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A complete mathematical description of oscillatory Couette flows within the framework of kinetic
theory is not available in the literature. Motivated by this and their vast engineering applications, we
present a parametric study of time-periodic oscillatory Couette flows using the unsteady direct
simulation Monte Carlo~DSMC! method. Computations are performed as a function of the Knudsen
~Kn! and Stokes~b! numbers, in the entire Knudsen regime (Kn<100) and a wide range of Stokes
numbers (b<7.5). The DSMC results are validated using a recently developed semianalytical/
empirical model that is applicable for quasisteady flows (b<0.25) in the entire Knudsen regime,
and for any Stokes number flow in the slip flow regime (Kn<0.1). In addition, we derived an
analytical solution of the linearized collisionless Boltzmann equation for oscillatory Couette flows,
and utilized this to validate the DSMC results in the free-molecular flow regime. Dynamic response
of the flow, including the velocity profiles, phase angle, wave speed, shear stress, and the penetration
depth for high Stokes number flows are presented. Increasing the Stokes number at fixed Kn, we
observed formation of ‘‘bounded Stokes layers,’’ as expected. However, increasing the Knudsen
number at fixedb results in ‘‘bounded rarefaction layers,’’ where the penetration depth continuously
decreases with increasing the Kn. Interplay between the rarefaction and unsteadiness contributes to
this interesting flow physics, and also introduces a new characteristic length scale to the problem.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1634563#

I. INTRODUCTION

Oscillatory Couette flow is the simplest approximation
for time-periodic shear driven gas flows encountered in vari-
ous microelectromechanical systems~MEMS!, such as mi-
croaccelerometers, inertial sensors, and resonant filters.1–4

Although this classical problem has been investigated exten-
sively using continuum-based flow models,2 a fundamental
problem arises with miniaturization of device components
and packaging MEMS at subatmospheric pressures.1 Analy-
sis of such conditions requires consideration of rarefaction
effects, which are characterized by the Knudsen number, de-
fined as Kn5l/L, wherel is the gas mean-free-path andL
is a characteristic flow length scale. Based on the Knudsen
number, gas flows can bequalitatively classified as con-
tinuum (Kn,0.01), slip (0.01,Kn,0.1), transition (0.1
,Kn,10), and free-molecular (Kn.10) flow.5 Most exist-
ing MEMS devices operate in the slip and early transition
regimes. Further miniaturization of device components will
push this limit to the transition and free-molecular flow re-
gimes. Hence, successful design of these microfluidic sys-
tems is faced with the challenge of better understanding of
micron and submicron scale physics and transport processes
in a wide range of flow regimes.

While substantial literature on steady rarefied Couette
flows exists, a thorough kinetic theory treatment of time-
periodic Couette flows is not available. Although micro-
scopic simulation methods such as the Boltzmann solvers or
the DSMC can be used to investigate the flow physics, such
methods are very difficult to apply to engineering problems
that involve unsteady flows due to the computational com-
plexity and storage requirements. The difficulty in numerical
solution of the Boltzmann equation arises due to the nonlin-
earity, complexity of the collision integral terms, and the
multidimensionality of the equation. DSMC is a particle-
based method for gas flows, and it is applicable to all flow
regimes.6 The DSMC uses a stochastic algorithm to evaluate
collision probabilities and scattering distributions. In recent
work by Wagner,7 it has been rigorously proved that the
DSMC is equivalent to a Monte Carlo solution of an equa-
tion that is similar to the Boltzmann equation. Although sim-
pler theoretical models such as the Navier–Stokes equation
with slip correction and the collisionless Boltzmann equation
can be used in the slip and free-molecular flow regimes,
respectively, there is a lack of theoretical understanding and
reliable models in the transition flow regime. Numerically,
the DSMC method of Bird6 remains the simulation tool of
choice to obtain solutions for gas flows in the transition flow
regime. From the time of its introduction, the DSMC method
has been widely used for simulation of rarefied gas flows.
More recently, the DSMC method has been increasingly used
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to simulate flows in micro- and nanoscale devices. Since
most MEMS devices contain moving components, unsteady
DSMC computations are necessary to study fluid–structure
interaction in such systems. Despite their practical impor-
tance, analyses of unsteady rarefied gas flows are not com-
mon in the literature.

In the following, we review some of the previous inves-
tigations that utilize the DSMC method or the Boltzmann
equation to analyze time-periodic/unsteady rarefied flows.
Stefanovet al.8 used the unsteady DSMC method to investi-
gate time-periodic oscillatory flows in the near-continuum/
slip flow regime (Kn50.01). The unsteady motion was in-
duced by a combination of longitudinal and transverse time-
periodic oscillations of a surface. These simulations were
performed in the limit where the compressibility and viscous
heating are important. Hadjiconstantinou and Garcia9 and
Hadjiconstantinou10 analyzed sound wave propagation in
micro/nanoscale flows using unsteady DSMC, and verified
their results by comparisons with the continuum and linear-
ized Boltzmann solutions. Sharipovet al.11 studied sound
propagation in the free-molecular regime using the linearized
collisionless Boltzmann equation. Park and Baek12 and Park
et al.13 applied unsteady DSMC to investigate heat transfer
in oscillatory rarefied gas flows. In most of these previous
investigations, normal oscillations to the surface are consid-
ered. In previous work, we developed a generalized slip-
based empirical model for oscillatory Couette flows that can
accurately predict the velocity profiles and shear stress for
Kn<12 in the quasisteady flow limit.14 This new model was
validated using unsteady DSMC results. This previous work
excluded the high Stokes number rarefied flows, where the
nonequilibrium effects become dominant, especially when
the plate oscillation frequency is comparable to the molecu-
lar collision frequency. This work is an extension of our
previous research, and it is motivated by the lack of oscilla-
tory Couette flow studies in the pertinent literature.

