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In this article we present a time-accurate computational model based on the slip-flow theory to simulate
momentum and heat transport phenomena in complex microgeometries, encountered in typical components of
microdevices such as microcapillaries, microvalves, microrotors, and microbearings. In the first part, we present
extensions to the classical Maxwell/Smoluchowski slip conditions to include high-order Knudsen number effects
as well as to take into account the coupling of momentum and heat transfer through thermal creep and viscous
heating effects. The numerical method is based on the spectral element technique; validation of the method is
obtained by comparisen of the numerical simulation results in simple prototype flows (e.g., channel slip-flows)
with analytical results. Reduction of pressure drop in microchannels, reported in similar experimental studies,
is investigated using slip-flow theory and simulations. In the second part, we consider model inlet flows and a
slip-flow past a microcylinder. The effect of slip-flow on skin friction reduction and associated increase in mass
flow rate as well as the variation of normal stresses is investigated as a function of Knudsen number. Finally,
the effect of compressibility is examined and possible extensions of the current model to take into account such

effect are discussed.

I. Introduction

HERE has been great interest in the applications of mi-

crodynamical devices over the last 5 yr in such diverse
areas as instrumentation, microelectronics, bioengineering,
and advanced energy microsystems.'? In the beginning,
the emphasis was in developing efficient fabrication tech-
niques for microdevices. However, with the successful de-
sign and fabrication of a variety of such devices the in-
terest is shifting towards developing techniques in efficiently
predicting their functionality, i.e., transient response, struc-
tural integrity, transport processes, etc. Computational mod-
eling and simulation can provide such a predictive capabil-
ity and means of evaluating the performance of a new design
before hardware fabrication. The numerical simulation of the
dynamical phenomena in the microdomain, however, should
be based on the principal governing laws in microscales
for which there is currently a lack of fundamental under-
standing. ; .

In particular, momentum and heat transport phenomena
in the basic components of microdevices such as microcapil-
laries, microvalves, and microbearings are not well under-
stood. Since the seminal work of Eringen on microfluids,* no
significant progress has been made to derive general consti-
tutive equations based on a microscopic approach. Therefore,
in considering the process of momentum exchange and heat
transfer by convection of a gas with a solid surface in micro-
domains {e.g., with characteristic length varying from 100 to
0.1 um), both the macroscopic or continuum model, as well
as the molecular or microscopic model, should be considered.
The distinction among the various regimes and corresponding
describing models can be obtained with the introduction of
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the Knudsen number Kn, which is defined as Kn = (A/L), .

where A is the mean free path of the molecules, and L is a
characteristic flow dimension. The characteristic length is typ-
ically proportional to domain length; however, it should be
chosen so that it accommodates all length scales including
gradients of density, velocity, pressure, and temperature within
the flow.

In the continuum limit, values of parameters at different
points in the domain essentially represent averages of the
microscopic behavior in the neighborhood of the point. This
assumption eventually leads to the formulation of the Navier-
Stokes and energy equations as being the governing equa-
tions. However, these continuum equations that express con-
servation of mass, momentum, and energy, break down for
finite values of the Knudsen number. For the aforementioned
range of characteristic lengths and for a typical value of mean
free path for air A = 107 m, the corresponding Knudsen
number varies from 0.001 to 1. In the lower Knudsen limit
the deviation of molecular motion from a standard Maxwell-
ian distribution is still sufficiently small, and the Navier-Stokes
equations modified appropriately (e.g., using the Chapman-
Enskog theory for the transport coefficients) govern the
flow.* On the other hand, in the higher Knudsen number
limit the only closed equation that is strictly applicable is
the Boltzmann equation that involves the molecular veloc-
ities as the dependent parameters instead of the macroscopic
quantities.

In the case of a rarefied gas flow the following empirical
information is available.’ For Kn =< 10~* the fluid can be
considered as a continuum, while for Kn = 10 it is considered
a free molecular flow. A rarefied gas can neither be consid-
ered an absolutely continuous medium nor a free-molecule
flow at Knudsen number between 10~ *~10. In that region, a
further classification is needed®: slip-flow (10"# < Kn < 0.1)
and transition flow (0.1 < Kn < 10). In the region of slip and
early transition flow, velocity and temperature distributions
in the flowfield can still be determined from the Navier-Stokes
and the energy equation if velocity-slip and temperature-jump
at the walls are taken into account via the slip boundary
conditions. This approach has been followed in the past in
hypersonic flow as an alternative to modeling rarefied gas
effects through modification of the stress tensor.® In the most
general case, these boundary conditions (usually referred
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to as the Maxwell/Smoluchowski slip conditions) are given

