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Abstract
Rarefied gas flows in thin film slider bearings are studied in a wide range of
Knudsen numbers (Kn) at low Mach number (Ma) with the objective of
developing simple physics-based semi-analytical models. A recently
developed modified slip boundary condition for steady plane Couette flows
and a generalized high-order velocity slip boundary condition, developed
and validated earlier for pressure-driven flows, are used to derive a modified
slip-corrected Reynolds lubrication equation in the entire Knudsen regime.
In particular, we present results of velocity profiles, pressure distribution and
load capacity for various slider-bearing configurations. In addition, we
outline a method to accurately predict the drag force induced by air
resistance to the track-access-motion of the sliders. The new model is
validated by comparisons with numerical solutions of the generalized
lubrication equation based on the two-dimensional linearized Boltzmann
equation and direct simulation Monte Carlo (DSMC) results available in the
literature. The model predicts the velocity profiles, pressure distribution,
load capacity and skin friction with good accuracy for a wide range of
Knudsen numbers for low subsonic compressible flows.

Nomenclature

b width of lubrication region
C1 first-order slip coefficients
Cm generalized slip coefficient
dvhs variable hard-sphere molecule diameter
D inverse Knudsen number,

√
π/(2Kn)

h plate separation
ho minimum lubrication thickness
H non-dimensional film thickness, h/ho

k modified Knudsen number, (
√

π/2)Kn
Kn Knudsen number, λ/h = Kno/(PH)

Kno outlet Knudsen number
L length of lubrication region
Ma Mach number
ṀP, ṀC Poiseuille and Couette mass flow rates
Pa atmospheric pressure
p pressure, ρRT

P non-dimensional pressure, p/Pa

Qcont continuum Poiseuille flowrate coefficient
QP Poiseuille flowrate coefficient

QP normalized flowrate coefficient, QP/Qcont

R specific gas constant
T temperature
To reference temperature
U0 lateral wall speed
u, v flow speeds
X, Y non-dimensional coordinate, x/L, y/h
x, y stream-wise and cross-flow directions
α rarefaction correction parameter
� bearing number, 6µU0L

/(
Pah

2
o

)
λ mean free path,

(√
2πnd2

vhs

)−1

µo dynamic viscosity, (2RTw/π)1/2ρoλ

µe effective viscosity
ν kinematic viscosity
πxy shear stress, normalized with free molecular value
θ angle of inclination of the slider bearing
ρ density
σv tangential momentum accommodation

coefficient
τxy shear stress
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Subscripts

c Couette
cont continuum
o reference
∞ free molecular

1. Introduction

Shear- and pressure-driven gas flows are encountered in several
MEMS applications like micro-motors, micro-accelerometers,
comb mechanisms and computer hard drives. Magnetic disk
storage devices used in most computers today utilize a flying
head slider suspended nanometers above the rotating recording
surface to support the read/write head. A thin gas-lubricated
film formed between the slider and the rotating disk is used to
maintain the spacing between them. In order to achieve higher
storage densities, the head is required to levitate progressively
closer to the spinning platter. A fundamental problem, arises
when the magnetic spacing in the slider bearing (h) becomes
comparable to the gas mean free path (λ). The ratio of
these two length scales is known as the Knudsen number
(Kn = λ/h), where finite values of Kn shows onset of
rarefaction effects. Based on the Knudsen number, we classify
gas flows as continuum (Kn < 0.01), slip (0.01 < Kn < 0.1),
transition (0.1 < Kn < 10) and free molecular (Kn > 10)

flow [1]. Current IBM disk drives with areal density of the
order of 12 Gbit in−2 have flying heights as low as 15 nm. An
extrapolated physical spacing trend line indicates that for ultra-
high density recording systems (100 Gbit in−2), a 5–10 nm
clearance between the head and floating media is required.
Considering that the mean free path for air is about 65 nm
at standard conditions, the current hard drives already operate
in the transition flow regime, while the next generation drives
will push this limit towards the free-molecular flow regime.
Therefore, development of lubrication models valid in a wide
range of Knudsen regimes is necessary.

Traditionally, the classical Reynolds lubrication equation
has been used to model slider bearings. The Reynolds equation
is derived starting from the Navier–Stokes equation with
the continuum no-slip boundary conditions [2]. However,
rarefaction effects are significant for gas flows in close
spacings and appropriate corrections to the Reynolds equation
are necessary. Burgdorfer [3] derived a modified Reynolds
equation valid strictly in the slip flow regime, by including
a first-order velocity slip boundary condition in the original
Reynolds equation. Similarly, Hsia and Domoto [4] performed
a series of experiments for 0.04 < Kn < 2.5 using different
gases in order to change the mean free path, with bearing gaps
of 0.075 µm � h � 1.6 µm. They also derived a second-order
slip boundary condition and compared experimental results
with the predictions of the Reynolds equation employing their
second-order boundary condition for a Winchester type slider
mechanism.