This paper is organized as follows: In Sec. II, we briefly
review the DSMC method used in this study with specific
emphasis on the choice of simulation parameters. The
continuum-based slip solution for quasisteady flows devel-
oped in an earlier work14 is summarized in Sec. III. In Sec.
IV, we derive the free-molecular solution for oscillatory Cou-
ette flows using the collisionless Boltzmann equation. In Sec.
V, DSMC results are compared with the slip-model solution
and the theoretical solution based on the collisionless Boltz-
mann equation. Dynamic response characteristics of the me-
dium are presented for a wide range of Stokes numbers in the
entire Knudsen regime. Also, the influence of Kn andb on
wall shear stress, and penetration depth are examined. Fi-
nally, we present the conclusions of our study.

II. PROBLEM DEFINITION AND UNSTEADY DSMC
METHOD

We consider rarefied gas flow between two infinite par-
allel plates that are a distanceL apart, where the top plate
oscillates harmonically in the lateral direction and the bottom
plate is stationary, as shown in Fig. 1. Two plates are main-
tained at the same temperatureTw5273 K. The gas medium

is initially at rest, and it has an equilibrium number density
n0 , and equilibrium temperatureTe that is equal to the wall
temperatureTw .

Oscillatory rarefied Couette flows are characterized by
the Knudsen~Kn! and Stokes~b! numbers. The Stokes num-
ber represents balance between the unsteady and viscous ef-
fects. It can also be interpreted as the ratio of the diffusion
and oscillation characteristic time scales, and it is defined
as1,2

b5AvL2

n
5S L2/n

1/v D 1/2

, ~1!

wheren is the kinematic viscosity andv is the oscillation
frequency. Here, we must note that Stokes number in this
context isidentical to the Womersley number used in pulsat-
ing flows.15,16 However, we chose to use the Stokes number
instead, since our work is on oscillatory shear-driven viscous
flows, and on Stokes’ second problem.17

We performed a series of DSMC simulations of oscilla-
tory Couette flows for various combinations of Kn andb.
The DSMC code used in this study was based on the un-
steady algorithm presented by Bird.6 The code has been suc-
cessfully applied to the analysis of microscale heat transfer
in oscillating rarefied gas flows in previous work.12,13 In the
simulations, we utilized the hard sphere~HS! model for mo-
lecular collision, and the no-time-counter~NTC! scheme is
adapted for collision pair selection.6 The choice of the HS
model facilitates easy comparisons with the theoretical solu-
tions of the linearized Boltzmann equation10 and also enables
easier code implementation. We simulated argon gas~mo-
lecular massm56.63310226 kg, hard sphere diameterdHS

53.66310210 m) with a reference temperatureTe5273 K.
The walls are assumed to be fully accommodating. Hence,
the particles are reflected from the walls according to a Max-
wellian distribution with wall velocity and temperature.
Simulation parameters are chosen so that the compressibility
and viscous heating effects are negligible. Although the gas
temperature increases with increased oscillation frequency,
the maximum temperature rise in the simulations was less
than 2%.

We have utilized more than 100 simulated particles per
cell. The entire domain was discretized into 40–100 equally

FIG. 1. Schematic of oscillatory Couette flow.
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spaced cells, to ensure that the cell size (Dx) is smaller than
the mean free path for all simulations. Finer grid is used for
high Stokes number flows to resolve the flow inside the
Stokes layers, while a coarser grid is used for low Stokes
number flows. In the choice of the simulation time step (Dt),
we had to consider four different limitations. First,Dt has to
be significantly smaller than the mean collision time to en-
sure accurate simulations. Second, the cell size should be
smaller than the mean free path, and the molecules should
not move across more than one cell between two consecutive
time steps. Hence,Dt!Dx/c0 , where c05A2RTe is the
most probable velocity. Third, the time period of oscillations
can become smaller than the mean collision time; hence,
Dt!2p/v. Fourth, choice ofL andn in a microscale DSMC
simulation can result in a relatively small viscous diffusion
time, which scales asL2/n; hence,Dt!L2/n. In all simula-
tions, the time step has been chosen to satisfy all four con-
straints. The range of the total simulation time was around 3
to 18 time periods (T052p/v). This ensures that the tran-
sients starting from the quiescent initial conditions decay,
and time-periodic state is achieved. In unsteady DSMC, en-
semble average at each time step replaces the time average
used in steady computations. In this study, ensemble averag-
ing is performed over 5000 different realizations of the sto-
chastic process for each time step.

In all simulations, amplitude of the oscillating wall is
kept constant atu05100 m/s, maintaining relatively low
Mach number flows so that the compressibility effects are
negligible. The gas number density (n0), excitation fre-
quency~v!, and the characteristic system length~L! are ad-
justed to simulate different combinations of Kn andb. Al-
though the dimensional parametersutilized in the
simulations lead to unique values of the Knudsen and Stokes
numbers, we wanted to ensure that there are no other unac-
counted nondimensional parameters involved in the problem.
For example, ratio of the mean molecular collision time (tc)
to the time scale of oscillations (v21) can be an indication
of nonequilibrium effects. However, it can be shown that
vtc55/16A2p/g(b Kn)2 for hard sphere gases like argon.
This result indicates that for a given Kn andb, the nondi-
mensionalized DSMC results should bedynamically similar,
regardless of the dimensional parameters used in the simula-
tions. To validate the dynamic similarity, we performed sev-
eral simulations with various combinations ofv and tc . All
these simulation results were indistinguishable from each

other, with the exception of statistical fluctuations induced by
the DSMC. Statistical scatter of DSMC computations will be
addressed in the Results and Discussions section.