in®

Upo = Uy = 2-o 1 T,
gas wall — o, p(ZRTw/Tr)UZ s
3Pr(y - 1)
A AL 1
2 eRT. q:) (1a)
2-o07 |20y - 1) 1
Tgas Twall - o |: ¥ + 1 RP(ZRTW/W)UZ( qn)
(1b)

where g,, g, are the normal and tangential heat transfer com-
ponents in the gas, and 7, is the viscous stress component
corresponding to the skin friction, R is the gas constant, vy is
the ratio of specific heats, p is the density, u,, and T,, are the
wall velocity and temperature, respectively, and Pr is the
Prandt] number. The term in the above equation proportional
to (—g,) is associated with the phenomena of thermal creep,
which can be important in causing variation of pressure along
tubes in the presence of tangential temperature gradient. The
coefficients o, and o are the tangential momentum and en-
ergy accommodation coefficients, respectively. These coef-
ficients reflect the nature of momentum and energy transfer
between the impinging gas molecules and the surface. For
example, o, = 0.0 corresponds to specular reflection, and o,
= 1.0 corresponds to diffuse reflection. In the first case, the
tangential velocity of the molecules reflected from the walls
is unchanged and the normal velocity of the molecules is
reversed due to the normal momentum transfer to the wall.
In the second case, the molecules are reflected from the walls
with zero average tangential velocity. The diffuse reflection,
in particular, is an important phenomenon for tangential mo-
mentum exchange (and thus friction) of the gas with the walls.
In the equation above, slip is assumed even for the diffuse
reflection case. Therefore, the no-slip condition on the walls
is obtained only when Kn = 0.0. The accommodation coef-
ficients depend on the gas and surface temperatures, local
pressure, and possibly the velocity and the mean direction of
- the local flow, and they are tabulated for some common gases
and surfaces’?; under laboratory conditions values as low as
0.2 have been observed.® Very low values of o, will increase
the slip on the walls considerably even for small Knudsen
number flows. For microflows surface roughness may play an
important role in momentum and energy transport; its effects
can be implicitly included in the model via the accommodation
coefficients.

In the present study we consider the slip-flow regime and
formulate a numerical algorithm appropriate for simulations
of time-dependent slip-flows in compiex microgeometries. The
numerical scheme is based on the spectral element method
we have developed for simulation of flows in macroscales®1?;
it provides high-order accuracy and flexibility in discretizing
geometries of arbitrary complexity. These features eliminate
numerical artifacts and are prerequisite for a successful “stand-
alone” simulation approach required in studies of transport
phenomena in microdomains. We also modify the slip-flow
boundary condition [Eq. (1)] to include nonlinear (high-or-
der) effects. With this formulation we consider simulations of
slip-flow in prototype geometries including internal flows, e.g.,
channel microflows as well as external flows, e.g., slip-flow
past a circular microcylinder. Validation of the simulation
results is obtained using analytical and semi-empirical solu-
tions of rarefied gas dynamics," -'? as well as preliminary com-
parisons with available experimental data.!4

This article is organized as follows. In Sec. II, we present
the formulation for the slip-flow regime and develop the new
velocity-slip boundary condition. In Sec. III, we present an-
alytical results and numerical simulation examples of micro-
flows in internal and external flows. Finally, we summarize
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our results in Sec. I'V and discuss the limitations of the current
formulation and numerical methodology.

II. Modeling and Formulation

The governing equations for the slip-flow regime are the
Navier-Stokes and energy equations. For computational con-
venience, we consider here the incompressible form of the
equations given in nondimensional form as follows:

Du _ Vp e
D, + Re"'V3u in Q (2a)
DT 1(ou, ou\
=< = ~1Re~1V2 el W i S i
Dt Pr-'Re T + EcRe 5 (ax, + ax,») in Q
(2b)
V-u=0 in Q (2c)

where u is the velocity field u(x, t), p is the static pressure,
T(x, t) is the temperature, and p is the density. Here, Re, Pr,
and Ec are the Reynolds, Prandtl, and Eckert numbers, re-
spectively; D denotes total derivative, and () represents the
flow domain. We assume that the fluid properties are constant
and that no high-order corrections are needed in the equations
of motion for Kn = 0.1.¢

The velocity-slip and temperature-jump boundary condi-
tions can be obtained by an approximate analysis of the mo-
tion of a monatomic gas near an isothermal surface. The
derivation of velocity slip formula given in Ref. 5 considers
first-order slip effects. The uncoupled velocity-slip and tem-
perature-jump boundary conditions [Eq. (1)}, rewritten here
in nondimensional form are

2 - o, ou,
ugas — Ugan = o Kn 3’; (33)
2—-o07) 2y |KnaT
= Ty = — =2
Tga.s wall or |:7 + 1 P" an (3b)

where (ou,/on) and (3T/an) shows the variation of tangential
velocity and temperature normal to the surface.