Slider-bearing flows in the transition and free molecular
flow regimes have been extensively investigated using the
linearized Boltzmann equation and atomistic simulation
methods such as DSMC. Gans [5] utilized the BGK linearized
Boltzmann equation and derived an approximate lubrication
equation using the method of successive approximations. He

concluded that the results of the modified Reynolds equation
with the first-order slip boundary condition were equivalent
to the solution of his approximate lubrication equation. This
prompted Fukui and Kaneko [6] to derive a more accurate
generalized lubrication equation valid for arbitrary Knudsen
numbers using the linearized Boltzmann equation. The
generalized lubrication equation is a flowrate-based model and
is obtained by semi-numerically calculating the fundamental
flows in the lubrication film: Poiseuille, Couette and thermal
creep flows. They have shown that the first-order and the
second-order (slip-based) Reynolds equations cannot be valid
for Kn � 1. Utilization of atomistic simulation methods such
as DSMC for the analysis of ultra-thin gas lubrication problems
was initiated by Alexander et al [7]. For low subsonic
slider motion, they found good agreement between their hard-
sphere DSMC results and the predictions of the generalized
lubrication equation. More recently, Huang and Bogy [8] used
the DSMC method to simulate gas flows in a three-dimensional
slider bearing with Knudsen numbers as large as 35. Using
DSMC, Liu and Ng [9] studied the effects of slider posture
(attitude of flying head) and disk speeds on slider-bearing
performance. However, the computational complexity and
storage requirements associated with the DSMC method or
the linearized Boltzmann equation solvers are prohibitive and
often inappropriate for the engineering analysis. It is therefore
desirable to develop analytical or semi-analytical models,
which can accurately describe rarefied gas flow characteristics
in close-spaced slider bearings.

In this paper, we develop self-consistent semi-analytical
slip models to accurately predict the velocity profiles and
lubrication characteristics in ultra-thin gas lubricating films.
Earlier efforts [4, 10–12] to derive uniformly valid slip-
corrected Reynolds equations using high-order or arbitrary
forms of the slip boundary conditions had limited success.
These previous studies resulted in accurate predictions of
the pressure distribution and integral quantities like the load
capacity. However, they were not able to accurately model the
velocity distribution in the lubricating film or predict the shear
stress. As a result, these models cannot be used to compute the
skin friction acting on the runner and slider surfaces separately.
(Note that a momentum balance on a control volume will give
the total drag force.) Estimation of the skin friction variation is
important for robust head-suspension design and to minimize
actuator power consumption in hard disk drives. The proposed
models can be used to provide a further understanding of the
coupled effects of geometry, lateral disk speeds and pressure
on performance of the slider bearing, and hence can be utilized
for an optimized microfluidic design prior to the fabrication
of magnetic hard disk drives and experimental verification.
Although the viewpoint of this paper is specific to ultra-thin
gas lubrication applications, we emphasize that the model
framework can be used to investigate prototype gas flow
applications involving combinations of shear and pressure-
driven flows. The framework can also be extended to solve a
larger class of lubrication problems with varying geometries
and surface motion.

This paper is organized as follows: first we describe
the fundamental flows in lubricating films, excluding the
thermal creep flow. Our modeling approach utilize the Navier–
Stokes equations with modified slip boundary conditions and
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physical coefficients. We subsequently derive a modified slip-
corrected Reynolds-type lubrication equation. The pressure
and load capacity characteristics of the slider bearing are then
obtained from numerical solutions of the modified Reynolds
equation. The proposed model is validated in different
rarefaction regions for a wide range of bearing numbers
by comparisons with solutions of the generalized molecular
lubrication equation and DSMC simulation results. Finally,
we outline the procedure to obtain the actual velocity profiles
and skin friction in the slider bearing and conclude with a
summary and discussion of our results.

2. Models for fundamental flows

In this section, we first briefly review a unified model for the
plane Couette flows developed in an earlier work [13]. We
then develop a uniformly valid flow model for the Poiseuille
flows between parallel plates, following the analysis presented
by Beskok and Karniadakis [14] for pressure-driven pipe and
duct flows. Special emphasis is placed on accurately modeling
the velocity distribution and shear stress in the entire Knudsen
range.

2.1. Couette flows

We consider rarefied gas flow between two infinite parallel
plates separated by a distance h, and moving with a uniform
velocity of ±U0. Gas flow in the slip flow regime (0.01 <

Kn < 0.1) is governed by the Navier–Stokes equations and
the rarefaction effect is modeled through the partial slip at the
wall using Maxwell’s velocity slip boundary condition [15]
given by

u − U0 = 2 − σv

σv

C1λ
du

dy
(1)

where u is the gas slip velocity, C1 = 1.111 is the first-
order slip coefficient due to Ohwada et al [16] and σv is
the tangential accommodation coefficient (σv = 1 for diffuse
reflections and σv = 0 for specular reflections). In recent
work [13], we demonstrated that the first-order slip model
resulted in significant error in the velocity profile in the
transitional and free molecular flow regimes. Hence, we
developed a unified model for shear-driven gas flows that
included analytical expressions for the velocity distribution
and shear stress. The velocity model is based on the following
modified slip boundary condition, and it accurately predicts
the bulk flow velocity distribution for Kn < 12 [13]:

u − U0 = 2 − σv

σv

Cmλ
du

dy

Cm = β0 + β1 tan−1(β2Knβ3)

(2)

where Kn = λ/h, and β0 = 1.2977, β1 = 0.718 51, β2 =
−1.174 88, β3 = 0.586 42 are empirical coefficients. The
generalized slip coefficient (Cm) can be viewed as a correction
term applied to extend the validity of the original Maxwell’s
first-order slip boundary condition (equation (1)). Note
that the modified slip boundary condition converges to the
first-order slip model for Kn < 0.1. Starting from the
Navier–Stokes equations, and assuming steady fully developed
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Figure 1. Velocity profiles for linear Couette flow in the upper half
of the channel at k = 0.1, 1.0 and 10.0. The wall speed corresponds
to Ma = 0.05.

