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Rarefied gas flows in channels, pipes, and ducts with smooth surfaces are studied in a wide
( ) ( )range of Knudsen number Kn at low Mach number M with the objectiv e of dev eloping

simple, physics-based models. Such flows are encountered in microelectromechanical systems
( )MEMS , in nanotechnology applications , and in low-pressure env ironments. A new general

boundary condition that accounts for the reduced momentum and heat exchange with wall

surfaces is proposed and its v alidity is inv estigated. It is shown that it is applicable in the

entire Knudsen range and is second-order accurate in Kn in the slip flow regime. Based on

this boundary condition , a univ ersal scaling for the v elocity profile is obtained, which is

used to dev elop a unified model predicting mass flow rate and pressure distribution with
( )reasonable accuracy for channel, pipe, and duct flows in the regime 0 ( Kn - ` .

A rarefaction coefficient is introduced into this two-parameter model to account for the

increasingly reduced intermolecular collisions in the transition and free-molecular regimes.

The new model is v alidated with comparisons against direct-simulation Monte Carlo results,

linearized Boltzmann solutions, and experimental data.

Rarefied internal gas flows are encountered in both low-pressure or vacuum

environments as well as in micrometer or submicrometer size geometries at
standard atmospheric conditions. Applications in the first category include devices

w xused in hypersonic flight 1 , and several types of vacuum instruments, e.g.,

w xionization gauges, partial pressure and residual gas analyzers, etc. 2 . Applications
s .in the second category are encountered in microelectromechanical systems MEMS
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and include instrumentation, microelectronics, bioengineering, and advanced en-

w xergy systems, where complex networks of microchannels may be used 3 . Similar
applications can be found in the nanoscale design of computer components such as

the modern Winchester-type hard disk drive mechanism, where the read r write

w xhead floats 50 nm above the surface of the spinning platter 4 . The head and

platter together with the air layer in between form a slider bearing; both Reynolds
s .and Mach number are very low less than 0.6 and 0.3, respectively .

In these examples, the gas flow cannot be modeled based on the continuum
hypothesis. The mean free path, which at standard atmospheric conditions is about

65 nm, is comparable to the characteristic geometric scale, and therefore micro-

scopic effects are important. For example, in the case of the hard-drive mechanism

which is modeled as a slider bearing, the load capacity predicted by the continuum

w xReynolds equations without slip is in error by more than 30% 5, 6 . The deviation
s .of the state of the gas from continuum is measured by the Knudsen number Kn ,

which is defined as Kn s l r L, where l is the mean free path of the molecules and

L is a characteristic length scale. For the slider bearing the Knudsen number is

Kn s 1.3; in ultralow clearances corresponding to increased recording capacity, the

Knudsen number is well above 1. Similarly, ducts of width of 100 nm or less, which

are common these days in nanotechnology applications, correspond to Knudsen

number above 1. In other capillary flows, such as in helium leak detection devices

w xand mass spectrometers, the Knudsen number may achieve values up to 200 7 .
s .Finally, material processing applications such as chemical vapor deposition CVD

and molecular beam epitaxy applications also involve high Knudsen number flow

w xregimes 8 .

As the value of Knudsen number increases, rarefaction effects become more

important and thus pressure drop, shear stress, heat flux, and corresponding mass
flow rate cannot be predicted from standard flow and heat transfer models based

on the continuum hypothesis. On the other hand, simple models based on kinetic

gas theory concepts are not appropriate either, except in the very high Knudsen

w xnumber regime corresponding to near-vacuum conditions 9 . The appropriate flow

and heat transfer models depend on the range of the Knudsen number. A

w x y 3classification of the different flow regimes is given by 10 : for Kn ( 10 the fluid
can be considered as a continuum, while for Kn 0 10 it is considered a free

molecular flow. A rarefied gas can neither be considered an absolutely continuous

medium nor a free molecular flow in the Knudsen number range between 10y 3

s y 3and 10. In that region, a further classification is needed, i.e., slip flow 10 -
. s .Kn - 0.1 and transition flow 0.1 - Kn - 10 . This classification is based on

empirical information and thus the limits between the different flow regimes may
depend on the problem geometry. A verification of this taxonomy based on

w xexperimental data has been documented in 11 . In a long micropipe with a large

pressure ratio from inlet to outlet, all three flow regimes may coexist as rarefaction

is increased along the flow direction. This means that a very large variation of

scales may be present from the continuum at the inlet of the micropipe to free

molecular flow at the outlet. Such cases are achieved in vacuum experiments,
where very large pressure gradients are imposed on capillaries exhausting to

s w x.high-vacuum conditions see Figure 5 in 7 .
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Experimental data as well as theoretical work have demonstrated a nonlinear

w xdependence of mass flow rate on the pressure drop for the slip flow regime 12 .
The mass flow rate scales more closely with the difference of inlet and exit

pressures squared, which is characteristic of compressible flows in long channels.

w xThis was also verified in the slip flow experiments of 13 in short pipes with a
s .diameter of 2 in. 5 cm at low pressures. Similarly, for flows in microchannels in

w x w xrecent experiments by Liu et al. 14 and Pong et al. 15 , the pressure distribution

along the microchannel was measured by using a surface micromachined system
with a number of sensors as part of the surface; a nonlinear pressure distribution

was clearly demonstrated in these experiments.

The flow rate in isothermal rarefied flows is increased compared to the

continuum-based estimates. This has also been documented in a number of

experimental studies for flows in microscales. The first known experiment of flow

w xin microchannels was performed by Gaede 16 , who placed two parallel plates 4
m m apart. Gaede found that the flow rate of hydrogen decreases about 60% from

the free molecular value while passing through a minimum and then rising with

increasing pressure levels. In long capillaries, the difference between the minimum

and the free molecular value is only 5 ] 8% . Therefore, rarefied flows behave

differently in pipes and channels.

Driven by MEMS applications, a number of experimental studies with mi-
crochannels have been conducted. The first recent experimental study of a slip flow

using micromachined channels was conducted for both gases and liquids by Pfahler

w x w xet al. 17 and Harley et al. 18 in a Reynolds number range 0.50 ( Re ( 20 and

Knudsen number range 0.001 ( Kn ( 0.363. The reported skin friction reduction

due to apparent slip of the flow has been confirmed in other similar experimental

w xstudies 14, 15, 19 using different microfabrication techniques to fabricate the
microchannels.

1 OBJECTIVES

While significant progress has been made both experimentally and theoreti-
cally for the slip and the free-molecular flow regimes, there is lack of theoretical

understanding and therefore of reliable models, especially in the transition regime.

The classical Knudsen’s model, which has been used extensively in vacuum science,

is valid for transitional and free molecular flows in pipes but overpredicts mass flow

rate in the slip flow regime. Knudsen’s model is based on two free parameters,

which are adjusted to fit measurements of flow rate. There is currently no model
for predicting corresponding velocity profiles nor pressure distribution in the entire

Knudsen number regime. Moreover, there is no such model that can be used in

other geometries, e.g., two-dimensional channels and rectangular ducts with differ-

ent aspect ratios. The objective of the current investigation is to develop a unified,

physics-based model appropriate for all rarefaction regimes and for general inter-

nal geometries, i.e., pipes, two-dimensional channels, and ducts. We consider both
microflows as well as nanoflows, excluding nonclassical effects and considering

smooth surfaces only. To this end, we use a mix of results based on continuum-based
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models, atomistic simulations, solutions of the Boltzmann equation, and experi-

mental results to validate the proposed model.
The numerical investigation of rarefied flows necessitates either using atom-

s .istic particle-based simulations or adding approximate corrections to the macro-

scopic simulation methods. For example, in the slip flow regime it is reasonable to

employ the Navier-Stoke s equations modified at the surface with appropriate

w x w xvelocity-slip conditions 10 . In previous work, in a series of articles 11, 20, 21 , we

developed compressible and incompressible flow models with high-order velocity-
slip boundary conditions for the slip flow regime. In the current work we examine

the validity of a general slip boundary condition we propose for the entire Knudsen

number regime by comparing the predictions of the new slip model with the
s . w xdirect-simulation Monte Carlo DSMC method of Bird 22 and solutions of

w xlinearized Boltzmann equations 23, 24 . Based on successful representation of the

velocity distribution in the entire flow regime, we propose a unified model that is
capable of predicting the volumetric and mass flow rate as well as the pressure

distribution accurately. This model is based on a generalized rarefaction coeffi-

cient, which depends on two parameters, and can be obtained from either theory

and simulations or from experimental data.