The first-order slip-flow boundary conditions given in Egs.
(3a) and (3b) do not include the thermal creep effects, which
vary quadratically with Kn. It is possible to obtain higher-
order corrections to the above velocity-slip boundary condi-
tion by retaining higher order terms in the Taylor series ex-
pansion of tangential velocity near the vicinity of walls. To
this end, we consider an approximate analysis of the motion
of a monatormic gas near an isothermal surface. Very close to
the wall, it can be asssumed that half of the molecules are
coming from the layer of gas, one mean free path A away,
while the other half of the molecules are reflected from the,
wall. Furthermore, we assume that (1 — o) of the molecules
are reflected from the wall “specularly,” and &, of the mol-
ecules are assumed to be reflected “diffusively* from the wall
with average tangential velocity that of the wall. Following
Ref. 5, with normal coordinate to the wall denoted as n and
replacing A with Kn in nondimensional form we obtain:

1 aU Kn? (32U
et m(®) ()
oU
fa-o|v+m(¥)
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+'—2—<an2)s+ :l +0“UW} (4)

+

N




where the subscript s shows near-wall conditions. This ex-
pansion results in the following slip relation on the bounda-
ries:

2 — ¢ 2 /32
Ux—-Uwz___j Kn ig +Eﬂ_ .a._(_'_/ 4o (5)
g, on/, 2 \dn?*/,

~ We can also write an asymptotic expansion of the velocity
field in terms of Kn, i.e.,

U= U, + KnU, + Kn®U, + Kn*U, + O(Kn%) (6)

where the no-slip velocity field is denoted by Uy(x, ¢}, and
corrections due to the different orders of Kn are denoted as
Ulx, 1), (i = 1,2,3,...). Our objective is to establish a
methodology to develop slip boundary conditions accurate up
to the second-order terms in Kn. Let us first introduce a new
slip boundary condition in a general form

2—-0c Kn U

U - U, = s
’ ” o 1 -~ B(Kn)Kn on

™)

where B(Kn) is a parameter to be determined. For a general
choice of B(Kn), Eq. (7) is first-order accurate in Kn. How-
ever, there are two specific values of B(Kn) corresponding
to the continuum (Kn — 0) and the free molecular (Kn —
») flow regimes. The value of B(Kn) as Kn — 0.0 is used to
make Eq. (7) second-order accurate in Kn for finite but small
values of Kn. Equation (7) suggests finite corrections for slip
effects provided that B(Kn) = 0. It is possible to determine
the value of B(Kn) for small Kn corresponding to the slip-
ﬂov(; regime by Taylor series expansion of B(Kn) about Kn
= 0, i.e.,

B(Kn)=B|o+~Cy!i Kn+--=b+Knc+-- (8
dKn |,

Assuming that BKn < 1, we can expand Eq. (7) with a geo-
metric series incorporating Eq. (8) for B(Kn). This results in

2_.
U~ U =2"2ka %11 + bkn
o on

+ (b + O)Kn? + -] ®

A high-order slip boundary condition is obtained by substi-
tuting the asymptotic expansion for the velocity field [Eq. (6)]
into the geometric series expansion given in Eq. (9). Com-
paring the resulting equations with Eq. (5), and matching the
second-order terms, we determine the unknown b as'?

b = (Uy2Us)l, (10)

The quantities U}, and U’ denote first and second derivatives
of tangential component of velocity vector along the normal
direction to the surface and corresponds to a continuum (no-
slip) solution. Uncertainties in the accommodation coeffi-
cients may mask the second-order corrections for small Kn
flows. However, uncertainties associated with the measure-
ment of these values can be absorbed into the variable B(Kn)
in the general form of the high-order slip boundary condition,
see Eq. (7). High-order temperature jump boundary condi-
tions could be derived for the energy equation similarly. Higher-
order boundary conditions in the context of the Burnett equa-
tions are reviewed in Ref. 16, and a second-order boundary
condition for the lubrication equation is derived in Ref. 17.
Our boundary condition requires the computation of higher-
order derivatives only of the continuum field, and thus it is
easier to be implemented.

The high-order slip boundary conditions including thermal
creep effects are therefore

2-—0, Kn du
g, 1 - bKnon

ugas = Uyan =

+ 3 (ry-1 Kn?Re 3T
20 vy Ec 3s

2= o7 2y KnoT
Tow™ Toan = or <7 + 1> Pr on (116)

(11a)

where (87/as) is the tangential temperature variation along
the channel surface.