incompressible flow, the streamwise momentum equation can
be reduced to

d2u

dy2
= 0. (3)

Using the modified slip boundary condition given by
equation (2), we obtain the following linear velocity
distribution (uc):

uc(y) = 2U0

1 + 2 2−σv

σv
CmKn

y

h
. (4)

In figure 1, we present velocity profiles for linear Couette flow
in the upper half of the channel at three different Knudsen
numbers. The linearized Boltzmann solutions (triangles)
and DSMC (circles) agree quite well, and they both predict
essentially linear velocity distribution in the bulk flow with
significant slip effects for increased Kn. The Knudsen layers
are also visible in the figure. The predictions obtained by the
new model (solid lines) and the first-order slip model (dashed
lines) are also shown in figure 1. Unlike the first-order model,
the unified model accurately matches the velocity profile in
the bulk flow region for a wide range of the Knudsen numbers.
The new slip model is strictly valid for low subsonic flows
with the Mach number Ma � 0.3. A more detailed discussion
on model validation and limitations can be found in [13].

Shear stress for the Couette flows exhibits two distinct
behaviors in the continuum and free molecular flow regimes.
Using the classical constitutive laws utilized in the Navier–
Stokes equations, shear stress for the plane Couette flow is
given by

τxy,cont = µ
du

dy
= −µ

2U0

h
(5)

where the viscosity µ = (2RTw/π)1/2ρoλ does not depend
on pressure, and the minus sign is due to direction of the
shear stress on the fluid. Hydrodynamic approximation of
shear stress is proportional to the velocity gradient (angular
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deformation rate for 1D flow). This representation is also
valid in the slip-flow regime with appropriate velocity slip
corrections. In the free molecular flow regime, the shear stress
is proportional to the density and relative velocity of the plates,
and it is given by [17]

τxy,∞ = −ρoU

√
2RTw

π
. (6)

We developed an empirical shear stress model [13] that is
accurate in the entire Knudsen regime (0 < Kn < ∞) as
shown below

πxy = − aKn2 + 2bKn

aKn2 + cKn + b

a = 0.5296 b = 0.6029 c = 1.6276

(7)

where πxy is the shear stress normalized with the free
molecular shear stress. The model uniformly converges to the
correct continuum (Kn → 0) and free molecular (Kn → ∞)

limits, enabling consistent asymptotic expansions in both the
continuum and free molecular limits.

2.2. Poiseuille flows

The Navier–Stokes level constitutive equations along with the
appropriate velocity slip boundary conditions can be used to
model pressure-driven flows in the slip and early transitional
flow regimes. A number of investigators have considered semi-
analytical or numerical solutions of the linearized Boltzmann
equation to investigate the Poiseuille flow between two parallel
plates in the transition and free molecular flow regimes.
Cercignani and Daneri [18] obtained accurate numerical
solutions of the BGK Boltzmann equation for the Poiseuille
flow problem. Other investigators have derived solutions based
on the hard-sphere and Maxwellian models for the collision
integral [19–21]. In previous work, Beskok and Karniadakis
[14] developed unified flow models for pipes and ducts
under pressure-driven flow conditions. Using the following
generalized high-order velocity slip boundary condition, they
developed a physics-based empirical flow model, which
predicts the velocity profile, flowrate and pressure distribution
in pipes and rectangular ducts in 0 < Kn < ∞ [14]:

us − uw = 2 − σv

σv

[
Kn

1 − boKn

(
∂u

∂y

)
s

]
(8)

where bo is a generalized slip coefficient [14] and bo = −1
for the Poiseuille flows. Note that equation (8) with bo = 0
corresponds to Maxwell’s first-order slip boundary condition.

We consider rarefied gas flow between two infinite
stationary parallel plates, separated a distance h. We
investigate steady one-dimensional pressure-driven flow
induced between the plates subject to the following
assumptions:

1. Gas molecules undergo diffuse reflections with the walls.
2. Driving pressure gradient is small. Hence, non-

equilibrium effects due to large pressure fluctuations are
negligible.

3. Temperature fluctuations and viscous heating effects are
negligible.

Further assuming fully developed flow, the streamwise
momentum equation reduces to

dp

dx
= µ

d2u

dy2
. (9)

The velocity distribution uP(y) obtained by integrating
equation (9) using the generalized velocity slip boundary
condition given by equation (8) is

uP = − h2

2µ

dp

dx

[
Kn

1 + Kn
+

(
y

h

)
−

(
y

h

)2]
. (10)

Although equation (10) acurately predicts the shape of the
velocity profile, it cannot predict the correct magnitude of the
velocity distribution in the transition and free molecular flow
regimes. This is expected as the Navier–Stokes equations
are invalid in these regimes. In fact, the dynamic viscosity,
which represents diffusion of momentum due to intermolecular
collisions must be modified to account for the increased
rarefaction effects in the transition and free molecular flow
regimes. Beskok and Karniadakis derived the following
expression for the generalized diffusion coefficient from first
principles [14]:

µ(Kn) = µo

(
1

1 + αKn

)
(11)

where µo is the dynamic viscosity of the gas at a specified
temperature, α is a rarefaction correction parameter that can
be obtained from theory and simulations or experiments, and
α depends on the geometry (pipes, ducts and 2D channels), the
Knudsen number and the surface accommodation coefficient.
The generalized diffusion coefficient is introduced into
equation (10) to model the rarefaction effects. The velocity
distribution is then obtained as

uP = − h2

2µo

dp

dx
(1 + αKn)

[
Kn

1 + Kn
+

(
y

h

)
−

(
y

h

)2]
. (12)

We can construct a unified shear stress model for the plane
Poiseuille flows using the Navier–Stokes level constitutive
equations with modified physical coefficients, such as the
generalized diffusion coefficient. Combining equations (10)
and (11), we can write the Poiseuille flow shear stress as

(τxy)Poiseuille =
(

µo

1 + αKn

)(
dup

dy

)
y=h

. (13)

On simplification the shear stress becomes

(τxy)Poiseuille = h

2

dp

dx
(14)

which in essence states that for a fully developed flow, pressure
drop along a channel balances the shear stress on the channel
surface. It may seem that equation (14) is independent of the
Knudsen number. However, the pressure gradient is a strong
function of the degree of rarefaction as will be demonstrated
later in this paper.

Using the velocity distribution given by equation (12), the
following equation for the volumetric flowrate (per channel
width) is obtained:

Q̇P = − h3

12µo

dp

dx
(1 + αKn)

[
1 +

6Kn

1 + Kn

]
. (15)

Normalized with the continuum volumetric flowrate (Qcont):

QP = Q̇P

Qcont
=

[
1 +

6Kn

1 + Kn

]
(1 + αKn). (16)
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Figure 2. Variation of the Poiseuille flowrate coefficient QP as a
function of the exit inverse Knudsen number. Comparisons of our
model with the linearized Boltzmann solution and predictions of
other slip models are also shown.

Table 1. Variation of the rarefaction correction parameter (α) with
inverse Knudsen number (D) for σv = 1 conditions.

D α (σv = 1) D α (σv = 1) D α (σv = 1)

100 0.95113 8 1.6462 0.3 1.7644
90 0.9620 7 1.3696 0.25 1.8014
80 0.9729 6 1.3822 0.2 1.8506
70 0.9836 4 1.4714 0.15 1.9231
60 0.9942 3 1.5061 0.1 2.0406
50 1.0167 2 1.5424 0.09 2.0733
40 1.1562 1 1.5999 0.08 2.1115
35 1.0633 0.9 1.6095 0.07 2.1572
30 1.0870 0.8 1.6206 0.06 2.21103
25 1.1202 0.7 1.6353 0.05 2.2768
20 1.1658 0.6 1.6537 0.04 2.3623
15 1.2235 0.5 1.6786 0.03 2.4758
10 1.3065 0.4 1.7126 0.02 2.6460
9 1.3260 0.35 1.7352 0.01 2.9768

The rarefaction correction parameter, α, was obtained by
matching the flowrate model given by equation (16) with
the Poiseuille flowrate database obtained via the solution of
a two-dimensional Boltzmann equation in [22]. Note that
α is a function of both the Knudsen number and surface
accommodation coefficients. A database of α values for
σv = 1 is given in table 1. Figure 2 compares the Poiseuille
flowrate coefficient (Qp) calculated using different theories.
The proposed model uniformly matches the flowrate in the
entire Knudsen number regime and accurately predicts the
Knudsen minimum at Kn = 1.005. The figure indicates that
the second-order slip model is a better approximation than the
first-order slip model to the Fukui and Kaneko [22] database
in the slip-flow regime. All the models uniformly approach
the same limit as the inverse Knudsen number, D → ∞.
However, the difference between the various models increases
as D → 0.

Solution of linearized Boltzmann equation in a two-
dimensional channel results in a logarithmic increase in the
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Figure 3. Non-dimensional velocity profiles
(U ∗ = up/(

√
RT

2
h

Pa

dp

dx
)) of the plane Poiseuille flow in the upper

half of the channel for k = 0.1, 1.0 and 10.0.

flowrate with increased Kn in the free molecular flow limit [22].
This unbounded increase in flowrate is contrary to the three-
dimensional behavior, where the duct and pipe flows reach
an asymptotic constant flowrate in the free molecular flow
limit. This has been documented in the experiments of Gaede
[23] and Tison [24] and verified by linearized Boltzmann
solutions [20, 25, 26], as well as the DSMC simulations
[14]. As a result, the applicability and the accuracy of the
Poiseuille flowrate database obtained via the solution of a two-
dimensional Boltzmann equation is open to some speculation.
Therefore, we expect our model to exhibit some physical
limitations in the free molecular flow regime. Our particular
choice of using the Fukui and Kaneko database is due to its
use as the current industry standard for air bearing design. We
must note that our flowrate model can be trained to match any
database by suitably changing the value of α, as demonstrated
in [14].

In figure 3 we plot the non-dimensional velocity
(
U ∗ =

up

/(√
RT
2

h
Pa

dp

dx

))
variation in the upper half of the channel

obtained using the proposed model for k = 0.1, 1.0 and
10.0, where k = (

√
π/2)Kn is a modified Knudsen number.