The article is organized as follows: In Section 2 we present the governing

equations and slip models for slip and transitional flow regimes and summarize the
computational methods employed in our investigation. In Section 3 we concentrate

on channel flows in the slip and transition flow regimes and provide appropriate

scaling laws for the velocity and mass flow rate. In Section 4 we use experimental

and numerical data for pipe and rectangular cross-section duct flows in order to

validate the proposed model. Special emphasis is placed in modeling the entire

flow regime accurately. We conclude in Section 5 with a summary and a discussion
of our results.

2 GOVERNING EQUATIONS AND SLIP MODELS

s .In the slip flow regime 0.001 - Kn - 0.1 , deviations from the state of

continuum are relatively small and the flow is still governed by the Navier-Stoke s

w xequations 10 . The rarefaction effect is modeled through the partial slip at the wall

w xusing slip boundary conditions 25 . Although internal rarefied gas flows can be

modeled as isothermal, the compressible Navier-Stoke s equations are more appro-

w xpriate since large pressure variations are experienced in these flows 11, 13, 14, 15 .

In this section we will develop a general boundary condition for velocity slip, which

in the case of Kn - 1 corresponds to a second-order correction in Knudsen
number, improving Maxwell’s original first-order formula.

s .The Navier-Stokes equations break down in the transition regime Kn ) 0.1

and have to be substituted either by the Boltzmann equation, which is valid at the
smicroscopic level or by continuum approximations e.g., the Burnett or Woods

.equations that include high-order modifications of the stress tensor and heat flux

w xterms 26, 27 . In particular, a number of investigators have considered semianalyti -
cal and numerical solutions of the linearized Boltzmann equations for rarefied flow

between two parallel plates and a pipe. Starting with the pioneering work of

Cercignani and his associates, the Knudsen’s minimum was rigorously investigated
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w xfor the first time 28 . Simplifications for the collision integral based on the

w xBhatnagar-Gross-Krook model 29 were used extensively in such studies. Other
investigators have derived solutions based on the hard sphere and Maxwellian

w xmodels for the collision integral 23, 30 , and have also obtained solutions in

w x w xcylindrical geometry 24 , and on ducts with various cross sections 23, 31 . Similar

approaches have been used successfully in modeling gas film lubrication in the

w xtransition regime 5 .

Numerically, for gas flows it is more efficient to use the DSMC method of

w x22 to obtain solutions in the transition regime. DSMC is a particle-based method,

and uses a stochastic algorithm to evaluate collision probabilities and scattering

distributions, avoiding expensive molecular dynamics-type simulations where the

w xexact trajectories of all particles are computed. In recent work by Wagner 32 , it

has been rigorously proved that DSMC is equivalent to a Monte Carlo solution of

an equation `̀ close’ ’ to the Boltzmann equation; statistical error analysis for DSMC

w xhas been investigated by Chen and Boyd 33 . A modified Boltzmann algorithm has

been used recently in successfully modeling rarefaction in the gas film lubrication

w x w xproblem 34 . Oh, Oran, and Cybyk 35 have used the DSMC method to investigate

subsonic and transonic flows in microchannels. More recently, hybrid schemes

w xcombining DSMC and Navier-Stokes representations have been developed 36 . In

the current work, we will use Bird’s version of DSMC to simulate rarefied flows in
channels.

2.1 First-Order Models

By first-order models we refer to the approximation of Boltzmann equation
s .up to / / Kn , i.e., the compressible Navier-Stokes equations. The conservation

equations for mass, momentum, and energy are

r u jr 
r u u q p d y s s .q s 0 1i j j i j ir u i t  xje s .eu q p d y s u q qj i j j i i j

where r and p are the gas density and pressure, respectively. The velocity
s . s .components in two dimensions are denoted by u , u ’ u, v in the Cartesian1 2

s . s .coordinate system x , x ’ x, y . The ideal gas assumption is used to determine1 2

pressure in terms of local density and temperature, i.e., p s r RT, where R is the
sspecific gas constant, and the temperature is determined from e s r C T qv

s . .u u r 2 , where C is the specific heat at constant volume.i i v

s .The conservation equations 1 are valid for continuum as well as for rarefied
s . s .flows. However, the viscous stresses s and the heat flux q have to bei j i

determined differently for different flow regimes. For the first-order model they

have the familiar forms used in the Navier-Stokes equations,

 u  u 2  uj i mNy S s .s s m q y m d 2i j i jt / x  x 3  xi j m
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where m is the dynamic viscosity and d is the Kronecker delta. The heat flux isi j

s .determined from the Fourier law q s y k  T r  x , where k is the thermali i

conductivity.
s . s .In the slip flow regime, the Navier Stokes equations 1 , 2 are solved subject

to the velocity slip and temperature jump boundary conditions given by

s .2 y s 1 3 Pr g y 1v
s . s .u y u s t q y q 3s w s s1 r 2d 4 g r RTs .r 2 RT r pv ww

s .2 y s T 2 g y 1 1
s . s .T y T s y q 4s w n1 r 2s g q 1 s .R r 2 RT r pT w

where q , q are the normal and tangential heat flux components at the walls. Also,n s

t is the viscous stress component corresponding to the skin friction, g is the ratios

of specific heats, u and T are the reference wall velocity and temperature,w w

w s .respectively. Pr is the Prandtl number. Equation 3 was proposed by Maxwell in

x s .1879. The second term in Eq. 3 represents the thermal-creep contribution to slip

velocity, which describes flow from the cold toward the hot direction along

wnonisothermal surfaces. This phenomenon has been studied in some detail in 12,

x s .21 . Since we consider here only isothermal surfaces, the second term in Eq. 3 is
s . w xzero. Equation 4 is due to von Smoluchowski 25 and models temperature jump

effects. Here s , s are the tangential momentum and energy accommodationv T

coefficients, respectively. The accommodation coefficients model the momentum

and energy exchange of the gas molecules impinging on the walls. They are
sdependent on the specific gas and the surface quality and are tabulated see, for

w x.example, 37 ; under laboratory conditions, values as low as 0.2 have been

w xobserved 38 . Very low values of s will increase the slip on the walls considerablyv

s .even for small Knudsen number flows, due to the 2 y s r s factor.v v

Our derivation of high-order slip boundary condition is based on tangential
s w x.momentum flux analysis near an isothermal surface for details, see 39 , which

results in the following relation:

1
w s . x s .u s u q 1 y s u q s u 5s l v l v w

2

where u is the slip velocity near the surface, u is the tangential component of gass l

velocity one mean free path away from the surface, and u is the tangentialw

velocity of the surface. Notice that instead of obtaining the slip information u l

w xexactly l away from the wall, a fraction of l may be used 9 . Using a Taylor series

expansion for u about u , rearranging, and nondimensionalizing with a referencel s

s .length and a velocity scale such as free-stream velocity , we obtain

2 22 y s  U Kn  Uv
s .U y U s Kn q q . . . 6s w 2t / t /s  n 2  nsv s
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where the nondimensional quantities are denoted by capital letters. By neglecting

the higher-order terms in the above equation we recover Maxwell’s first-order slip
s .boundary condition 3 in nondimensional form.