To fully determine momentum and energy transport in mi-
crogeometries we need the following nondimensional num-
bers: the Reynolds, Prandtl, Eckert, and Knudsen numbers.
However, it is possible to introduce a functional relation for
Knudsen number, and Eckert number in terms of Mach num-
ber, i.e., M = (U~NyRT,). The Knudsen number can be
written in terms of Mach number, and Reynolds number as

Kn = (Vwy/2M/Re) (12)
while the Eckert number can be written as
Ec = (y — I)(T,/AT)M? (13)

where AT is the specified temperature difference in the do-

main, and 7} is the reference temperature used to define the -
Mach number. Using the functional relations for Ec and Kn,

the independent parameters of the problem are reduced to.
three (Pr, Re, and M).

The incompressiblity assumption stated in Eq. (2c) restricts
application of our results to flows with small temperature and
pressure fluctuations compared to the reference pressure and
temperature. For this reason, the specified temperature dif-
ference in the domain AT and the reference Mach number of
the flows are kept small in this study (i.e., AT ~ O(1) and M
=0.2).

In general, Eq. (2) is coupled since a velocity-slip along a
solid surface is always accompanied with a temperature-jump.
This coupled set of equations along with the most general
boundary conditions described in Eqs. (11a) and (11b) are
solved using the spectral element method.*-**-!* In the spectral
element discretization, the computational domain is broken
up into K macroelements, and the dependent and indepen-
dent variables are approximated by Nth-order tensor-product
polynomial expansions within the individual elements. Vari-
ational/quadrature operators are used to generate the discrete
equations with interfacial continuity constraints imposed nat-
urally via the variational statement. The temporal discreti-
zation is obtained using the recently developed high-order
time splitting algorithm, which employs stiffly stable time in-
tegration rules in three successive substeps that treat the con-
vective, pressure, and viscous terms in the equations of mo-
tion.'®

III. Simulation of Prototype Flows

A. Internal Flows

In this section, a detailed analysis of momentum and heat
transport for a pressure-driven microchannel flow is pre-
sented. The effects of thermal creep on transport processes
is also investigated. Our analysis assumes a steady, fully de-
veloped flow subject to a specified heat flux.

The momentum Eq. (2a) subject to slip boundary condi-
tions with a specified tangential temperature variation [see
Eqg. (11a)] can be solved analytically.’® The noncontinuum
effects on momentum transfer can be investigated by either
analyzing the increase of volumetric flow rate of the channel
under a constant pressure difference, or by analyzing the change
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in the drag of the channel for fixed volumetric flow rate under
appropriately specified pressure gradient. The nondimen-
sional velocity distribution in a channel extending from y =

~ltoy=11is
_Re|dp ) 2~ o, Kn
v = 2 jox [1 Y +2( o, )1+ %Kn]

N 3@x-1 Kn*Re a7,
2r oy Ec ox

(14)

where (87,/0x) denotes the tangential temperature variation
along the channel surface. Given this parabolic velocity profile
we obtain the coefficient of high-order boundary condition
from Eq. (10) to be b = —4. Correspondingly, the volumetric
flow rate O through the channel becomes, in nondimensional
form [|(aP/dx)| = (2/Re)]

0 =24 4(2z9) _XKn 3 (y = 1) Kn*Re 9T,
3 a, 1+iKn @ vy Ec  ax
(15)

The leading-order variations in the volumetric flow rate under
fixed (dp/ax) is linear in Kn due to velocity slip, and quadratic
in Kn due to thermal creep effects.

An interesting feature of noncontinuum flows is the pos-
sibility of starting the flow with creep effects rather than a
specified pressure gradient. In that case, the flow starts creep-
ing along the channel surface and finally interacts with the
stagnant fluid layers. This creates shear stresses, which result
in turning on the velocity slip mechanism." It is also possible
to maintain zero average flow rate in a channel under a pre-
scribed pressure gradient, if the pressure gradient and the
thermal creep effects balance each other. For an incompres-
sible flow, this condition can be maintained if

-1
9 G-
p _ 2wy ax

¥ okl s (i) Kn
¢ g, 1+ iKn

In this case [if (37,/dx) > 0], the flow creeps from cold to hot
direction along the channel surface, where a positive pressure
gradient creates backflow in the middle of the channel. In
regards to the effects of thermal creep on drag coefficient of
the flow for a fixed volumetric flow rate, the ratio of the drag
coefficient of a slip surface C,, to the drag coefficient C,, of
a no-slip surface is given by

(16)

3 Re 9T,
1 - —= Kn?——*
Cp _ () Ec ox (17)

CD() 143 2 - o, Kn
o, 1+ iKn

where Cp, = (7,/0.5pU?)Re. 1t is seen that for fixed Q, Ec,
and Re, the ratio of drag coefficients of slip-flow to the no-
slip flow changes significantly by varying Kn. For flows with-
out thermal creep effects [i.e., (§T,/x) = 0.0], the extra terms
in the numerator of Eq. (17) are absent and the formula is
further simplified.