III. CONTINUUM-BASED SLIP MODELS

The Navier–Stokes equation, along with the appropriate
slip boundary conditions, can be used to investigate oscilla-
tory Couette flows in the slip-flow regime. In previous
work,14 using DSMC, we have shown that the continuum-
based first-order slip models are invalid beyond Kn50.1 for
steady and quasisteady flows (b<0.25). In addition, we
have developed an extended slip-flow model that can accu-
rately predict the velocity distribution and shear stress for
steady and quasisteady flows in a wide Knudsen number
range (Kn<12). The new model was based on the Navier–
Stokes equation with a modified velocity slip boundary con-
dition. In the following we summarize thisempirical model.

A. Velocity model

For a small amplitude lateral motion that does not gen-
erate any streamwise pressure gradients, the momentum
equation reduces to the following:

]u~y,t !

]t
5n

]2u~y,t !

]y2 . ~2!

For a sinusoidal velocity excitation, a velocity response of
u(y,t)5T$V(y)exp(jvt)% is expected, where the symbolT
denotes the imaginary part of a complex expression,V(y) is
the velocity amplitude at locationy, and j 5A21. Neglect-
ing thermal creep effects, the modified velocity slip bound-
ary condition becomes

u2uw5
22sv

sv
aml

]u

]y
, ~3!

whereu is the gas slip velocity,uw is the wall velocity, and
am is the modified slip coefficient given by

am51.29810.718 tan21~21.175 Kn0.586!. ~4!

This slip boundary condition converges to a first-order slip
condition in the slip flow regime, and it is indeed a high-
order slip model for Kn>0.1. This can be shown via a Taylor
series expansion ofam in Kn.14 Using Eq.~2! and the slip
boundary condition given by Eq.~3!, we obtain the following
time-dependent velocity distribution:

u~y,t !5TF S u0

sinh~Aj bY!1Aj bamKn cosh~Aj bY!

~11 j b2am
2 Kn2!sinh~Aj b!12Aj bamKn cosh~Aj b!

D exp~ j vt !G , ~5!

where Y5y/L. This is a general solution for the
velocity profile that captures the no-slip solution simply
by setting Kn50, and the first-order slip solution by
setting am51.111. In Ref. 14, we have shown that

the above equation is valid forany Stokes number
in the continuum and slip flow regimes (Kn<0.1),
and it is also valid for quasisteady flows (b<0.25) for Kn
<12.
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B. Shear stress model

In Ref. 14, we derived an empirical shear stress model
that is uniformly valid in the entire Knudsen regime for
steady, and quasisteady oscillatory Couette flows. The model
was based on an effective viscosity given below:

meff5
m0

2

a Kn12b

a Kn21c Kn1b
~112am Kn!,

a50.530, b50.603, c51.628, ~6!

wherem0 is the dynamic viscosity. Using the effective vis-
cosity, the shear stress at the oscillating plate is given by

~txy!qs5meff

du~y,t !

dy U
y5L

5
m0u0

2L

a Kn12b

a Kn21c Kn1b
~112am Kn!

3TF S Aj b
cosh~Aj b!1Aj bam Kn sinh~Aj b!

~11 j b2am
2 Kn2!sinh~Aj b!12Aj bam Kn cosh~Aj b!

D exp~ j vt !. ~7!

In the limit of b→0, the model reduces to shear stress for
steady Couette flows. In Sec. V, we present comparisons be-
tween the model predictions and the shear stress obtained
from the DSMC simulations at various Kn andb conditions.

IV. FREE-MOLECULAR SOLUTION

In this section, we derive the velocity distribution and
shear stress for oscillatory Couette flows in the free-
molecular flow limit (Kn>10). Our objectives are to pro-
vide a theoretical solution to compare and validate our
DSMC results, and enhance our understanding of flow phys-
ics in this regime. As the Knudsen number is increased, in-
termolecular collisions become negligible compared to the
molecule/surface collisions. Therefore, the flow can be mod-
eled using the collisionless Boltzmann equation given as

] f

]t
1h

] f

]y
50, ~8!

where f is the velocity distribution function andh is the
cross-flow~y! component of the molecular velocity. Due to
the simple geometryf changes only in the cross-flow direc-
tion, and there are no external force fields. We assume that
both top and bottom walls are fully diffusive, and a sinu-
soidal excitation is exerted on the top wall (y5L). The
boundary conditions for Eq.~8! are

f ~y50!5 f 05
k3

p3/2 exp@2k2~j21h21z2!#; h.0,

~9!

f ~y5L;uw!5
k3

p3/2 exp@2k2~j21~h2uw!21z2!#;

h,0, ~10!

whereuw5u0 sin(vt) andk5Am/2kBTe. Here,Te is the ini-
tial equilibrium temperature,kB is the Boltzmann constant,
andj andz are the streamwise and spanwise components of
the molecular velocity, respectively. Diffuse reflections of
gas molecules from the surfaces require that the reflected
molecules have a Maxwellian distributionf 0 , characterized

by the velocity and temperature of the plates. Here, we as-
sume that the amplitude of velocity oscillations is less than
the speed of sound~a condition that is approximately satis-
fied by our DSMC results!. This enables linearization of the
collisionless Boltzmann equation and the boundary condi-
tions. Following the work of Sone, the velocity distribution
function can be decomposed into its equilibrium and fluctu-
ating components as follows:18,19

f 5 f 0~11f!, ~11!

where f is the normalized fluctuation. We can obtain the
linearized forms of the Boltzmann equation and the bound-
ary conditions by substituting Eq.~11! into Eqs.~8!, ~9!, and
~10! and neglecting all the higher-order terms inf

]f

]t
1h

]f

]y
50, ~12!

f05f~y50!50; h.0, ~13!

fL5f~y5L !52k2juw ; h,0. ~14!