2.2 Second-Order Models

s .The conservation equations 1 are still valid for larger deviations from
s .equilibrium conditions, but the stress tensor and heat flux vector have to be

corrected for high-order effects. The general tensor expression of the Burnett level

shear stress is

2 u m  u  u D  u  u  ui k i i i kBs s y 2 m q v q v y 2i j 1 2 x p  x  x Dt  x  x  xt /
j k j j k j

2 T 1  p  T R  T  T  u  ui k
s .q v R q v q v q v 73 4 5 6 x  x r T  x  x T  x  x  x  xi j i j i j k j

where a bar over a tensor designates a nondivergent symmetric tensor, i.e.,
Bs .f s f q f r 2 y d r 3 f . Similar expressions are valid for the heat flux qi j i j j i i j m m i

w x40 . The difference here is that we use the exact definition of the total derivative
instead of the Euler approximation most commonly used in hypersonic rarefied

flows. The coefficients v depend on the gas model and have been tabulated fori

w xhard spheres and Maxwellian gas models 40, 41 .

To simplify the stress tensor we consider a very long channel of length L and

height h so that e ’ h r L g 1. We also neglect any temperature gradients in the
s .gas isothermal wall conditions and low subsonic flow are assumed . Under such

conditions the Burnett equations can be simplified considerably, resulting in terms
s . s 5.including / / 1 up to / / e . For convenience, results of this expansion including

s ./ / e terms are given in the Appendix. In that limit, the x-momentum equation is

reduced to

22 2 p v v m  u  u2 6
s . s .1 y q s m q // e 8

2 2t / t / x 3 12  yp  y

s .Furthermore, assuming a Maxwellian gas model for which v , v , v s1 2 6

s . s .10 r 3, 2, 8 and nondimensionalizing with reference exit conditions p , u we0 0

obtain in nondimensional form

22 g p p0 22 2 s . s . s .P 1 y Kn M U s U q / / e 9x 0 0 y yyt /3 p
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Similarly, for the y-momentum equation we obtain

2g p p 4 g p p0 022 2 s . s . s .P 1 q Kn M U s M Kn U U q // e 10Xy 0 0 y 0 0 y yyt / t /3 p 3 2 p

2 2 s .2It is clear that the M Kn p r p terms are relatively small for small Mach0 0 0

s .number flows in the early transition regime i.e., Kn , 1 . In this case, for flow in a

very long channel the Burnett equations reduce to

P s Ux yy

4 g p p0
P s Kn M U UXy 0 0 y yyt /3 2 p

Therefore, the streamwise momentum Burnett equation is reduced to the form

obtained by the Navier-Stoke s equations in that limit. The crossflow momentum

equation shows that the pressure gradient in that direction is balanced by the

Burnett normal stresses, which in the case of continuum are identically zero for a
flat surface. The above equations agree with the simplified set of equations for

w xCouette flow in the transition regime obtained by Schamberg 41 .

Since the Burnett equations are obtained by a second-order Chapman-

Enskog expansion in Kn, they require second-order slip boundary conditions. Such

w xboundary conditions were derived by Schamberg in 41 ; however, numerical

w xexperiments with aerodynamic rarefied flows 40 showed that Schamberg’s bound-
ary conditions are inaccurate for Kn ) 0.2. Based on our analysis in Section 2.1, we

propose the following second-order slip boundary condition:

2 22 y s  U Kn  Uv
s .U y U s Kn q 11s w 2t / t /s  n 2  nsv s

Similar second-order slip boundary conditions have also been proposed by

w x w xDeissler 42 and Cercignani and used in 13 for a pipe or a channel flow in the

following form:

 U  2U
2U y U s C Kn y C Kns w 1 2 2t / t / n  ns s

s .where  r  n shows gradients normal to the wall surface. The slip coefficients are

w xC s 1.0, C s 1.6875 according to 42 , and C s 1.1466, C s 0.9756 according1 2 1 2

w xto Cercignani 13 . In experimental work by measuring the mass flow rate, Sreekanth

w x13 reports good agreement of second-order slip boundary conditions with his

results for Kn as high as Kn s 1.5. However, Sreekanth used a different second-
s . s .order slip coefficient C s 0.14 than the ones proposed by Deissler 1.6875 and2

s . s .Cercignani 0.9756 . He also reports a change of the first slip coefficient C from1

1.00 to 1.1466 as the Knudsen number is increased. First-order boundary condi-

tions cease to be accurate, according to Sreekanth’s study, above Kn ) 0.13. More
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w xrecent studies by 43 also show that Maxwell’s slip boundary condition breaks

down around Kn s 0.15.
s .Implementation of second-order slip boundary condition using Eq. 11

requires obtaining the second derivative of the tangential velocity in the normal
s 2 2 .direction to the surface  U r  n , which may lead to computational difficulties,

especially in complex geometry configurations. To circumvent this difficulty we

propose the following general velocity slip boundary condition:

2 y s Kn  Uv
s .U y U s 12s w t /s 1 y b Kn  n sv

where b is the slip coefficient, which is an empirical parameter to be determined
either experimentally or from linearized Boltzmann or DSMC data. For a slightly

rarefied flow corresponding to small Kn, using asymptotic expansions of the

velocity field, the following expression for b is obtained to ensure second-order

w xaccuracy 44 :

Y s .1 U 1  v r  n 00
b s sXt /2 U 2 v0 0s s

swhere the subscript 0 refers to the corresponding continuum field zeroth-order of
. s .the expansion . Note that the second-order derivative of the continuous velocity

s .field as shown in Eq. 12 is absorbed in the parameter b. Moreover, parameter b

has a physical meaning: it is the vorticity flux into the surface divided by the
vorticity of flow field on the surface, obtained by the no-slip approximation. For

fully developed flows in channels, b s y 1.
s .We should also note here that Eq. 12 predicts finite slip contributions as

sKn ` . Therefore, this boundary condition may be valid with consistent values
.of b for the entire Knudsen flow regime, while the other slip models diverge with

increasing Kn.

2.3 Summary of Computational Models

w xWe have developed a spectral element algorithm m Flow 39 for solution of

compressible, subsonic Navier-Stoke s equations. This algorithm is based on time

splitting of advection and diffusion operators, which are treated with a collocation
formulation and Galerkin projection, respectively. The element-interface connec-

tivity conditions are handled by a characteristic decomposition for the advection

substep, and a direct stiffness summation is employed at the diffusion substep. The

computational domain is broken up into K macroelements, and the dependent and

the independent variables are approximated by Nth-order tensor-product polyno-

mial expansions. Convergence to the exact solution is achieved by varying either
the number of macroelements K or the polynomial order N. It is the latter

s .approach that results in exponentially fast convergence spectral accuracy , while

the former approach corresponds to fixed, finite-element-like accuracy. The slip
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s .flow regime is investigated by implementing the slip boundary condition 5 and a

corresponding temperature-jump boundary condition. The spectral element code is
restricted to shock-free flows, therefore it is used for subsonic and shock-free

transonic flows. Resolution tests and grid-independent solutions have been verified

for all simulations and details will be presented in Section 3 for representative

cases.

w xIn addition, we use the DSMC code of Bird 22 with certain modifications for
s .our geometries. The DSMC code requires the accommodation coefficients s , sv T

to model the interaction of the molecules with the surfaces. This algorithm

simulates the slip effects without defining a set of continuum-based slip conditions.

Although the DSMC methods are appropriate for simulating rarefied flows, they

have some disadvantages . One main disadvantage is that the error of the method is

inversely proportional to the square root of the number of simulated molecules. In

addition, low-Mach-number flow simulations require a large number of time
averagings r samplings, making the DSMC method very expensive. The reason for

s .this is the smallness of mean flow properties such as average flow speed for low

subsonic flows compared to the molecular magnitudes, which are of the order of

speed of sound. In these cases, our results are sampled for a long time.

The DSMC simulations are performed for channels with length-to-height

ratio L r h s 20. The domain is discretized with 6,000 cells, 200 in the streamwise
and 30 in the cross-flow direction. With this discretization we used 80,000 molecules

and sampled our results for 2.0 = 106 time steps. We have performed resolution

studies by first increasing the number of simulated molecules to 240,000 and

sampling the results for 2.5 = 105 time steps. We also simulated cases with 24,000

cells by employing 400 cells in the streamwise direction and 60 cells across the

channel. A total of 480,000 molecules were simulated, and the results were
sampled for 1.0 = 105 time steps. For the previous simulations we have used the

s . svariable hard sphere VHS model. We repeated some of our simulations 24,000
. s .cells and 480,000 simulated molecules cases with the variable soft sphere VSS

model. These cases were also sampled for 1.0 = 105 time steps. Both the VSS and

the VHS simulations resulted in identical solutions, as expected since we consid-

ered isothermal flows.