Note that this choice of non-dimensionalization removes the
dependence of velocity distribution on local flow conditions.
It also captures both the magnitude and shape of the velocity
distribution. We also included the corresponding linearized
Boltzmann solutions obtained in [20]. From the linearized
Boltzmann solution in figure 3, it is evident that the velocity
profiles are approximately parabolic for a large range of
Knudsen numbers. This is also consistent with the form of
the velocity model derived from the Navier–Stokes equation
and given by equation (12). Here we find that equation (12)
accurately predicts the shape and the magnitude of the
velocity distribution for a wide range of Knudsen numbers.
Velocity profile predicted by the first-order slip condition
significantly deviates from the linearized Boltzmann solution
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Figure 4. Schematic of the slider-bearing geometry. Streamwise
location of the load capacity Xc is also shown.

as the Knudsen number increases. The second-order slip
model also becomes invalid beyond Kn = 0.1 as shown by
Fukui and Kaneko [6].

3. Modified slip-corrected Reynolds equation

Reynolds equation is derived starting from the Navier–Stokes
equations. For simplicity, we analyse two plates with a small
gap between them. The upper plate is placed with a slight
angle, θ (typically less than 1◦), with respect to the lower plate,
while the latter is moving from left to right with a velocity U0,
as shown in figure 4. We assume that the plate length L is
much larger than the magnetic separation ho and that the plate
width b is much greater than ho. Hence, the flow in the slider
bearing is two dimensional.

To obtain the modified slip-corrected Reynolds equation,
it is necessary to accurately estimate the massflow rate (Ṁ)

in the lubrication film. If temperature variations in the system
are neglected, thermal creep effects can be ignored. Then, we
can use the linearity of the momentum equation to express the
velocity distribution u(y), and hence the mass flowrate Ṁ as
the sum of the Poiseuille and Couette flow components

u = uP + uC Ṁ = ṀP + ṀC

where uP and uC denote the plane Poiseuille and Couette
flow velocities, respectively, while ṀP and ṀC represent the
massflow rates. Superimposing the velocity distribution of the
Poiseuille and Couette flows we obtain

u(y) = − h2

2µo

dp

dx
(1 + αKn)

[
2 − σv

σv

Kn

1 + Kn

+

(
y

h

)
−

(
y

h

)2]
+

1 + CmKn − y

h

1 + 2CmKn
. (17)

Using the velocity distribution given above and the local
density (ρ), the following equation for the mass flowrate (per
channel width) is obtained:

Ṁ = − ρh3

12µo

dp

dx
(1 + αKn)

[
6Kn

1 + Kn
+ 1

]
+

1

2
ρUoh. (18)

Since the flow is assumed isothermal and in
thermodynamic equilibrium, the density can be written as a
function of the pressure using the equation of state ρ = P/RT .
Note that the mass flowrate is a function of the pressure
gradient, which is unknown. Furthermore, the left-hand side

of equation (18) is a constant, but the right-hand side is a
function of x. Taking the gradient of equation (18), we
obtain the modified slip-corrected Reynolds equation for one-
dimensional steady flow

∂

∂x

[
(1 + αKn)

(
1 +

6Kn

1 + Kn

)
h3p

dp

dx

]
= 6µo

∂

∂x
(phUo) .

(19)

Since the spatial variation of channel height (h) is known,
the pressure is the only unknown in this equation. The terms
in the two parentheses on the left and right of equation (19) are
proportional to the mass flowrate per channel width (divided
by RT ) in the plane Poiseuille and Couette flows, respectively.
Note that the flowrate of the linear Couette flow is independent
of Kn. The Reynolds equation can be non-dimensionalized by
normalizing the pressure using the ambient pressure Pa , and
the length-scales in the x- and y-directions with channel length
L and ho, respectively. This results in the non-dimensional
modified Reynolds equation

∂

∂X

[
(1 + αKn)

(
1 +

6Kn

1 + Kn

)
H 3P

dP

dX

]
= �

∂

∂X
(PH).

(20)

Note that Kn represents the local Knudsen number and is
related to the outlet Knudsen number Kno as Kn = Kno/(PH).
Using equation (16) we can rewrite the above equation as

∂

∂X

[
QpH 3P

dP

dX

]
= �

∂

∂x
(PH). (21)

In fact this is the form of the generalized Reynolds equation
derived by Fukui and Kaneko using the linearized Boltzmann
equation [6]. However, their approach solely depends of
Qp and does not result in analytical expressions for the
velocity profile and the shear stress unlike the current model.
The continuum Reynolds equation can be obtained from
equation (20) by setting Kn = 0. The first-order slip Reynolds
equation proposed by Burgdorfer [3] can also be deduced
from equation (20).

4. Lubrication characteristics

A number of different slider-bearing configurations were
analysed using the modified slip-corrected Reynolds equation.
The ratio of the inlet to exit plate separation, H1/Ho, was
fixed at two to one, and the effect of Knudsen number and
bearing number on lubrication characteristics was examined.
The ambient pressure Pa at the inlet and exit boundaries
is atmospheric, while the temperature To = 273 K. In the
calculations, we used a second-order finite difference scheme
to discretize equation (20). The discretized equations were
solved using a direct iteration method, also called Picard’s
method. We used 400 equally spaced nodal points along
the slider length. All calculations were performed to double
precision accuracy (16 significant digits). In addition we
monitor the residuals of the global conservation of mass.
The results presented in this work conserve mass with 99.95%
accuracy. The results were also tested for grid independence
by increasing the resolution of grid points in the x-direction.
In order to validate our model with the existing DSMC results
available in the literature [7] and the numerical solutions of
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the generalized lubrication equation, we consider the following
cases:

(a) Kno = 1.25,� = 61.6
(b) Kno = 1.25,� = 758
(c) Kno = 4.167,� = 1264.