In this study, we are interested in the streamwise component
of the velocityu and the shear stresst, which are defined as
follows:

u5E jf f 0 dj dh d§, ~15!

t5r0E jhf f 0 dj dh d§, ~16!

where *(¯)dj dh dz shows integration over the velocity
space, andr0 is the mean density given byr05n0m, with n0

being the equilibrium number density, andm being the mo-
lecular mass. We apply Laplace transformation to Eq.~12!
and the boundary conditions Eqs.~13! and ~14! in order to
calculate the integral formulations of the velocity and shear
stress given by Eqs.~15! and~16!. The Laplace transformed
variablesf̂, û, and t̂ are given as
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f̂5f̂L expF2
s

h
~y2L !G52k2jûw expF2

s

h
~y2L !G ;

h,0, ~17!

û5E jf̂ f 0 dj dh dz, ~18!

t̂5r0E jhf̂ f 0 dj dh dz, ~19!

wheres is the Laplace transformation variable. After elimi-
nating f̂ from Eqs.~17!, ~18!, and ~19!, we obtain integral
formulations forû and t̂ as follows:

û5
k

Ap
E

0

`

ûw expS 2
s

h9
~L2y!2k2h92Ddh9, ~20!

t̂5r0

k

Ap
E

0

`

ûwh9 expS 2
s

h9
~L2y!2k2h92Ddh9,

~21!

where ûw is the transformed function ofuw . Finally, the
inverse Laplace transform providesu andt as a function ofy
and t

u~y,t !5
u0

Ap
E

k~L2y!/t

`

sinF t2
k~L2y!

h8 Gexp~2h82!dh8,

~22!

t~y,t !5
r0u0

Ap
E

k~L2y!/t

`

h8 sinF t2
k~L2y!

h8 G
3exp~2h82!dh8. ~23!

The gas velocityũw,g(t) and shear stress on the oscillating
~top! wall are calculated as

ũw,g~ t !5u~L,t !5
u0

Ap
E

0

`

sin~vt !exp~2k2h92!dh9

5
u0

2
sin~vt !5uw,g sin~vt !, ~24!

t̃w5t~L,t !5
r0u0

Ap
E

0

`

h9 sin~vt !exp~2k2h92!dh9

5
1

2Ap

r0u0

k
sin~vt !5tw sin~vt !. ~25!

The magnitude of gas velocity on the oscillating plate and
the corresponding shear stress areuw5u0/2 and tw

5 1
2r0u0A2kBTw /p, respectively. This shows that on the os-

cillating surface, themagnitude of the gas velocity and shear
stress for oscillatory Couette flows reaches the same
asymptotic limit as their steady counterpart, whenKn→`.
This finding is also confirmed by the DSMC studies pre-
sented in the following section.

V. RESULTS AND DISCUSSIONS

In this section, we present our DSMC results in the slip,
transition, and free-molecular flow regimes. The DSMC re-
sults are validated using predictions of the corresponding
analytical models in the slip and free-molecular flow re-
gimes. Effects and onset of statistical scatter in the simula-
tions are discussed. Shear stress and penetration depth varia-
tions as a function of the Stokes and Knudsen numbers are
presented.

A. Slip-flow regime and quasisteady flows

Figure 2 shows variation of the normalized velocity am-
plitude between the two surfaces. We compare the DSMC
results with the predictions of the extended slip model14 for
~a! quasisteady flows in the entire Knudsen regime, and~b!
slip flows for a wide range of Stokes numbers (b<7.5). The
velocity amplitudes are obtained by measuring the magni-
tude of the maximum velocity at different cross-flow~y! lo-
cations. Note that the generalized velocity model given by
Eq. ~5! converges to the first-order slip model for Kn,0.1.
Hence, only the predictions of the extended slip model are
shown in the figure. For quasisteady flows, the velocity am-
plitude distribution always passes through (y/L,u/u0)
5(0.5,0.5), and results in a linear velocity distribution with
equal amount of slip on the oscillating and stationary walls.
The extended slip model accurately matches the DSMC ve-

FIG. 2. Velocity amplitudes for quasi-
steady and low Kn cases.
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locity profile for a wide range of Knudsen numbers (Kn
<12). However, it fails to predict the Knudsen layers that
are captured by the DSMC results, as expected from any
continuum based model. The extended slip model is also
valid for high Stokes number flows in the continuum and
slip-flow regimes due to the use of the Navier–Stokes equa-
tions in its derivation. Figure 2~b! shows that the DSMC
results accurately capture the slip-flow limit even for large
Stokes numbers. For high Stokes number flows there are
deviations from the linear velocity profile, and the velocity
amplitude distribution loses its symmetry beyondb51.0 for
Kn50.1 flow. High Stokes number cases (b>5) result in
bounded Stokes layers, where the flow is confined to a near-
wall region. Significant velocity slip can be observed with
increased Stokes number beyond the quasisteady flow limit,
while the slip velocity for quasisteady flows is independent
of the Stokes number, as can be deduced by comparing the
b<1.0 cases with theb>5 cases in Fig. 2~b!.

Figure 3 shows the dynamic response characteristics for
high Stokes number slip flow (Kn50.1 andb55.0). Snap-
shots of velocity distribution at different times are shown in
Fig. 3~a!. With the exception of velocity slip, dynamics is
similar to that of no-slip continuum flows. The velocity dis-
tribution predicted by the extended slip model and the
DSMC simulations are in good agreement, despite a slight
phase difference between the DSMC and the model. In the
context of this work, the phase angle is defined asthe frac-
tion of the time period by which the signal felt at any stream-
wise position lags or leads the reference velocity signal im-

posed on the oscillating wall. The general representation of
the velocity signal at any arbitrary locationy is given by

u~y,t !5u0 sin~vt1c!, ~26!

wherec is the phase angle. Expanding and rearranging Eq.
~26!, we obtain

u~y,t !5u0@sin~vt !cosc1cos~vt !sinc#

5A~y!sin~vt !1B~y!cos~vt !, ~27!

where

A~y!5u0 sinc, B~y!5u0 cosc. ~28!