3 CHANNEL FLOWS

3.1 Slip Flow Regime

s .The slip flow regime 0.001 - Kn - 0.1 has been studied systematically by

w xBeskok et al. 11, 21 . Here we present some m Flow simulations and a comparison
s .with DSMC results for a microchannel with length-to-height ratio L r h s 20 and

inlet-to-exit pressure ratio P s 2.28. The Knudsen number at the channel outlet is

0.20. The discretization corresponds to 10 elements in the flow direction and 2

elements in the crossflow direction, employing 6th-order polynomial expansions

per direction in each element. Convergence is verified by increasing the order of
the polynomial expansions while keeping the number of spectral elements fixed
s .p-refinement . In addition, we monitor the residuals of the global conservation of

mass and momentum. The results presented in these runs conserve mass and
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momentum with 0.01% accuracy. The DSMC results correspond to P s 2.28 with

resolution parameters as discussed in Section 2.3. Convergence is also verified by
monitoring mass balance; maximum errors are approximately 1% . Velocity profiles

sfor P s 2.28 at three different xr L locations nondimensionalized with the
.reference inlet velocity , are plotted in Figure 1. Parabolic velocity distribution is

obtained across the channels. Both the DSMC and m Flow predict the same

magnitude of velocity. Pressure and slip velocity distributions are also in good

agreement.
Implementation of our second-order model in the slip flow regime was done

by obtaining the necessary slip information at a distance l away from the surface
s .in Eq. 5 . In this regime, the results are identical with those obtained using Eq.

s .12 . However, for flows with higher Knudsen number in the transition regime, we
s .switch our model to the general boundary condition of Eq. 12 , the validity of

which we investigate next in detail.

3.2 Transition and Free Molecular Flow Regimes

It is known from Knudsen’s and Gaede’s experiments in the transition flow

regime that there is a minimum in the flow rate in pipe and channel flows at about

Kn , 3 and Kn , 1, respectively. This behavior has been investigated by many

Figure 1. Velocity profiles predicted by the Navier-Stokes and DSMC

simulations at various xr L locations. The inlet is located at xr L s 0.0.
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w x w xresearchers both theoretically 23, 24, 28, 45 ] 47 and experimentally 7 . It was first

shown by Knudsen that in the free molecular flow regime in pipes a diffusive
transport process proportional to the pressure gradient but independent of density

w xis observed. Accordingly, the free molecular mass flow rate in pipes is 25

1 r 24 D P 2 p
3Ç s .M s a 13FM t /3 L RT

s .Deviation from this behavior is expected for finite-length pipes i.e., a g L g l by
s . s . w xa factor 1 y ca r L up to first order in a r L due to the end effects 46 , where c

is a constant. However, for free molecular flow in two-dimensional very long
s . s .1 r 2channels h g l g L , the flow rate asymptote s a value proportional to 1 r p

s . w xlog Kn as Kn ` 45, 48 . This logarithmic behavior is attributed to thee

w xdegenerate geometry of the two-dimensional channel 47 . For two-dimensional
schannels of finite length, the flow rate tends toward a finite limit see the

w x.discussion of D. R. Willis at the end of 45 . For ducts, the flow rate tends toward

a finite limit, thus resembling pipe flow behavior. This has been documented in the

w xexperiments of Gaede and verified by the linearized Boltzmann solutions 49 .
The variation of flow rate in a channel, obtained by DSMC simulations in the

transition and early free molecular flow regimes, is shown in Figure 2. The

volumetric flow rate data are presented at the average Knudsen number in the
s .channel corresponding to the mean pressure P between the inlet and outlet , and

it is nondimensionalized in the following form:

ÇQP
Q s 1 r 22s . s .y dP r dx h RT0

Çwhere Q is the volumetric flow rate per unit width of the channel, h is the channel

height, T is reference temperature, and R is the specific gas constant. The DSMC0

data is incorporated into the figure by plotting the mass flow rate data as a
Ç Çfunction of average Kn in the channel, since Mf QP. The error bars in the plot

correspond to maximum fluctuations in the global mass balance and statistical
s .scatter in pressure gradient dP r dx , which is used here as an accuracy criterion.

The Knudsen’s minimum is clearly captured by the DSMC results at Kn , 1.0. The

DSMC solution is compared with the semianalytic solutions of Cercignani and

w xDaneri 28 , where the linearized Boltzmann equations are solved with the BGK

w xmodel. Also, a comparison with numerical solutions of Huang et al. is shown 30 .
These solutions were obtained from the linearized Boltzmann equations with the

BGK model using the discrete ordinate method; the integrals involved were
s .approximated by various orders of Gauss quadrature n . It is seen that Cercignani

s .and Daneri’s results are recovered as the quadrature order n is increased. The

current DSMC results match the Boltzmann solution quite well up to Kn s 2.

Beyond this value, the DSMC results follow the n s 7 order quadrature solution in

w x30 , and subsequently asymptote to a constant value in the free molecular flow

regime, rather than increasing logarithmically. The reason for deviations of the
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Figure 2. Variation of normalized flow rate in a channel as a function of

Knudsen number. Comparisons are made between DSMC results and solutions

of the linearized Boltzmann equation.

DSMC data from the theoretical solution for infinitely long channels is obviously
s .the finite length of the channel L r h s 20 used in these simulations.

3.2.1 Velocity scaling. From DSMC results and solutions of the lin-

earized Boltzmann equation, it is evident that velocity profiles remain approxi-
s .mately parabolic for a large range of Knudsen number see Figure 3 . This is also

consistent with the analysis of Navier-Stokes and Burnett equations in long

channels as documented in Section 2.2. Based on this observation we can then start

with a parabolic velocity profile and write the dimensional form for velocity

distribution in a channel of thickness h:

2dP y y 2 y s Knv
s .U x, y s && , m , h , l y q q0 t / t /t / t /dx h h s 1 y b Knv

w s . xwhere & & dP r dx , m , h , l shows functional dependence of velocity on the pres-0

sure gradient, viscosity, channel height, and local mean free path. The temperature

is assumed to be constant and therefore the dynamic viscosity is also a constant.

The last term represents the contribution of the slip velocity, and it is given by Eq.
s .12 with U s 0. Assuming this form of velocity distribution, the average velocityw
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w s .xFigure 3. Velocity profile comparisons of the model Eq. 14 with DSMC

w xand linearized Boltzmann solutions 23 . Maxwell’ s first-order boundary
s .condition is shown with dashed lines b s 0 , and general slip boundary

s .condition b s y 1 is shown with solid lines.

Çs .in the channel U s Q r h can be obtained as

dP 1 2 y s Knv
s .U x s && , m , h , l q0t / t /dx 6 s 1 y b Knv

By nondimensionalizing the velocity distribution with the local average velocity, the

w s . xdependence on local flow conditions, && dP r dx , m , h, l , is eliminated. There-0

sfore, the resulting relation is a function of Kn and y only. Assuming s s 1 forv

.simplicity , we obtain

2
s . s . s .y y r h q y r h q Kn r 1 y b Kn

U s . s . s . s .U y, Kn ’ U x, y r U x s 14
s . s .1 r 6 q Kn r 1 y b Kn

w xA similar analysis has been performed by Piekos and Breuer 43 , who used the

first-order slip boundary conditions and subsequently separated this equation into

an x-dependent contribution and a y-dependent contribution to investigate the
s .breakdown of slip flow theory. Here, however, we will keep the form of Eq. 14 in

the following analysis. In Figure 3 we plot the nondimensional velocity variation
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obtained in a series of DSMC simulations for Kn s 0.1, Kn s 1.0, Kn s 5.0, and

Kn s 10.0. We have also included the corresponding linearized Boltzmann solu-

w xtions in 23 . It is seen that the DSMC velocity distribution and the linearized
s .Boltzmann solutions agree quite well. We can now use Eq. 14 and compare with

the DSMC data, by varying the parameter b, which for b s 0 corresponds to

Maxwell’s first-order and for b s y 1 to the second-order boundary condition in
s .the slip regime only. Here we find that for b s y 1, Eq. 14 results in an accurate

model of the velocity distribution for a wide range of Knudsen number. It is clear
that the slip velocity is slightly overestimated with our model for the Kn s 1.0 case.