To validate our computer code, which was developed for
general complex geometries, we use the aforementioned an-
alytical results. Comparisons are performed up to Kn = 0.15
and the results are presented in Fig. 1. The dashed line and
the solid line show the drag reduction predicted by the first-
and high-order slip-flow theory without thermal creep effects,
respectively. The triangles correspond to numerical predic-
tions with high-order slip-flow theory, and the circles corre-

o
w©
T

JPY He

Co uip /G no-slip

o4
@
T

t - ~—-First—Order Theory
——High—-Order Theory
+ High—Order, Numerical
® High—Order, Thermal Creep Numerical

0.7 ~

o 0.05 0.1 0.15
Kn

Fig. 1 Ratio of drag coefficients of slip-flow to no-slip flow in a
pressure-driven channel. [Parameters for thermal creep results are Ec
= 1.0, Re = 1.0 and (8T,/9x) = 1.]

spond to numerical predictions with high-order slip-flow the-
ory, including in this case the thermal creep effects [here Ec
= 1.0, Re = 1.0 and (87T,/9x) = 1]. The differences between
the analytical and numerical results are negligible.

The aforementioned simplified analysis can also be used to
explain the drag reduction obtained in the experiments re-
ported in Ref. 14. Equation (17) is derived on the assumption
of fully developed flow and is independent of Reynolds num-
ber for isothermal flow. The ratio predicted from Eq. (17)
for Kn = 0.044 corresponding to the helium flow (case JP9
in Ref. 14) is 0.79 in good agreement with the measured value
0.8-0.85; the nitrogen flow gives a slightly greater pressure
drop. These calculations assume an accommodation coeffi-
cient o, = 1; for smaller values of ¢, achieved in practice,
better agreement is obtained. In these comparisons we have
assumed isothermal flow, and thus we have neglected the
effect of thermal creep that may also contribute to higher drag
reduction. For channel depths significantly smaller (corre-
sponding to Kn > 0.1), the experimental results show a strong
dependence of the ratio of drag coefficients on the Reynolds
number not predicted by the above analysis.

Regarding heat exchange in microdomains, it is interesting
to note that the viscous heating terms are quite significant,
For example, if the reference temperature T, is taken to be
the room temperature and the specified temperature differ-
ence of the domain AT is small, the viscous heating effects
become non-negligible for M = 0.05 [see Eq. (13)]. An an-
alytical solution of general heat convection problem for steady
and thermally fully developed planar microchannel flows under
specified heat flux ¢ on the boundaries can be obtained by
decomposing the temperature profile into two parts:

T,

Tx,y) = 2 + 6(y) (18)

where (37,/dx)x and 6(y) shows the axial and crossflow tem-
perature variations, respectively. The coordinates x and y are
also nondimensionalized here with the reference length scale.
A global energy balance in the domain with an insulated top
surface and a specified constant heat flux on the bottom sur-
face gives the following relation for the tangential temperature
gradient along the channel:

ar, _ 1 ., 8
ax  RePrQ (q "3 EcPr) (19)
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The corresponding crossflow temperature distribution in
the channel is

aT 2 a4 4
0y) = RePr = (Bl Y ) ~ EcPr¥-+cy+D (20)

2 12 3
where
— — 2
B=1+2<2 o,) _Kn 3 (y — 1) Kn®Re 3T,
o, 1+ 3Kn 27 vy Ec ox
@1
aT, (1 4
C = RePr—2 |- - = 22
ePr rm <3 B> +3EcPr (22)
2y Kn 5 aT, (3 5
D=6, - — g+ = - =B - =
v Py 4 + 3EcPr RePr T <ZB 2)
(23)

where 6, is the reference temperature. The modifications to
the coefficients B and D due to Kn shows the thermal creep,
velocity slip, and temperature jump effects. The continuum
solution is recovered as the rarefaction effects diminish (i.e.,
Kn — 0).