The phase angle can then be determined from Eq.~28! as

c~y!5tan21FB~y!

A~y!G . ~29!

Following Hadjiconstantinou,10 we use ax-square fit to de-
termine the coefficientsA andB, given by Eq.~28!, using the
DSMC results. For a detailed exposition ofx-square fits and
the corresponding expressions to evaluateA and B, the
reader is referred to Hadjiconstantinou10 and Presset al.20

A theoretical expression for the phase angle of the ex-
tended slip model can be derived using Eq.~29!. The result-
ant expression is given by

c5tan21FQ2Q32Q1Q4

Q1Q31Q2Q4
G , ~30!

where

FIG. 3. Dynamic details for Kn50.1
andb55.0 flow.

322 Phys. Fluids, Vol. 16, No. 2, February 2004 Park, Bahukudumbi, and Beskok

Downloaded 12 Jan 2004 to 165.91.148.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Q15q11
p

&
~q32q4!, Q25q21

p

&
~q31q4!,

p5bam Kn,

Q35q̂12p2q̂21&p~ q̂32q̂4!,

Q45q̂21p2q̂11&p~ q̂31q̂4!,

q15sinhS 1

&

by

L D cosS 1

&

by

L D ,

q̂15sinhS b

&
D cosS b

&
D ,

q25sinhS 1

&

by

L D cosS 1

&

by

L D ,

q̂25coshS b

&
D sinS b

&
D ,

q35coshS 1

&

by

L D cosS 1

&

by

L D ,

q̂35coshS b

&
D cosS b

&
D ,

q45sinhS 1

&

by

L D sinS 1

&

by

L D ,

q̂45sinhS b

&
D sinS b

&
D .

Figure 3~b! shows the velocity time history at various
streamwise locations (y/L) in the flow domain. The velocity
signal at differenty/L locations exhibit reduced amplitudes
and different phase angles. Note that the peak values of the
velocity signal in Fig. 3~b! correspond to the velocity ampli-
tudes in Fig. 2. In Fig. 3~c!, the phase angle predicted by the
extended slip model and DSMC show similar trends. How-
ever, the initial deviation aty/L>0.9, due to the Knudsen
layer effects, offsets the DSMC results from the model solu-
tion. The phase angle variation is essentially linear in most of
the domain except within the Knudsen layers near the walls.
The wave propagation speedc8 ~phase speed! can be com-
puted from the phase angle variation using the relationc8
5v/(Dc/Dy). Consequently, the phase speed, computed
using the above definition, is constant in the region of lin-
early varying phase angle.

The extended slip model predicts a wave propagation
speed ofc851.770, which is in good agreement with the
corresponding DSMC prediction ofc851.790. the classical
Stokes’ second problem without the stationary wall also pre-
dicts a very similar wave propagation speedc851.777. The
phase speed is not constant near the walls due to the presence
of Knudsen layers. In addition, the phase speed decays near
the stationary wall, due to the interference between the inci-
dent and reflected signals. The normalized velocity ampli-

tude, plotted in log scale in Fig. 3~d!, shows exponential
decay in the amplitude with small alterations wheny/L
<0.1, due to the presence of the stationary wall. It can be
seen that the slip model result and DSMC solution are con-
sistent.

1. Effects of statistical scatter

Figure 3~d! aids in better visualization of statistical scat-
ter in the DSMC results, which is insignificant for this case
even near the stationary wall (y/L<0.1). Note that the nor-
malized amplitude does not drop below 1% of the maximum
signal for this case. In our simulations we have observed the
onset of statistical fluctuations, when the normalized signal
amplitude drops below 1% of the maximum signal. Some of
our DSMC results presented later in this section exhibit sta-
tistical fluctuations. In order to explore the statistical fluctua-
tions induced by finite sampling in the presence of thermal
fluctuations, we follow the recent work of Hadjiconstantinou
et al.21 According to theequilibrium statistical mechanics,
the ratio of excitation velocityu0 to the thermal fluctuation
u8 for an ideal gas is given by21,22

u0

A^~u8!2&
5MaAgN0, ~31!

where Ma is the Mach number,g is the ratio of specific
heats, andN0 is the average number of particles per single
cell. The velocity fluctuation is defined asu85u2^u&,
whereu is the instantaneous velocity and^u& is the average
velocity. Since the unsteady DSMC algorithm uses ensemble
average overM repeating runs, the ‘‘noise-to-signal’’ ratio
Eu can be expressed as

Eu5
A^~u8!2&

u0
5

1

MaAgMN0

. ~32!

Based on the above definition, and our typical simulation
parameters (u05100 m/s,M55000,N05100, andg55/3),
we obtainEu53.431023. Considering that the above ex-
pression is obtained for a medium in equilibrium, the noise
level in our study is expected to be higher due to the pres-
ence of strong nonequilibrium effects in high Stokes number
rarefied flows.

B. Transition flow regime

Figure 4 shows the effect of Stokes number on the ve-
locity amplitude in the transition flow regime. At fixed Kn,
the slip velocity increases with increasingb. For Kn51.0, it
can be seen that beyondb50.25 the quasisteady approxima-
tion breaks down. We observe a ‘‘bounded Stokes layer’’
type of behavior forb>5 in both figures. Comparing the
Kn51.0 and Kn52.5 cases, we find that the slip velocity
increases with increasing Kn at constantb. For a fixed Kn,
the Stokes layer thickness decreases with increasingb. This
is an expected result.