To obtain a better slip velocity, we varied the value of the parameter b by

imposing, for example, b s y 1.8 for the Kn s 1.0 case. Although a better agree-

ment is achieved for the slip velocity, the accuracy of the model in the rest of the

channel is destroyed.

In Figure 4 we show the nondimensionalized velocity distribution along the
centerline and along the wall of the channels for the entire Knudsen number

regime considered here, i.e., 0.01 ( Kn ( 30. We have included in the plot data

for the slip velocity and centerline velocity from 20 different DSMC runs, of which
s .15 of them were for nitrogen diatomic molecules , and 5 of them were for helium

Figure 4. Velocity scaling at wall and centerline of the channels for slip and

w xtransition flows. The linearized Boltzmann solution of Ohwada et al. 23 is

shown by triangles, the DSMC simulations are shown by points. Theoretical

predictions of velocity scaling for different values of b are also shown.
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s .monatomic molecules . The differences between the nitrogen and helium simula-

tions are negligible and thus this velocity scaling is independent of the gas type.

w xThe linearized Boltzmann solution of Ohwada et al. 23 for a monatomic gas is

also shown in Figure 4 by triangles. This solution closely matches the DSMC
s . s .predictions. Maxwell’s first-order boundary condition b s 0 shown by solid line

predicts erroneously a uniform nondimensional velocity profile for large Knudsen

number. The breakdown of slip flow theory based on the first-order slip boundary

conditions is realized around Kn s 0.1 and Kn s 0.4 for the wall and the center-
line velocity, respectively. This finding is consistent with commonly accepted limits

w xof the slip flow regime 10 . The prediction using b s y 1 is shown by small-dashed

lines. The corresponding centerline velocity closely follows the DSMC results,

while the slip velocity of the model with b s y 1 deviates from DSMC in the

intermediate range for 0.1 - Kn - 5. One possible reason for this is the effect of

Knudsen layer: For small Kn flows the Knudsen layer is thin and does not affect
the slip velocity prediction too much. For very large Kn flows, the Knudsen layer

covers the channel entirely. However, for intermediate Kn values both the fully
s .developed viscous flow boundary layer and the Knudsen layer exist in the

channel. At this intermediate range, approximating the velocity profile to be

parabolic ignores the Knudsen layers. For this reason, the model with b s y 1

results in 10% error of the slip velocity at Kn s 1. However, the velocity distribu-
tion in the rest of the channel is described accurately for the entire flow regime.

3.2.2 Flow rate scaling. The volumetric flow rate in a channel is a
s .function of channel dimensions, fluid properties m , l , and pressure drop, and it0

can be written as

dP
ÇQ s ’ ’ , m , h , l0t /dx

For a channel of thickness h , using the Navier-Stoke s solution and the general slip
s .boundary condition 12 , we obtain

h3 dP 6 Kn
Ç s .Q s y 1 q 15t /12 m dx 1 y b Kn0

where Kn s l r h.
s .The slip model 12 gives good agreement with DSMC data and the linearized

Boltzmann solutions for the nondimensional velocity profile, but does not predict

w xthe flow rate correctly 39 . This is expected, as the Navier-Stokes equations are

invalid in this regime. In fact, the dynamic viscosity, which defines the diffusion of

momentum due to the intermolecular collisions, must be modified to account for

the increased rarefaction effects. The kinetic theory description for dynamic

viscosity requires m , l v r , where v is the mean thermal speed. Using mean free0

path l in this relation is valid as long as intermolecular collisions are the dominant
s .part of momentum transport in the fluid i.e., Kn g 1 . However, for increased

rarefaction, intermolecular collisions are reduced significantly and in the free

molecular flow regime only the collisions of the molecules with the walls should be
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considered. Therefore, in free molecular channel flow the diffusion coefficient
s . w xshould be based on characteristic length scale h channel height as m , hv r 46 .

Since the diffusion coefficient is based on l in the slip r continuum flow regime and

h in the free molecular flow regime, we propose to model the variation of diffusion

coefficient with the following formula:

1 1
m , r v s r v l

s . s .1 r h q 1 r l 1 q Kn

which can be simplified as

1
s . s .m Kn s m 160 t /1 q Kn

where m is the dynamic viscosity of the gas at a specified temperature and m is0

the generalized diffusion coefficient. The variable diffusion coefficient model

presented above is based on a simple analysis. Another point of view is to consider
s .the ratio of intermolecular collisions of the molecules f to the total number ofg

s .collisions per unit time i.e., sum of intermolecular and wall collisions f q f .g w

w x sFollowing 9 , the frequency of wall collisions in a channel section is with width w,
.height h, and length dx

1
s .f s nv2 h q w dxw

4

The intermolecular collision frequency in the flow volume is

v
f s nhw dxg l

where v is the mean thermal speed and n is the number density. Assuming that

w c h, the ratio of intermolecular collisions to total collisions becomes

f 1g
s .s 17

1f q f 1 q Kng w 2

This analysis has resulted in a correction to the continuum-based flow rate models,

similar to the variable diffusion coefficient model presented earlier, with the only
1difference of in front of the Kn term.
2

The increased rarefaction effects in our flow rate model can be taken into
s .account by introducing a correction expressed as rarefaction coefficient C Kn ,r

which is a function of Knudsen number. The flow rate is then obtained as

h3 dP 6 Kn h3 dP 6 Kn
Ç s . s .Q s y 1 q s y 1 q C Kn 18rt / t /12 m dx 1 y b Kn 12 m dx 1 y b Kn0
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s .where C Kn is a general function of Knudsen number. A possible model for C isr r

w s . s .x s .suggested by the aforementioned analysis Eqs. 16 and 17 in the form C Kn sr

1 q a Kn. If we assume that a is a constant in the entire Knudsen regime, the

enhanced flow rate in the slip flow regime will be given as

ÇM
2s . s .s 1 q 6 q a Kn q / / Kn

ÇMC

Çwhere M corresponds to continuum mass flow rate. This model becomes inaccu-C

rate for a nonzero value of a in the slip flow regime. Moreover, in the free r molec-
s .ular flow regime, for very long channels L c l c h there are no physical values

for a , since the flow rate increases logarithmically with Kn. For finite-length
s .channels the flow rate asymptote s to a constant value proportional to log L r he

s .see Figure 2 . Therefore, for finite-length two-dimensional channel flows, the

coefficient a should vary smoothly from zero in the slip flow regime to an

appropriate constant value in the free molecular flow regime. It is difficult to verify

this variation using the DSMC simulations due to the statistical scatter of the
DSMC method. However, progress can be made if we assume an approximate

value of a , which we denote by a , and determine the value of it for a specific gas

w xin a finite length channel. Such an analysis was performed in 39 for nitrogen flow

in a channel of length-to-height ratio L r h s 20, resulting in a s 2.2.