A quadratic equation for (37,/9x) can be obtained combin-
ing Egs. (15) and (19). The solution for (37,/3x) for specified
heat fluxes is shown in Fig. 2 as a function of Mach number.
Equation (13) is used to specify the Eckert number variation
for both the continuum and the noncontinuum cases. The
Knudsen number variations are specified by Eq. (12). It is
seen that the heat flux required to maintain (87,/6x) = 0 is
the same for both continuum and noncontinuum curves. The
physical significance of this result is that for a specified Mach
number there is only a single value of the heat flux required
to compensate the viscous heating effects. Another significant
result is the reduction in the magnitude of (87,/6x) in non-
continuum flows, which implies that microchannels sustain
smaller tangential temperature gradients compared to the large-
scale channels. Examining Eq. (15) and Fig. 2, we see that
the volumetric flow rate of a heated microchannel increases
due to thermal creep effects. However, cooled microchannels
allow less volumetric flow rate compared to the continuum
case. If the rarefaction effects are increased further, the vis-
cous heating effects will dominate. Under this condition 37,/

YT T T T T T T

| ——— non-continuum
10 || e continuum

B 7 NN YUY W AT S SN T TS S WO IS0 S S VO B SRR |
0 0.02 0.04 0.06 0.08 0.1

M

Fig. 2 Variation of tangential temperature gradient (9T,/dx) along
the surface of a pressure-driven channel as a function of Mach number
for different levels of heat fluxes (¢). (Re = 1.0, AT = 1 Kand T, =
300 K).
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dx) may become positive, which will result in increase of the
volumetric flow rate beyond the predictions of continuum
theory even for cooled channels.

The temperature jump diminishes if both surfaces of the
channel are insulated (see Fig. 3, top row). In this case, the
maximum temperature occurs near the walls where shear
stresses are more dominant, and the tangential temperature
variation becomes positive (see Fig. 2). This suggests signif-
icant changes in the volumetric flow rate of the microchannel,
which is the main reason for the differences in the temperature
profiles of two cases. Thermal creep in a microchannel can
be avoided if the channel is carefully cooled with a cooling
rate of ¢ = —3$PrEc [see Eq. (19)]; this results in constant
temperature along the channel wall. The temperature distri-
bution for a microchannel, without thermal creep effects, is
also given in Fig. 3 (bottom row). It is seen that the temper-
ature of the insulated surface is greater than its counterpart
modeled by the continuum theory. The reason for this be-
havior is the temperature jump effects on the cooled surface
of the channel.

The computational model developed here is based on the
incompressibility approximation. In general, for Mach num-
ber values less than 0.2-0.3, flows can be approximated as
incompressible. However, there are instances where the Mach
number value and corresponding changes may be low, but
the density and corresponding pressure variations may be
large. For example, a severe case of compressibility effects is
seen in the pressure-driven flows through long channels. In
the experiments of Ref. 20 about an order of magnitude pres-

sure drop is imposed through the microchannels, and thus .

strong compressibility effects are expected, although this was
not documented in that work.

To investigate the conditions under which density variation
in the channel is limited and thus the incompressibility as-
sumption is still a valid one, we consider the following anal-
ysis. We approximate the pressure-driven channel flow as one-
dimensional, adiabatic, constant area flow (i.e., Fanno flow).
For our analysis we use the experimental data reported in
Ref. 20. The Fanno flow equations can be derived by using
a friction factor [ f = (1/L) [& f dx] averaged along the channel
of length L. The friction factor at any point in the channel
can be evaluated as a function of local conditions denoted
by x

7,(x)

&) = 555 U)? 24
where 7, [7, = u(dU/dy)] is the shear stress on the wall. Since
the mass flux (pU) in the channel is constant, the friction
factor can be assumed to be a function of dynamic viscosity
[4(T)] only [assuming (8U/dy)/U is approximately a constant].
The dynamic viscosity variations are related to temperature
via Sutherland’s law, and thus the friction factor f essentially
becomes a function of temparature. Therefore, for small tem-
perature changes reported in the experiments of Ref. 20, the
friction factor is approximately a constant along the stream-
wise direction.

The Mach number variation in the channel for Fanno flow
can be obtained for specified friction factor as [see Ref. 21,
Eq. (6.34)]:

dM? _ yMHL + [(y — DR2IMP} 4
de 1 - M? D

(25)

This equation integrated from inlet state (M;,) to any station
x downstream of the channel results in

A _y+ 1 <M?,,{1 + (v = 1)/2]M2}>
D~ 2y CB\MAL+ (v - DRIME)
M2 - M)
yM*M7,

(26)
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The variation of Mach number in the channel as a function

* of the inlet Mach number and (4fx/D) is found by plotting

Eq. (26) for specified M;, and M values. Once the Mach
number variation in the channel is known, the corresponding
pressure ratio (P/P,,) and the density ratio (p/p,,) variations
through the channel can be calculated by using the following
relations:

P M \{1 + [(v - D2]M?}

P M, ({1 + [(y - 1)/21M2}>‘”
pn M \[L+ [(y - D2IM2}

3

P _ M, <{1 + [(y - 1)/21Msn})
‘ @7)
p

The pressure ratio (P/P,,) variation in the channel as a
function of (4 fx/D) predicted by Fanno flow theory for spec-
ified inlet pressure of 8.0 atm and exit pressure of 1.0 atm,
corresponding to case JP9 in Ref. 20, is presented in Fig. 4.
It is seen that pressure ratio variation is almost linear for
about 35-40% of the channel length, even for this large pres-
sure ratio variation. This implies that the corresponding den-
sity ratio variation is also almost linear as the temperature is
practically constant, Therefore, for smaller pressure ratio var-
iations [approximately (P, /P,) = 0.75-0.80] the pressure
drop and the density variations in the channel are approxi-
mately linear, and thus the incompressible results developed
earlier can be applied by using the arithmetic average of the
inlet and the exit Kn in the microchannel. Clearly, the com-
pressibility effects in the experiments of Ref. 20 are so strong
(because of specified large pressure drop) that rarefied gas
effects are masked by the compressibility effects. This con-
clusion is further supported by the recent experimental find-
ings of C. M. Ho and Y. C. Tai (work in progress). The
analysis of a microchannel flow presented in Ref. 22 also
considers the compressibility effects.

We consider next the flow between stationary parailel plates
at the inlet of a microchannel as a prototype developing flow.
A uniform velocity profile is specified at the inlet. In Ref. 11
the same case was calculated using a vorticity stream function
formulation, and results were presented for different values
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Fig. 3 Temperature profiles in a pressure-driven channel flow for continuum and noncontinuum flows as a function of Mach number. The top
row shows insulated channel, and the bottom row shows channel with no thermal creep effects [i.e., (3T,/3x) = 0.0]. Re = 1.0 and Pr = 0.7.

0.8 -

P/P,

0.2 [~

1 L N . ! i . . 1 : z L 1

0 2x108 4x308 6x100

4fx/ D

Fig. 4 Pl:essure ratio (P/P,,) variation through the channel as a func-
tion of (4fx/L). Inlet and the exit conditions corresponds to case JP9
in Ref. 19 (P, = 8.0 atm, P, = 1.0 atm; M, = 0.01, M, = 0.09),

of Reynolds and Knudsen number as well as accommodation
coefficients. Here, we perform a simulation at Re = 20. In
Fig. 5 we plot the slip velocity along the wall for Kn = 0.03,
obtained by using both the first and high-order slip flow
boundary conditions. It is seen that the slip effects are very
dominant at the inlet of the channel and both results estimate
the slip velocity to be about 50-60% of the incoming velocity
U... However, these effects are reduced well below 10% in
the developed region of the flow. A relatively fine mesh was
employed in the simulation consisting of K = 40 elements,
each of 7 X 7 number of DOF. It is evident from the plot
that the slip velocity experiences a very steep change from
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Fig. 5 Developing flow in microchannel; slip velocity along the wall
Kn = 0.03. Re = 20. X = (x/h).
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Fig. 6 Streamwise velocity profiles at various streamwise locations
as a function of £ [Kn = 0.03 (solid lines), and Kn = 0.0 (dashed
lines, continuum case)].

the inlet to approximately a distance in the streamwise di-
rection equal to the channel height, and achieves an asymp-
totic value corresponding to the fully developed profile ap-
proximately four channel heights downstream. The high-order
slip effects reduce the slip velocity compared to the first-order
predictions. In Fig. 6 we plot several streamwise velocity pro-
files close to inlet for Kn = 0.03 (solid line) and Kn = 0 (no-
slip; dashed line). For various values of £ close to the inlet ({
= 0.75), the maximum velocity is off centerline until a fully
developed profile is established. We also see from the plot
that the value of the maximum velocity is always smaller in
the case of the slip-flow. This behavior of maximum velocities
off the centerline cannot be obtained if the convective terms
are linearized as in Ref. 23. Our results agree with the com-
putations reported in Ref. 11, however, in that work the
maximum values were underpredicted by more than a factor
of 2 compared to our results. We verified the validity of our
results by performing higher resolution (11 X 11) simulations.
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Fig. 7 Pressure distribution along the wall of the channel for slip-
flow (using first-order, and high-order slip boundary conditions), and
no-slip flow as a function of X = (x/h).

This finding suggests that earlier computational results,'#*

which underpredicted maxima, may have suffered from dis-
cretization errors. Finally, the static pressure distribution along
the channel wall is plotted in Fig. 7. Due to the no-slip con-
dition on the walls the continuum flow stagnates at the inlet
of the channel, resulting in larger static pressure values than
the corresponding slip-flow case. For both slip- and no-slip
flows the pressure drops rapidly at the inlet until { = 0.2,
then the pressure drop along the channel wall is parabolic
until about ¢ = 0.75[(x/h) = 2.5]. Finally the pressure drop
becomes linear for both slip and no-slip flows. The differences
of pressure distribution between the linear and high-order slip
flow simulations seems negligible in the scale of the plot, since
the corresponding differences in slip velocity distribution of
two cases are less than 5% of incoming velocity U.,..