The effect of Kn on the velocity amplitude for moderate
Stokes number conditions is shown in Fig. 5. It can be seen
that the slip velocity magnitude on the oscillating wall in-
creases with increasing Kn for a fixed Stokes number. For
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b51.0, quasisteady flow behavior is observed for Kn50.1
@velocity amplitude distribution is linear and passes through
(y/L,u/u0)5(0.5,0.5)]. Hence, the quasisteady flow ap-
proximation also depends on the Kn, as can be deduced by
comparison of Figs. 4 and 5. The most interesting observa-
tion in Fig. 5 is the emergence of a ‘‘bounded rarefaction
layer’’ with increasing Kn. By this name we emphasize that
this behavior is due to the rarefaction effects alone, and not
due to the influence of the Stokes number, which is kept
constant. Transition to this bounded rarefaction layer occurs
even at moderate Stokes number flows@see Fig. 5~a!# by
increasing the Kn. However, these effects are more pro-
nounced when the Stokes number increases, as can be de-
duced by comparing Figs. 5~a! and 5~b!.

Figures 6, 7, and 8 show the dynamic response of the
system for moderate and high Stokes number flows in the
transition flow regime (Kn51.0, b52.5; Kn51.0, b55.0,
and Kn55.0, b52.5). Here, we will not present detailed
discussions of the dynamic system response for the indi-
vidual cases, since the behavior is qualitatively similar to
that of Fig. 3. Comparing Figs. 6~a! and 7~a!, we observe that
a more pronounced Stokes layer forms by increasing the
Stokes number. Alternatively comparing Figs. 6~a! and 8~a!,
we observe a more pronounced bounded rarefaction layer,
when the Kn is increased. In all three cases, reduced velocity
amplitudes and different phase angles are observed at differ-
ent streamwise locations. Note that, while the phase angle

reaches 210° aty/L50 in Fig. 6~c!, the same value is
reached aty/L.0.75 in Fig. 7~c!, and aty/L.0.8 in Fig.
8~c!. This indicates that the phase speed, as defined earlier in
this paper, increases with increasingb and Kn. It is also
worthwhile to compare the level of statistical scatter between
these three results. Statistical scatter in Fig. 6~d! is insignifi-
cant, since the normalized velocity amplitude does not drop
below 1% of the signal. However, with increasingb and Kn,
the normalized velocity amplitude drops below 1% outside
the ‘‘bounded layers,’’ and the statistical scatter becomes im-
portant, as can be observed in Figs. 7~d! and 8~d!. These
findings are consistent with our predictions based on Eq.
~32!.

C. Free-molecular flow regime

Validation of the DSMC results in the free-molecular
flow regime is presented in Fig. 9. We compare the normal-
ized velocity amplitudes obtained from the DSMC with the
solution of the linearized collisionless Boltzmann equation at
different Stokes numbers. The free-molecular solution plot-
ted in this figure is obtained from Eq.~22!. Overall, a very
good agreement between the DSMC results and the free-
molecular solution is obtained. Here, we must note that we
utilized DSMC with finite Kn, instead of the test particle
Monte Carlo Method~TPMC! commonly utilized for colli-
sionless flows.6 The DSMC results in Fig. 9~a!, show statis-

FIG. 4. Effect ofb in transition flow
regime.

FIG. 5. Effect of Kn for moderateb
condition.
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FIG. 6. Dynamic details for Kn51.0
andb52.5 flow.

FIG. 7. Dynamic details for Kn51.0
andb55.0 flow.
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FIG. 8. Dynamic details for Kn55.0
andb52.5 flow.

FIG. 9. Velocity amplitudes for free-
molecular flow regime.
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tical scatter associated with a high Knudsen number simula-
tion. However, agreement between the theory and
simulations are remarkable in Figs. 9~b!–9~d!.

In Figs. 10 and 11, we compare the dynamic response of
the medium obtained from the DSMC results and the colli-
sionless Boltzmann equation solutions for Kn510, b51.0,
and Kn510, b52.5 cases. Predictions of the velocity pro-
files, phase angles, and the slip velocities are presented in the
figures. As observed in Fig. 11~a!, both methods capture the
bounded rarefaction layer equally well. Due to the onset of
statistical scatter outside this layer, we plotted the DSMC
phase angle only fory/L>0.65, in Fig. 11~c!. Nevertheless,
the DSMC and Boltzmann solutions match remarkably well
with in the bounded layer, confirming the accuracy of our
DSMC results.

D. Penetration depth

It is important to note that the bounded Stokes and rar-
efaction layers observed in the results create a new length
scale in the problem. This new length scale is related to the
thickness of the Stokes/rarefaction layers, and becomes par-
ticularly important for high values of Kn orb. The Stokes
layer thickness (d'An/v), also referred to as the ‘‘penetra-
tion depth’’ is defined as the distance from the moving wall
where the velocity amplitude decays to 1% of its excitation
value (u/u050.01). Most flow is confined within this layer,
and the moving wall no longer interacts with the stationary
wall. For these cases, the characteristic length scale of the

problem should be based on the penetration depthd, rather
than the separation distance between the two plates. This
would require redefinition of the nondimensional parameters
Kn and b, based on the penetration depth (Kn85l/d,b8
5Avd2/n). However, there are no functional relations for
variation of d as a function of Kn andb. Hence,a priori
estimation of the penetration depth is not possible. For the
sake of consistency, Kn andb are defined using the plate
separation distance throughout this work. Hence, no switch
is made in the characteristic length scale. However, change
in the characteristic length scale has physical implications.
For example, the actual Knudsen number for these cases can
be found by Kn85Kn L/d. Figure 12 shows variation of the
normalized penetration depth (d/L) with Kn andb. For the
cases not shown in this figure, the signal does not attenuate
enough to observe a bounded layer. The penetration depth
decreases with increasingb, as expected. The penetration
depth asymptotes to different values in the free-molecular
limit for different Stokes numbers. For fixedb, the penetra-
tion depth decreases by increasing the Kn, reflecting the
‘‘bounded rarefaction layer’’ concept presented above. It can
be seen from Fig. 12 thatd/L}1/Kn for a givenb. This
figure also clarifies the need for a redefinition of the charac-
teristic length scale for highb and Kn flows.