The Reynolds lubrication equation with first-order slip model
[3] and the Fukui and Kaneko model [6] were solved
numerically using a shooting method that employs a fourth-
order Runge–Kutta scheme.

4.1. Pressure distribution

When the gas pressure is ambient, the minimum magnetic
spacing of the slider bearing in case (a) is 50 nm. The
corresponding DSMC simulation in [7] uses a slider bearing
of length L = 5 µm and a platter speed U0 = 25 m s−1 to
obtain a bearing number � = 61.6. This translates to the Mach
number Ma = 0.08. As the slip-corrected Reynolds equations
are valid for only low subsonic flows (typically Ma < 0.3),
this is an ideal test case to validate the model. Also, unlike
the DSMC simulations we consider slider bearings of infinite
width. Hence, end effects and side flows cannot be accounted
for. In figure 5(a), solution of the modified slip-corrected
Reynolds equation is compared with predictions of other
Reynolds lubrication equations and pressure data obtained
from the DSMC simulations of Alexander et al [7]. As evident
from figure 5 an impressive agreement is found between
the proposed model prediction, particle-based simulation
results and numerical solutions of the generalized lubrication
equation. However, the pressure profile predicted by the first-
order slip model exhibits significant deviations from the
DSMC data and Fukui and Kaneko’s model as expected. The
second-order slip model also results in considerable errors in
the pressure profile as shown in [9].

Next, we consider a slider bearing with an identical
geometric configuration as in case (a). Also, we retain the
same value of Knudsen number Kn = 1.25, but increase the
bearing number to � = 758. The DSMC simulations [7] use
very high platter speeds corresponding to the Mach number
Ma = 1.0. Surprisingly, the pressure profiles predicted by
different models are very similar, as seen in figure 5(b). This
is because of the relatively high-bearing number used in this
case. Bearing number is the ratio of Couette and Poiseuille
flow rates, as evident from equation (21). Consequently, for
high-bearing numbers the plane Couette flow is the dominant
flow in the lubricating film. Under these conditions, we
can expect the pressure profiles, predicted by the generalized
lubrication equation and the Reynolds equation with first-
order slip condition to be nearly similar, because of identical
terms representing the Couette flows in both models. In
the third case, we consider a highly rarefied gas flow with
Kno = 4.167 and a high � = 1264. Under these conditions,
the minimum magnetic spacing ho = 15 nm and the Mach
number corresponding to the platter speeds is Ma = 0.5. The
next generation hard drives with ultra-high storage densities
would require slider bearings with a similar configuration
as in case (c). Again, the solution of the modified slip-
corrected Reynolds equation is in good agreement with the
Fukui–Kaneko solution and DSMC data. Pressure profile
resulting from the first-order slip correction is in fair agreement
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Figure 5. Slider-bearing pressure profiles for different Knudsen
number and bearing number combinations.
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Figure 6. Pressure distribution in the slider bearing for various
combinations of the inverse Knudsen number Do and bearing
number �, predicted using the modified Reynolds equation.

with the other models despite the large Knudsen number,
because of the high-bearing number used. This behavior is
better understood by considering the asymptotic solution of
the pressure as � → ∞. Following Gross et al [2], we find
that the pressure distribution for a slider-bearing uniformly
converges to P × H = constant as � → ∞.

We can now use the modified Reynolds equation to
investigate the lubrication characteristics in different slider-
bearing configurations. In figure 6, we present the variation
of pressure distribution with the inverse Knudsen number Do

and bearing number �. At fixed Kno, the pressure distribution
increases as the bearing number increases and asymptotes to
a solution of a slider bearing with infinite � as shown in
figure 6(a). In figure 6(b) the bearing number is fixed at
� = 10. As a result, the contributions of the Poiseuille
flow component is important. The pressure distribution
increases as the gas flow in lubricating film approaches
continuum conditions from the free molecular flow conditions.
The pressure profiles uniformly asymptote to the continuum
solution as Do → ∞.
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Figure 7. Normalized load carrying capacity as a function of the
bearing number at Do = 0.5.

4.2. Load capacity

The load capacity of a slider bearing is representative of the
vertical force acting on the flying slider as shown in figure 4.
It is an integral quantity obtained directly from the pressure
distribution. The read/write functionality of the flying head is
a critical function of the magnetic spacing. While its sensitivity
exponentially reduces with increasing spacing, a very small
flying height can make the read/write head to accidentally
scratch or crash into the spinning recording medium. Special
emphasis is placed during design to appropriately balance the
forces in the vertical and horizontal directions to minimize
spacing fluctuations during the operation. Accurate prediction
of load capacities is also important for design of the suspension
system supporting the read/write head.