B. External Flows

In this section, a simulation of slip-flows past a circular
cylinder is presented as a prototype of an external flow. Uni-
form flow past a cylinder with a slip surface has also been
studied in Ref. 12 for attached flows using an approximate
boundary-layer analysis. Here, we simulate both attached and
separated flows (Re = 1.0 and Re = 10.0); the simulations
are performed at two values of Knudsen number: Kn = 0
(no-slip) and Kn = 0.015. Separation of flow with a small
circulation bubble is observed for Re = 10; the slip-flow di-
rection is reversed inside the separation zone. In Fig. 8 we
plot the magnitude of slip velocity distribution along the cyl-
inder periphery for Re = 1 (attached flow; triangles) and Re
= 10 (separated flow; circles); here, 0 deg corresponds to the
front stagnation point. The slip velocity increases with the
Reynolds number, but it decreases substantially in the sep-
arated (almost stagnant) region. This slip velocity is propor-
tional to tangential stress 7, that is plotted in Fig. 9 for the
case of Re = 10. From this plot it is evident that separation
occurs at an angle approximately 147 deg from the front stag-
nation point. For the range of Knudsen number (0 < Kn <
0.015) investigated in this paper no difference in the sepa-
ration angle is observed. For comparison, we also plot the
tangential stresses corresponding to the continuum case, Kn
= (). As expected, a reduction in skin friction is obtained
especially in the front part of the cylinder where the flow
accelerates. :
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Fig. 9 Distribution of tangential stresses along the upper and lower
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= 147 deg, where flow separates.

For incompressible flows over flat no-slip surfaces the vis-
cous normal stress components 7, are identically zero; how-
ever, in slip surfaces with curvature, the viscous normal stresses
achieve finite values and increase substantially with the Knud-
sen number. This effect is demonstrated in Fig. 10 where we
plot the viscous normal stress distribution around the cylinder
periphery. In this case the viscous normal stresses for Kn =
0 are nonzero due to the curvilinear boundary; however, they
are considerably smaller compared to the slip-flow, even for
this relatively small value of Knudsen number (Kn = 0.015),
Levels of the pressure distribution are also reduced compared
to the no-slip case in agreement with the results of Ref. 12.
The reduction in the pressure levels is counterbalanced by the
increase in the viscous normal stresses; therefore, the total
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Fig. 10 Distribution of viscous normal stresses along the cylinder
periphery at Re = 10 and Kn = 0 (triangles, no-slip case), Kn =
0.015 (circles).

normal stresses (i.e., combined pressure and viscous normal
stresses) does not vanish as the rarefaction effects increase. 2

IV. Discussion

We have developed a numerical model to simulate unsteady
two- and three-dimensional flows in complex microdomains.
The current methodology is valid for slip-flow regime (i.e.,
for values of Knudsen number less than approximately 0.1).
For higher values of Knudsen number, direct solution of the
Boltzmann equation is required, although the simplified model
developed in Ref. 6, which still employs conservation laws,
can potentially be used in the context of microtransport mod-
eling. Drag reduction phenomena apparent in microchannels
can be explained by the slip-flow theory. However, the cou-
pling of momentum and energy transport via thermal creep
and viscous heating effects can make the analysis of the prob-
lem quite difficuit. The high-order slip boundary conditions
introduced by the expansion parameter b and the significance
of high-order slip effects, especially for separated flows, are
still under investigation. Itis clear, for instance, that the afore-
mentioned analysis is invalid in the neigborhood of a sepa-
ration point. Another important issue we are currently in-
vestigating is the effect of compressibility. The Fanno flow
approximation discussed here, and in more detail in Ref. 15,
suggests that for severe pressure drops compressibility effects
dominate, and thus the influence of rarefied gases on the skin
friction distribution is secondary. This conclusion is also sup-
ported by recent experimental data (C. M. Ho and Y. C. Tai,
work in progress). The spectral element method has recently
been extended to compressible Navier-Stokes equations.'
Simulation results for a detailed quantification of compress-
ibility effects, as well as more extensive comparisons with the
experimental results of Ho and Tai (currently unpublished),
will be presented in a future publication. Finally, the meth-
odology we have developed is general and can be applied to
simulations of three-dimensional flows in existing microde-
vices such as lifting microblades, microbearings, and micro-
motors. "
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