E. Shear stress

Shear stress for oscillatory Couette flows exhibits two
distinct behaviors in the continuum and free-molecular flow

FIG. 10. Dynamic details for Kn510
andb51.0 flow.
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regimes. Using the classical constitutive laws utilized in the
Navier–Stokes equations, the continuum shear stress is given
by

tcont5mHS

u0

L
, ~33!

where mHS is the hard-sphere viscosity (mHS

55/16dHS
2 AmkBTe /p). The hydrodynamic approximation

of shear stress is proportional to the velocity gradient~angu-
lar deformation rate for 1D flow!. This representation is also
valid in the slip-flow regime with the appropriate velocity
slip corrections. The free-molecular shear stress can be ob-
tained from Eq.~25! as

tFM5
1

2
r0u0A2kBTe

pm
. ~34!

Note that this isidentical to the free-molecular shear stress,
obtained for steady plane Couette flows.23 In Fig. 13, we
present the effect of Kn andb on the wall shear stress using
the DSMC results. We plot the shear stress normalized with
the free-molecular and continuum shear stress values, to
show that the DSMC results uniformly approach the correct
asymptotic limits. We also compare the DSMC results with
our empirical model for quasisteady oscillatory flows given
by Eq. ~7!. Good agreements between the empirical model
and the DSMC results are observed for quasisteady flows
(b<0.25). Beyond the quasisteady flow regime there is a
significant increase in the shear stress magnitude, especially

for low Kn values. This is expected, since the shear stress is
proportional to the velocity gradient, which increases withb,
especially due to the formation of bounded Stokes layers. In
the free-molecular flow limit, shear stress reaches the same
asymptotic limit of the steady plane Couette flow regardless
of the Stokes number, as shown in Eq.~25!. In Fig. 13, we
observed a similar behavior in the DSMC results. Interest-

FIG. 11. Dynamic details for Kn510
andb52.5 flow.

FIG. 12. Effects of Kn andb on penetration depth.

328 Phys. Fluids, Vol. 16, No. 2, February 2004 Park, Bahukudumbi, and Beskok

Downloaded 12 Jan 2004 to 165.91.148.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ingly, the DSMC data reached the asymptotic shear stress
value in the transition flow regime for large Stokes number
cases. This behavior is a manifestation of our definition of
Kn which is constant regardless ofb. If we consider chang-
ing the characteristic length scale from the distance between
the two plates~L! to the penetration length~d!, we would
observe that the effective Knudsen number for such cases are
indeed in the free-molecular flow regime. For example, for
the Kn52.5, b57.5 case, the penetration depthd50.15L
~see Fig. 12!. Hence, the effective Knudsen number for this
case is about Kn.17.

VI. CONCLUDING REMARKS

Time-periodic Couette flows are studied in the entire
Knudsen regime and a wide range of Stokes numbers using
the unsteady DSMC method. To our knowledge this is the
first time that unsteady DSMC have been utilized for this
basic flow. The DSMC results are validated using analytical
solution of the linearized collisionless Boltzmann equation in
the free-molecular flow regime, and a recently developed
empirical model in the slip-flow regime. We paid particular
attention to the statistical scatter in the simulations, which
became important when the velocity signal is reduced below
1% of the maximum signal. This was sufficient to accurately
resolve the velocity signal in most of the flow domain, in-
cluding the bounded Stokes layers.

Simulations show that the quasisteady flow conditions,
which result in linear velocity distribution with equal veloc-
ity slip on the oscillating and stationary surfaces, diminish
beyond a certain Stokes number. Although this limit also
depends on the Kn, we generally suggestb<0.25 as the
limit for quasisteady flows. The empirical model presented in
Ref. 14 is also valid in this regime for Kn<12, and it can be
easily substituted in place of the DSMC simulations. For
moderate Stokes number flows, we observe oscillatory Cou-
ette flow between the two walls. At these intermediateb
values, two surfaces interact with each other, and the afore-
mentioned empirical model is valid only in the slip-flow re-
gime.

For high Stokes number flows, we observed formation of
bounded Stokes layers, where the stationary wall does not
interact with the flow anymore. In the slip-flow regime, this
results in the classical Stokes’ second problem with velocity
slip. Once again, the empirical model in Ref. 14 is valid in

this regime, where the wave speed is constant outside the
Knudsen layer, and the velocity amplitude decays exponen-
tially as a function of the distance from the oscillating sur-
face. However, there are small deviations from this behavior
within the Knudsen layer. Such deviations are captured by
the DSMC, but they cannot be modeled using continuum-
based approaches. In the transition and free-molecular flow
regimes we observed that the signal decay is not exactly
exponential and the wave speed is not constant anymore.
These are interesting deviations, which are also validated
using the analytical solution of linearized collisionless Bolt-
zmann equation in the free-molecular flow limit. In all simu-
lations, the results have consistently shown that the slip ve-
locity and wave propagation speed increase with increased
Kn andb.