Using this approximate value we compare the predictions of the model for
s .mass flow rate versus DSMC results. By integrating Eq. 18 from the inlet to the

exit of the channel, we derive an expression for the mass flow rate per unit width:

3h P D P0Ç s . s .Ms P q 1 q 2 6 q a Kn 0
24 m RT L0 0

s .12 b q a P y b Kn 02 s .q Kn log 190 e t /P y 1 1 y b Kn0

swhere the subscript 0 refers to exit conditions, P s P r P inlet-to-exit pressurei 0

.ratio , and L is the channel length. The comparison of the corrected model with

the DSMC data is given in Figure 5. The model predicts Knudsen’s minimum

obtained by the DSMC calculations quite accurately at Kn f 1.0. Consistent with

the DSMC solutions, the model predicts a flow rate independent of Kn for the free
molecular flow limit. However, this constant flow rate for larger Kn is slightly
s .13% lower than the DSMC predictions. For comparisons with the model and the

DSMC data, we also plot the flow rate obtained by the continuum and the

first-order slip models in Figure 5. The continuum model behaves like 1 r Kn and

gives the wrong variation, while the slip flow model results in flow rate values three

times less than the DSMC calculations.
The corresponding free molecular mass flow rate of the new model can be

s .calculated using an asymptotic expansion of Eq. 19 in 1 r Kn as Kn ` . The

wresult is independent of both the Knudsen number and the pressure ratio since
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s .Figure 5. Variation of mass flow rate per pressure drop D P as a function

of exit Knudsen number in the channel. Knudsen’s minimum is captured by

the model at Kn , 1. Comparisons with the continuum and slip models are

also included.

s . s . xKn ` , P y 1 r b Kn g 1 , i.e.,0 0

2 1 r 2h p D P 6
Ç s .M s a 1 y 20FM t / t /12 2 RT L b

Having obtained the mass flow rate, the corresponding pressure distribution along

the channel can be obtained as

2 y s v2Ä Äs . s .P y 1 q 2 6 q a Kn P y 10t /s v

Ä2 y s P y b Kn xv 02s . s .q 2 6b q a Kn log s B 1 y 210 e t /t / t /s 1 y b Kn Lv 0

Ä s . s .where B is a constant such that P 0 s P r P s P . Here we have definedi 0

Ä s . s .P x s P x r P , i.e., the pressure at a station x normalized with the exit pressure.0
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ÄThe above equation provides an implicit relation for P. The pressure distribution

for a first-order boundary condition is obtained explicitly by neglecting the second-

w s 2 .x s .order terms / / Kn in Eq. 22 .

We also examine the differences in pressure between DSMC and m Flow

wpredictions by plotting the curvature in the pressure distribution i.e., the deviation
s . s .xfrom the corresponding linear pressure drop Py P r P in Figure 6, whereIC 0

P denotes the pressure of corresponding incompressible flow. The m Flow simula-IC

w s .xtion using the slip boundary condition of Eq. 5 predicts larger curvature in
pressure distribution than the DSMC results. The pressure distribution obtained by

the first-order boundary condition is shown by dashed lines and lies between the

m Flow and DSMC results. Our second-order slip model without the correction of
s .the rarefaction coefficient C s 1 q a Kn gives identical results to m Flow predic-r

s .tions. The corresponding continuum no-slip pressure distribution is also given in

the figure. The reduction in the curvature of the pressure distribution with
rarefaction is clearly demonstrated. Finally, the model that includes the rarefaction

s . s .coefficient C Kn shown by solid lines gives results closest to the DSMCr

solution. This shows the ability of the new model in predicting the pressure

distribution for channel flows. At higher Knudsen number, the curvature in the

sFigure 6. Deviations from linear pressure drop for nitrogen flow P s 2.28,
.Kn s 0.2 . Comparison of m Flow with the DSMC predictions and the new0

s .slip model b s y 1, a s 2.2 .
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pressure distribution is much smaller, with linear pressure drop observed as

Kn ` .

4 MODEL FOR PIPE AND DUCT FLOWS

The asymptotic value of flow rate for pipe and duct flows at high Knudsen

number is constant, and this offers the possibility of obtaining a model for the
s .rarefaction coefficient C Kn and in particular the coefficient a . The objective isr

s .to construct a unified expression for a Kn which represents the transition of a
from zero in the slip flow regime to its asymptotic constant value in the free

molecular flow regime. We will verify the velocity and new flow rate models using
s .available experimental data for pipes S. Tison, NIST, private communications , as

w xwell as numerical results obtained in 24, 49 for pipe and duct flows, respectively.

First, we derive a similar model for the pipe flow. Assuming a parabolic
s .velocity profile with the slip amount given by 12 , it is possible to obtain the

following equation:

2
s . s . s .U x, r y r r a q 1 q 2 Kn r 1 y b Kn

U s . s .U r, Kn s s 22
s . s .s . 1 r 2 q 2 Kn r 1 y b KnU x

where a is the pipe radius, and the Knudsen number is defined as Kn s l r a. We

compare the nondimensional velocity scaling with the linearized Boltzmann solu-

w xtion of 24 in Figure 7. The general slip coefficient is found to be b s y 1 as

w xbefore, consistent with the velocity profiles given in 24 for cases Kn s 0.1,

Kn s 1.0, and Kn s 10. The velocity profiles predicted with the first-order slip
s .model and the general slip model of Eq. 12 are also shown in Figure 7. It is seen

that the first-order model gives erroneous velocity distributions in the transitional

and free molecular flow regime. For example, for the Kn s 10 case an almost
s .uniform velocity distribution is predicted. However, the model of Eq. 12 predicts

accurately the velocity distribution in most of the pipe with a small error in the slip

velocity.

Next, we compare the flow rate model corrected as before by the rarefaction
s . w s .coefficient C Kn in a similar form obtained for channel flows C Kn s 1 qr r

xa Kn . The volumetric flow rate for a pipe is

p a4 dP 4
Ç s . s .Q s y 1 q a Kn 1 q 23t /8 m dx 1 y b Kn0

and the corresponding mass flow rate is

4p a P D P0Ç s . s .Ms P q 1 q 2 4 q a Kn0
16 m RT L0 0

s .8 a q b P y b Kn 02 s .q Kn log 240 e t /P y 1 1 y b Kn 0
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Figure 7. Nondimensional ve locity profile scaling in rarefied pipe flows. The

dots correspond to linearized Boltzmann solution of Loyalka and Hamoodi.

The first-order model corresponds to b s 0, the general slip model corre-

sponds to b s y 1.

Since b s y 1 is already determined from the linearized Boltzmann solution, the

only parameter to be determined in the model is a . However, a should vary from
s .zero in the slip flow regime to a constant asymptotic value a in the free0

molecular flow regime. It is possible to obtain the constant asymptotic value of a
s .as Kn ` by using the theoretical mass flow rate in the free molecular flow

s .regime given by Eq. 13 and the asymptotic value for the mass flow rate obtained
s .by 24 for Kn ` , as

64
s .a ’ a s 25Kn ` 0 s .3p 1 y 4 r b

w xWe can also compare our results with the formula derived by Knudsen 50 ,
s .which we normalize here with the corresponding free molecular flow limit 13 .

ÇM 3p 1 q 2.507 1 r Kns .Kn
s .s q 26

Ç 64 Kn 1 q 3.095 1 r KnM s .FM
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s .where Kn is computed at the average pressure Ps P q P r 2. The constantsi 0

w x2.507 and 3.095 are taken from Loeb 51 , where details of derivation of Knudsen’s

w x w xformula are presented. The same formula has also been used in 7 and 24 .

