity increases, and a bounded layer with a finite
basp flow. The_ DSMC resul'_[s_ are validated using ana!yt'c_aEenetration depth is formed after a certain value of Kn. We
solution of the linearized coII!S|onIess Boltzmann equation in amed this the bounded rarefaction layer. Penetration depth
the free-molecular flow regime, and a recently develope

irical model in the slio-f . W i particul or this layer is a function of both Kn an@é, and it becomes
empirical modet in the stip-low regime. YVe paid paticuiar 5 length scale in the problem. For such cases, it is nec-

attentlon'to the statistical scatterlln the S|mulat|ons, Wh'Chessary to redefine the Knudsen number based on the penetra-
became important when the velocity signal is reduced belo

1% of th . ianal. Thi Hicient t i IVYion depth, rather than the separation distance between the
o OT In€ maximum signa’. This was suflicient to accurately,, plates. However, withowt priori knowledge of the pen-
resolve the velocity signal in most of the flow domain, in-

cluding the bounded Stokes layers. etration depth it is not possible to predetermine the Kn in the

Simulati how that th isteady fl diti simulations. In order to remain consistent, we kept the char-
_>imuiations show that the quasisteady TIow CONAiions., e gtic length scale of the problem as the plate separation
which result in linear velocity distribution with equal veloc-

) . - . ..~ distance. However, the reader can use Fig. 12 to estimate the
ity slip on the oscillating and stationary surfaces, diminish

b d tain Stok ber Althouah this limit al actual Knudsen number based on the penetration depth. Due
€yonc a ceriain SIokes numoer. ouy IS IMIt AISO, this switch in the length scales, we observed that shear
depends on the Kn, we generally sugggst0.25 as the

limit for quasisteady flows. The empirical model presented i Slress on t_he oscillgting wall reaches th_e asymptot_ic fre_e mo-

: A . i Necular limit at earlier Kn values. Solution of the linearized
Ref.. Ltals algo vahq in this regime for Ka12, gnd I can be collisionless Boltzmann equation in the free-molecular flow
easily substituted in place of the DSMC S|muI§1t|0ns. Forlimit indicates that the shear stress and the slip velocity am-
moderate Stokes number flows, we observe oscillatory Co

. ; nlitude for oscillatory Couette flows aiidentical to that of
ette flow between the two walls. At these intermedigte up y

) . the steady plane Couette flows. This interesting finding is
values, two surfaces interact with each other, and the afore yp 9 9

. Iy . . X . also confirmed by our DSMC results.
mentioned empirical model is valid only in the slip-flow re-
gime.
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bounded Stokes layers, where the stationary wall does not J.H.P. acknowledges support by the Postdoctoral Fellow-
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