An interesting behavior is observed when the Kn is in-
creased while the Stokes number is fixed. For such cases, the
slip velocity increases, and a bounded layer with a finite
penetration depth is formed after a certain value of Kn. We
named this the bounded rarefaction layer. Penetration depth
for this layer is a function of both Kn andb, and it becomes
a new length scale in the problem. For such cases, it is nec-
essary to redefine the Knudsen number based on the penetra-
tion depth, rather than the separation distance between the
two plates. However, withouta priori knowledge of the pen-
etration depth it is not possible to predetermine the Kn in the
simulations. In order to remain consistent, we kept the char-
acteristic length scale of the problem as the plate separation
distance. However, the reader can use Fig. 12 to estimate the
actual Knudsen number based on the penetration depth. Due
to this switch in the length scales, we observed that shear
stress on the oscillating wall reaches the asymptotic free mo-
lecular limit at earlier Kn values. Solution of the linearized
collisionless Boltzmann equation in the free-molecular flow
limit indicates that the shear stress and the slip velocity am-
plitude for oscillatory Couette flows areidentical to that of
the steady plane Couette flows. This interesting finding is
also confirmed by our DSMC results.

ACKNOWLEDGMENTS

J.H.P. acknowledges support by the Postdoctoral Fellow-
ship Program of Korea Science & Engineering Foundation
~KOSEF!. We are also grateful to Professor Felix Sharipov
for many useful discussions and suggestions regarding the

FIG. 13. Effects of Kn andb on wall
shear stress.

329Phys. Fluids, Vol. 16, No. 2, February 2004 Rarefaction effects on oscillatory gas flows

Downloaded 12 Jan 2004 to 165.91.148.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



current study. Computational resources provided by Profes-
sor Seung Wook Beak at Korea Advanced Institute of Sci-
ence and Technology~KAIST! is greatly appreciated.

1K. S. Breuer, ‘‘Lubrication in MEMS,’’ inThe MEMS Handbook, edited
by M. Gad-el-Hak~CRC Press, Washington, DC, 2002!, pp. 1–27.

2Y. H. Cho, A. P. Pisano, and R. T. Howe, ‘‘Viscous damping model for
laterally oscillating microstructures,’’ J. Microelectromech. Syst.3, 81
~1994!.

3C. T.-C. Nguyen and R. T. Howe, ‘‘An integrated CMOS micromechanical
resonator high-Q oscillator,’’ IEEE J. Solid-State Circuits34, 440 ~1999!.

4T. Veijola and M. Turowski, ‘‘Compact damping models for laterally mov-
ing microstructures with gas-rarefaction effects,’’ J. Microelectromech.
Syst.10, 263 ~2001!.

5M. Gad-el Hak, ‘‘The fluid mechanics of microdevices—the Freeman
Scholar Lecture,’’ J. Fluids Eng.121, 5 ~1999!.

6G. A. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows
~Oxford University Press, Oxford, 1994!.

7W. Wagner, ‘‘A convergence proof for Bird’s direct simulation Monte
Carlo technique,’’ J. Stat. Phys.66, 1011~1992!.

8S. Stefanov, P. Gospondinov, and G. Cercignani, ‘‘Monte Carlo simulation
and Navier–Stokes finite difference calculation of unsteady-state rarefied
gas flow,’’ Phys. Fluids10, 289 ~1998!.

9N. G. Hadjiconstantinou and A. L. Garcia, ‘‘Molecular simulations of
sound wave propagation in simple gases,’’ Phys. Fluids13, 1040~2001!.

10N. G. Hadjiconstantinou, ‘‘Sound wave propagation in transition-regime
micro- and nanochannels,’’ Phys. Fluids14, 802 ~2002!.

11F. Sharipov, W. Marques, and G. M. Kremer, ‘‘Free molecular sound
propagation,’’ J. Acoust. Soc. Am.112, 395 ~2002!.

12J. H. Park and S. W. Baek, ‘‘Investigation of influence of thermal accom-
modation on oscillating micro-flow,’’ Int. J. Heat Mass Transfer~in press!.

13J. H. Park, S. W. Baek, S. J. Kang, and M. J. Yu, ‘‘Analysis of thermal slip
in oscillating rarefied flow by using DSMC,’’ Numer. Heat Transfer, Part A
42, 647 ~2002!.

14P. Bahukudumbi, J. H. Park, and A. Beskok, ‘‘A unified engineering model
for shear driven gas micro flows,’’ Microscale Thermophys. Eng.7, 291
~2003!.

15C. Loudon and A. Tordesillas, ‘‘The use of the dimensionless Wormersley
number to characterize the unsteady nature of internal flow.’’ J. Theor.
Biol. 191, 63 ~1998!.

16A. G. Straatman, R. E. Khayat, E. Haj-Qasem, and D. A. Steinman, ‘‘On
the hydrodynamic stability of pulsatile flow in a plane channel,’’ Phys.
Fluids 14, 1938~2002!.

17R. L. Panton,Incompressible Flow, 2nd ed.~Wiley, New York, 1996!.
18Y. Sone, ‘‘Kinetic theory analysis of linearized Rayleigh problem,’’ J.

Phys. Soc. Jpn.19, 1463~1964!.
19Y. Sone, ‘‘Effect of sudden change of wall temperature in rarefied gas,’’ J.

Phys. Soc. Jpn.20, 222 ~1965!.
20W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-

merical Recipes inFORTRAN, 2nd ed.~Cambridge University Press, Cam-
bridge, 1992!.

21N. G. Hadjiconstantinou, A. Garcia, M. Bazant, and G. He, ‘‘Statistical
error in particle simulations of hydrodynamic phenomena,’’ J. Comput.
Phys.187, 274 ~2003!.

22L. D. Landau and E. M. Lifshitz,Statistical Physics~Pergamon, New
York, 1980!.

23M. Kogan,Rarefied Gas Dynamics~Plenum, New York, 1969!.

330 Phys. Fluids, Vol. 16, No. 2, February 2004 Park, Bahukudumbi, and Beskok

Downloaded 12 Jan 2004 to 165.91.148.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