Due to the lack of detailed experimental data, we do not have exact values
s .for the pressure ratio P and thus we cannot use Eq. 24 directly. Instead, we

s .approximately integrate the volumetric flow rate equation 23 by multiplying it
with the average density in order to obtain the mass flow rate. The flow conditions

are evaluated at an average state. For example, the average pressure is defined as
s . s .P s P q P r 2 so that dP r dx s D P r L, and Kn is evaluated at P. The corre-i 0

sponding mass flow rate becomes

4p a P D P 4 Kn
Ç s . s .Ms y 1 q a Kn 1 q 27t /8 m RT L 1 y b Kn0

Nondimensionalizing this relation with the theoretical free molecular flow limit
s .13 , we obtain the following relation:

ÇM 3p 4 Kn
s .s 1 q a Kn 1 q 28s . t /Ç 64 Kn 1 y b KnMFM

s . s .Comparison of 26 and 28 shows both models predict the same limit in the free
s . s .molecular flow regime Kn ` if the value of a is chosen according to Eq. 250

s .a s 1.358 for pipe flows, i.e., a g l g L .0

Knudsen’s formula is often used to describe the flow for the entire flow
Ç Çregime, including the slip flow regime. Considering that M r M s 3p r 64 Kn,C FM

s .Knudsen’s formula can be written for the slip flow regime Kn ( 0.1 as

ÇM 64 Kn 2.507Kn 2s .s 1 q q // Knt /Ç 3p 3.095MC

where the subscript C stands for continuum predictions. This relation shows that
Knudsen’s formula is not accurate for the slip flow regime, as the first-order

variation of flow rate from the corresponding continuum limit should be

ÇMsl ip
s 1 q 4 Kn

ÇMC

If we used a constant a in the entire flow regime, our model would have resulted

in an undesired form, similar to Knudsen’s model in the slip flow regime. In order

to obtain the variation of a as a function of Knudsen number for the transitional
s .flow regime, we can solve for a from Eq. 28 as

Ç Ç64 M r M 1t /FM
a s y

Kn3p 1 q 4 Kn r 1 y b Kns .
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Ç swhere M is the flow rate data obtained numerically or experimentally and
Ç .normalized with M . The 1 r Kn behavior in this analytical expression makes itFM

difficult to predict the value of a for small Kn. Therefore, we must rely on

accurate numerical or experimental data. For this purpose we use the linearized

w x sBoltzmann solution of 24 and experimental data of S. Tison NIST, private
.communications . In Figure 8 we present the variation of a as a function of Kn

s . s .symbols . The value of a is initially small close to zero , and it gradually increases

with Kn, reaching a constant value in the free molecular flow regime. The physical
meaning of this behavior is that the dynamic viscosity remains the standard

diffusion coefficient in the early slip flow regime. The value of a increases slowly

with Kn in the slip flow regime, and therefore the effect of change of the diffusion

coefficient is second-order in Kn. For this reason, the experimental slip flow results

are accurately predicted by the slip flow theory, which does not require change of

the diffusion coefficient length scale from l to channel height h. The variation of
a as a function of Kn obtained by the numerical and experimental data can be

represented accurately with the following relation:

2 by 1 s .a s a tan a Kn 29t /0 1p

Figure 8. Variation of a as a function of Knudsen number. Analytical fit to
y 1 bs . s . sthis variation is obtained by a s a 2 r p tan a Kn a and b are free0 1 1

.parameters .
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s .where a is determined to result in the desired free molecular flow rate using 250

and a s 4.0, b s 0.4. This model is shown in Figure 8 with lines. Note that the1

values for a and b are the same for both the experimental and numerical results1

presented in the figure, and that these are the only two undetermined parameters

of the model.

In Figure 9 we present the flow rate variation as a function of Kn. The data is

obtained by the solution of linearized Boltzmann equations by Loyalka and

w x sHamoodi 24 for a very long channel so that h g l g L is maintained for any
.value of Kn . Knudsen’s two-parameter model is also presented. Experimental data

presented in the figure is obtained by Tison for helium flow in finite-length tubes
s .L r a s 200 . There are differences between the experimental and numerical data.

For example, the experimental data has not reached the corresponding free
s .molecular flow rate limit. At Kn s 200 highest Kn data in the experiments

L f l , and therefore end effects are important and the expected mass flow rate is

w xless than the theoretical free molecular flow rate 46 . Since the analytical and

experimental data show some differences, in the case of the experiments we found

the value of a s 1.19 by using the experimental data at Kn s 200. Also, for the0

s .linearized Boltzmann solution we obtained a s 1.358 using Eq. 25 . Our model’s0

Figure 9. Free molecular scaling of Loyalka and Hamoodi’s linearized

Boltzmann solutions and Tison’s experiments. Comparisons with the proposed

model for both cases and Knudsen’s model are also presented.
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predictions for the linearized Boltzmann solution and experimental data are also

presented in the figure. The model describes the variation of the data very
accurately, and it is successful in predicting the Knudsen’s minimum.

sIn Figure 10 we present the mass flow rate variation normalized with the
.corresponding continuum value as a function of Kn up to Kn s 0.5. This covers

the slip and the early transitional flow regime. We see that Knudsen’s model is not

accurate in this regime. Linearized Boltzmann solutions and experimental data
Ç Ç 2w s .xboth start with slope of 4 i.e., M r M s 1 q 4 Kn q / / Kn , then the slopeC

increases gradually with Kn. Our model predicts this transition very accurately for

the numerical and the experimental data. The increase in slope was observed by

w xSreekanth 13 and explained as a change in the slip coefficient in Maxwell’s slip

boundary conditions from 1.0 to 1.1466. If the change in the slope of the data is to

be explained by an increase in the slip coefficient, the velocity scaling results shown

in Figure 7 and Figure 3 should be affected. It is clearly seen that such an effect is
not present, and therefore a more appropriate explanation of the slope change is

the change in the diffusion coefficient with Kn as presented above .

Figure 10. Normalized flow rate variation in the slip and early transitional

flow regimes for pipe flows. Symbols correspond to the linearized Boltzmann

w xsolutions of Loyalka and Hamoodi 24 and experimental results by Tison.

Comparisons with the proposed model for both cases and Knudsen’s model are

also presented.



A MODEL FOR FLOWS IN CHANNELS, PIPES, AND DUCTS 69

Finally, we present the extensions of our model for duct flows in the entire
sflow regime. We consider flows in ducts with aspect ratios AR s w r h ’

.width r height of 1, 2, and 4. The data are obtained by linearized Boltzmann

w xsolution in ducts with the corresponding aspect ratios 49 . Our previous analysis

was valid for two-dimensional channels, where we reported flow rate per channel
swidth. For duct flows, three-dimensionality of the flow field due to the side walls

.of the duct must be considered. In continuum duct flows the flow rate formula

developed for two-dimensional channel flows is corrected in order to include the
blockage effects of the side walls. Correspondingly, the volumetric flow rate in a

s . s w x .duct with aspect ratio AR for continuum flows is see 52 , p. 120

wh3 dP
Ç s .Q s C AR yt /12 m dx

s .where C AR is the correction factor given as

`s . w s . x192 AR tanh ip r 2 AR
s . s .C AR s 1 y 30p5 5w 5p i

is 1, 3, 5, . . .

With this correction, aspect ratio 1, 2, and 4 ducts correspond to 42.17% , 68.60%,

and 84.24% of the theoretical two-dimensional channel volumetric flow rate for

continuum flows, respectively. According to our model, the volumetric flow rate for

rarefied gas flows in ducts should be given by

wh3 dP 6 Kn
Ç s . s .Q s C AR y 1 q a Kn 1 qt / t /12 m dx 1 y b Kn0

s .where the correction factor C AR is independent of Knudsen number. The
variation of a as a function of Kn is calculated by using the correction factors

w s .x w xC AR , the linearized Boltzmann solutions in 49 , and our model. This variation

w s . xis given in Figure 11. The rarefaction coefficient C Kn s 1 q a Kn was intro-r

duced in order to model the reductions in the intermolecular collisions of the

molecules as the Kn is increased. In duct flows both the height and the width of the
duct are important length scales, and comparison of these length scales to the local

mean free path is an important factor in the variation of a . It is seen in Figure 11

that the transition in a occurs later for high-aspect-ratio ducts, as expected.

Similar to the pipe flow case, an approximate analytical formula can be

derived to describe the mass flow rate in ducts of various aspect ratios as

ÇM 6 Kn
s .s C AR 1 q a Kn 1 qs . t /Ç 1 y b KnMC

where the Kn is evaluated at average pressure as before. In Figure 12 we present
the variation of flow rate nondimensionalized with the corresponding continuum

value as a function of Kn in the slip and early transitional flow regime. The linear
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Figure 11. Variation of a as a function of Kn for various aspect-ratio ducts.

increase of the flow rate with Kn, and complete description of rarefied duct flows
s .with the introduction of the correction factor C AR , is observed. The slope of the

nondimensionalized mass flow rate increases gradually with Kn. This is attributed
to the gradual change in the rarefaction coefficient as presented in Figure 11.