The vertical load acting on the upper surface of the slider
bearing can be obtained from the load carrying capacity W ,
defined as

W = w′

PaLb
= 1

PaLb

∫ 1

0
(P − 1) cos θ dX. (22)

However, as the angle of inclination is small, typically less
than 1◦, the surfaces can be assumed to be nearly parallel.
Consequently the gas pressure P is constant in the vertical
direction and the normalized load capacity becomes

W = 1

PaLb

∫ 1

0
(P − 1) dX. (23)

It is important to note that this definition of load capacity
is valid only for bearings with low subsonic slider motion
that ensures equilibrium conditions [7]. Figure 7 shows the
relationship between the load carrying capacity and the bearing
number when the inverse Knudsen number at the outlet is
kept constant at Do = 0.5. The load capacity obtained from
the modified Reynolds equation accurately matches the Fukui
and Kaneko model predictions for a wide range of bearing
numbers. Note that all models converge to the same asymptotic
constant when � → ∞. This is also obvious from the
behavior of pressure distribution for large bearing numbers
discussed in the previous section. However for smaller bearing
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numbers, the first-order slip model over-estimates the load
capacity while the second-order model under-estimates it.
This is expected because the pressure-driven flow component
is dominant for lower bearing numbers, and the lower order
slip models cannot accurately model the Poiseuille flows in
the transition and free molecular flow regimes. In figure 8, we
plot the load capacity predicted by various models in different
rarefaction regimes. The bearing number is kept constant at
� = 10. All models uniformly converge to the well-defined
continuum limit as Do → ∞. The current model uniformly
matches the Fukui and Kaneko model for a wide range of
Knudsen numbers. The first- and second-order slip models
accurately predict the load capacities in the slip flow regime,
but systematically deviate from the Fukui and Kaneko model
for Do < 1. Pronounced differences between the models
are observed for higher Knudsen numbers because of the
low bearing number used. It can thus be concluded from
figures 7 and 8 that the effect of Knudsen number on load
capacity decreases as the bearing number increases.

The streamwise location of the load capacity, Xc, is
the focal point of the resultant pressure acting on the slider
surface. In [9], Liu and Ng computed Xc for slider bearings
with varying angle of inclinations. It is an important
design calculation because the pivot point between the head-
suspension and the slider should be placed at the streamwise
location of the load capacity, Xc. A flexure or a gimbal with
low roll or pitch stiffness but high lateral and vertical stiffness
acts as the pivot between the head-suspension and the slider.
Following Liu and Ng, we define Xc as [9]

Xc =
∫ 1

0 (P − Pa)X dX∫ 1
0 (P − Pa) dX

. (24)

The numerical pressure data were used to evaluate the integrals
in the numerator and the denominator of the above expression.
In figure 9, we plot the variation of Xc with the Knudsen and
bearing numbers. When the bearing number is held constant
at � = 10, the streamwise location of the load capacity moves

away from the center of the slider towards the exit as Do

increases. A similar behavior is observed when the inverse
Knudsen number is fixed at Do = 1.4 and the bearing number
is increased. For the combination of bearing number and
Knudsen number cases presented in figure 9, the value of Xc

lies between 0.55 and 0.7. Hence, once the configuration of
the slider bearing is determined, the position of the pivot point
in the suspension system can be obtained from the streamwise
location of the load capacity.

4.3. Velocity distribution in the lubricating film

The velocity distribution in the lubricating film, expressed
as a composite of the Poiseuille and Couette flows, is given
by equation (17). In figures 10 and 11, we plot the velocity
distributions at different streamwise locations for two different
slider-bearing configurations. The velocity profile predicted
using the first-order slip model is also shown using the
dashed lines. Note that the velocity is normalized using
the bottom plate velocity U0. Velocity distributions of the
current and first-order slip models are based on the local
pressure gradients obtained from the respective theories.
The corresponding pressure profiles are also included to
facilitate comparisons. The velocity distribution in figure 10
corresponds to a slider-bearing configuration with bearing
number � = 61.6 and a Knudsen number Kn = 1.25. As the
bearing number chosen is small, we expect the pressure-driven
flow term in the Reynolds equation to become important.
The current model has been shown to accurately predict the
pressure distribution for a wide range of Knudsen and bearing
numbers. Also we can expect equation (17), obtained by the
superposition of the uniformly valid Poiseuille and Couette
flow models, to accurately model the velocity distribution
in the lubricating film. However, significant differences
exist in the pressure distribution predicted by the first-order
model and the Fukui and Kaneko model. These differences
in the pressure distribution result in errors in the velocity
distribution. The velocity profiles at different streamwise
locations (X = 0.2, 0.5 and 0.9) in figure 10 indicates
increasing differences between the current model and first-
order model as we approach the exit of the slider bearing.

Next, we consider a somewhat extreme scenario. In this
case we increase the Knudsen number to Kn = 4.167 and
choose a very high bearing number � = 1264. As discussed
earlier the pressure distribution predicted by the first-order
model is in fair agreement, and the current model solution
is in good agreement with the Fukui and Kaneko model
and the DSMC data. Nevertheless, the velocity profiles at
different streamwise locations (X = 0.2, 0.85 and 0.95) in
figure 11 indicate differences between the current model and
the first-order slip model. This is primarily due to the high
Knudsen number used in this case, where the first-order slip
model cannot accurately predict the velocity profiles in the
transition and free molecular flow regimes. The second-order
slip boundary conditions also results in similar deviations in
the velocity profile [6].

4.4. Drag force

Estimation of drag forces on the floating slider is important
especially for the design of the head-suspension system. A
shear drag force on the slider surface is induced by the
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Figure 10. Top: pressure distribution for Kn = 1.25 and the bearing number � = 61.6. Bottom: velocity distribution at various streamwise
positions. Predictions based on the current and first-order slip models are shown. The cross-flow direction Y is normalized with the local
bearing height Y = y/h.

frictional air resistance to the motion of the slider as it sweeps
across the magnetic tracks on the recording medium. The
pressure acting on the slider surface also contributes to a
pressure drag force. Accurate modeling of the drag force is
also necessary for prediction of slider dynamics and estimation
of the actuator power consumption [27].