For the free molecular scaling of the data, we nondimensionalized the flow

rate with

h2 w D P
ÇM sFM

L2 RTX 0

which gives the correct order of magnitude for the flow rate. The exact value of the

w xfree molecular flow rate in rectangular ducts is given by 9 :

Ç Çs .M h , w s G MFM FM

2I 2h h w w
2 2í s .G s h w log q 1 q q w h log q 1 q 31XXe e t /t /

J
w w h h

3 r 22 2 3 3Ks .h q w h q w

ýy q

L3 3
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Figure 12. Normalized flow rate variation in the slip and early transitional
s .flow regimes for various aspect-ratio AR duct flows. Symbols are the

w xlinearized Boltzmann solution of Sone and Hasegawa 49 . Comparisons with

the proposed model are also presented by lines.

where h and w denotes the height and the width of the rectangular duct. For the
s .aspect ratios AR of 1, 2, and 4 the above relation results in 0.8387, 1.1525, and

Ç1.5008 M , respectively.FM

Nondimensionalizing our model with the free molecular mass flow rate
Çs .M , we obtainFM

Ç s .M C AR 6 Kn
s 1 q a Kn 1 qs . t /Ç 6 Kn 1 y b KnMF

In Figure 13 we present the variation of the nondimensionalized flow rate as a

w xfunction of Kn. The duct flow data is due to Sone and Hasegawa 49 , and the
s . s .two-dimensional channel data shown by AR s ` is due to Sone for Kn ( 0.17

s . w xand Cercignani Kn ) 0.17 53 . Comparisons are made against the linearized

Boltzmann solutions. For duct flows, good agreement of the model with the

numerical data in the entire flow regime is obtained. The model is also able to

capture Knudsen’s minimum accurately. The parameters used in the model are

given in Table 1. Note that a is determined from the asymptotic constant limit of0

s .flow rate 31 Kn ` .
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Figure 13. Free molecular scaling of Sone and Hasegawa’ s linearized Boltz-

mann solutions for duct flows of various aspect ratio. Comparisons with the

proposed model are also presented by lines.

5 SUMMARY AND DISCUSSION

In this article we have developed a simple physics-based unified model that

predicts the velocity distribution, the volumetric and mass flow rates, as well as the
s .pressure distribution in channel, pipe, and duct flows of general aspect ratio for

s .the entire flow regime i.e., 0 ( Kn - ` . This new model is a two-parameter

model and it is able to predict Knudsen’s minimum that occurs in the transitional
flow regime. We compared our model against Knudsen’s two-parameter model,

which is valid strictly for pipe flows and can only predict flow rate. Knudsen’s

model overpredicts the flow rate in the slip flow regime, and it does not provide

any information for the velocity or pressure distribution.

Table 1. Parameters of the model for various aspect-ratio duct flows.

The only free parameters are a and b , as a can be determined1 0

from the asymptotic constant limit of flow rate as Kn `

s . s .AR s w r h C AR a a b0 1

1 0.42173 1.7042 8.0 0.5

2 0.68605 1.4400 3.5 0.5

4 0.84244 1.5272 2.5 0.5
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w s .xThe proposed model is based on a general slip boundary condition Eq. 12 ,

which is used to represent the velocity distribution in channels and pipes for the
entire flow regime with reasonable accuracy. Modeling the velocity distribution as

parabolic is a good approximation in the continuum, slip, and free molecular flow

regimes. However, in the transition flow regime the model gives small deviations in

the predictions of slip velocity. This deviation is due to growth of the Knudsen

layer within the channel. A more accurate description of the velocity profile should

include this sublayer in the approximation. This requires an analytic description of
macroscopic flow properties in the Knudsen layer, which is currently not available.

Neglecting the Knudsen layer results to a maximum 10% error in the slip velocity

prediction at Kn s 1.0. However, the overall description of the velocity profile for

the rest of the channel is still accurate. Our general slip boundary condition

depends on the general slip coefficient b. For channel, duct, and pipe flows we

have determined that b s y 1. This choice of b corresponds to a second-order slip
boundary condition in the slip flow regime. We have compared our model against

DSMC simulations for monatomic and diatomic gas molecules and linearized

Boltzmann solution for monatomic molecules. It has been observed that the

universal velocity scaling and the value of b is unaffected by the gas type.

Flow rate modeling is based on the introduction of rarefaction coefficient in
s .the form C Kn s 1 q a Kn. The rarefaction coefficient models the effect ofr

reduced intermolecular collisions with increased Kn. The value of a in this
s .relation is determined by using the free molecular flow limit a . However, the0

coefficient a is required to be zero in-order to capture the slip flow regime

accurately. Therefore, a changes between zero in the slip, and a corresponding
s .constant value a for the free molecular flow regimes. The experimental and0

numerical data have supported this observation. We have calculated the variation

of a based on our model, and we have described this variation in the following
y 1 s b .form: a s a 2 r p tan a Kn . This form introduced two new parameters into0 1

our model, a and b , which are the two free parameters in the model. They1

describe the change of the slope of the normalized mass flow rate from the
s .theoretical slip flow value in the early transitional flow regime Kn ) 0.1 , and

these two parameters should be determined by comparisons with experimental or

numerical data.

We have also shown that the new model is able to predict the nonlinear

pressure distribution in channels by comparisons against the DSMC data in the

slip r early transitional flow regimes. For increased rarefaction effects the curvature

in pressure distribution decreases and the pressure distribution becomes almost
linear. This is true for pipe, duct, and channel flows in the free, molecular flow

regime, where the flow rate is independent of density.

All of the simulations performed in this study are based on diffuse reflection
s .i.e., accommodation coefficient s s 1 . Therefore, in this study we did notv

validate the variation of slip conditions and velocity scaling as a function of the

accommodation coefficient. In the future, studies of the unified model for nondif-
s .fuse i.e., s - 1 reflection cases should be performed. Since the velocity slip

amount is affected directly by the accommodation coefficient, nondiffuse reflection

cases can affect the mass and volumetric flow rate results significantly. Preliminary

w xexperimental results for silicon microchannels 19, 54 indicate tangential momen-
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tum accommodation coefficient s , 0.8, due to the relatively small surfacev

roughness obtained by microfabrication techniques.
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APPENDIX: BURNETT X ] Y MOMENTUM EQUATION

s . s .Burnett X-momentum equation in a long channel e s h r L including // e
terms:

2v v g p p2 6 0 22 2 s .P 1 y q Kn M Ux 0 0 yt / t /3 12 2 p

g p p v 7v v0 1 2 6
s U q e M Kn y q U UXyy 0 0 y yxw t / t /2 p 2 3 3

v 7v v1 2 6
q y q U Ux yy 5t /2 2 6

g p p v v v0 1 2 6
q e M Kn y q U VX 0 0 y yyt /w t /2 p 2 6 6

v v v1 2 6
s .q q q V U 32y yyt / 52 2 6
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g p p v v0 2 2
q e M Kn UU q VUX 0 0 yxy yyyt /t /2 p 2 2

s . s .y Re r UU y Re r UV yx

2g p p v 7v v0 1 2 62 2y e Kn M y q P U U0 0 y x yt /w t /2 p 2 2 6

v v s .2 2 32
q P UU q P VUy yx y yy 5 s .Cont.2 2

s .Burnett Y-momentum equation including / / e terms:

2v 2 v g p p6 2 0 22 2 s .P 1 q y Kn M Uy 0 0 yt /t /12 3 2 p

v 4 v g p p6 2 0
s y M Kn U UX 0 0 y yyt /t /6 3 2 p

g p p v0 2
s .q e y M Kn UU q U q VX 0 0 yx xy yyyt /t /2 p 2

2g p p v0 22 2 s .y e Kn M P VU q P UU0 0 x yy x xyt /w t /2 p 2

v v v1 2 6
q y q P V Ux y yt / 52 6 6

2g p p v0 22 2 s .q e Kn M P UU 330 0 y xyt /t /2 p 3