The pressure drag force, FDP, acting on the slider
surface can be directly obtained from the pressure distribution
as

FDP =
∫ 1

0
P sin(θ) dX. (25)
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The pressure drag forces are negligible in most slider-bearing
configurations because of small angle of inclination of the
floating slider. However, the effects of viscous shear stresses
on the runner and slider surfaces are significant. The viscous
shear stresses acting on the slider surface (τxy) allow the flexure
in the slider suspension to rotate with very little resistance
in the pitch and roll directions so that it can stay close to
the recording surface despite undulations and asperities on
the disk. The pitch and roll moments due to the viscous
stresses are incorporated into the equations governing the
dynamics of the slider-suspension assembly to accurately
calculate pitch (φ) and roll (ϕ). The dynamic equations
for φ and ϕ that require the shear stress contributions are
given in [27]. However, the hydrodynamic definition of the
shear stress requires modifications as the magnetic spacing
reduces and rarefaction effects become important. In the
absence of thermal-creep effects, the wall shear stress τxy can
be explicitly expressed as the sum of the Couette and Poiseuille
flow contributions.

The shear stress acting on the slider surface at any point
is given by

τxy = (τxy)Couette + (τxy)Poiseuille. (26)
In section 2.1, we have formulated an empirical shear stress
model for the plane Couette flows that is accurate in the entire
Knudsen regime for Ma < 0.3. Rewriting equation (7) in
dimensional form we get

(τxy)Couette = −µoUo

2h

aKn2 + 2bKn

aKn2 + cKn + b

a = 0.529690 b = 0.602985 c = 1.627666. (27)

The plane Poiseuille flow shear stress is given by equation (14).
Thus, the shear force acting on a differential area dA on the
slider surface is given by

dFx = −((τxy)Couette + (τxy)Poiseuille) dA. (28)

The total friction force can then be determined by integration
over the bearing area. Using equations (27) and (13), we have

Fx =
∫ L

0

[
µUo

2h

(
aKn2 + 2bKn

aKn2 + cKn + b

)
+

h

2

dp

dx

]
dx (29)

where Fx is the total friction force per unit width acting on the
slider surface. Also note that Kn is the local Knudsen number
and is dependent on the local pressure. So, one should first
convert Kn in equation (29) to the outlet Knudsen number Kno,
using Kn = Kno/(PH), before the integration.

Using equation (26) it is possible to calculate the pointwise
distribution of shear stress on the runner and slider surfaces,
for small or moderate angles of the slider inclination. While
the shear stress on both the surfaces are typically equal for
small angles of inclination, it is also important to emphasize
the possibility of asymmetric shear stress distribution on the
slider and runner surfaces when the angle of inclination is
larger.

5. Conclusions

A self-consistent semi-analytical slip-based model, centered
around the modified Reynolds equation is developed to
accurately predict the velocity and shear stress distribution,
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pressure profile and the load capacity in slider bearings
for a wide range of Knudsen numbers (Kn < 12). We
also presented a method to calculate the skin friction and
viscous drag on the runner and slider surfaces separately.
This is important to predict the pitch and roll moments in
slider bearings. In addition, accurate prediction of viscous
forces enables robust head-suspension design and calculation
of actuator power consumption. Considering that other
continuum-based slip models and the existing generalized
lubrication models fail to predict the velocity distribution and
skin friction in the transition and free molecular flow regimes,
the new model delivers a level of physical information similar
to that of exhaustive DSMC computations with minimal
computational effort.

The new model is derived from the Navier–Stokes
equations with the generalized slip models. However, it
requires empirical corrections to the pressure-driven flow
portion of the lubrication equation in the transition and
free molecular flow regimes. We established this ‘closure’
using the Poiseuille flowrate database obtained from the
two-dimensional Boltzmann equation solution. Due to this
empirical closure, our model closely mimics the Fukui and
Kaneko generalized lubrication model, derived using the two-
dimensional Boltzmann equation. Hence, our model is not a
mere semi-analytical/empirical substitute to the Fukui and
Kaneko model, which is the current industry standard for
air bearing design. We must admit that both our model
and the Fukui and Kaneko model become invalid in the
free molecular flow regime. This is due to the use of two-
dimensional Boltzmann equation solution that results in an
unphysical logarithmic increase in the Poiseuille flowrate as
Kn → ∞. Thus caution must be exercised while using both
models for ultra-thin lubrication films. Despite this limitation,
the new empirical model can be calibrated to match any
other Poiseuille flow database, as demonstrated earlier in [14].
Empirical correction factors in the current model are valid for
the classical slider-bearing geometry, and they hold as long as
the Reynolds approximation is not violated.

Finally, the next generation ultra-high density storage
units require magnetic spacings as low as 10 nm. Roughly 15 Å
of this spacing comes from slider head overcoat thickness,
25 Å from the head thickness and 60 Å from the flying height
[28]. In such small spacings, the surface/molecular force
fields become significant within the thin film gap. Thus, we
note that a free molecular flow analogy of nanoflows to low
pressure rarefied gas flow will break down. Although advances
in nanotechnology with regards to fabrication, characterization
and tribology can result in slider bearings with nanoscale
spacings, a fundamental understanding of the physics of
thermal/fluidic transport in these length scales is still lacking.
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