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Rarefaction and Compressibility
Effects in Gas Microflows

Gas microflows are encountered in many applications of Micro-Electro-Mechanical
Systems (MEMS ). Computational modeling and simulation can provide an effective
predictive capability for heat and momentum transfer in microscales as well as means
of evaluating the performance of a new microdevice before hardware fabrication. In
this article, we present models and a computational methodology for simulating gas
microflows in the slip-flow regime for which the Knudsen number is less than 0.3.
The formulation is based on the classical Maxwell/Smoluchowski boundary condi-
tions thar allow partial slip at the wall. We first modify a high-order slip boundary
condition we developed in previous work so that it can be easily implemented to
provide enhanced numerical stability. We also extend a previous formulation for
incompressible flows to include compressibility effects which are primarily responsi-
ble for the nonlinear pressure distribution in microchannel flows. The focus of the
paper is on the competing effects of compressibility and rarefaction in internal flows
in long channels. Several simulation results are presented and comparisons are
provided with available experimental data. A specific set of benchmark experiments
is proposed to systematically study compressibility, rarefaction and viscous heating
in microscales in order to provide validation to the numerical models and the slip-
Jflow theory in general as well as to establish absolute standards in this relatively

young field of fluid mechanics.

1 Introduction

Micron size mechanical devices are becoming more preva-
lent, both in commercial applications and in scientific inquiry.
Small accelerometers, with dimensions measured in microns,
are being used to deploy air bag systems in automobiles. Tiny
pressure sensors for the tip of a catheter are smaller than the
head of a pin. Micro actuators are moving scanning electron
microscope tips to image single atoms. New fabrication tech-
niques, such as surface silicon micromachining, bulk silicon
micromachining, LIGA (Lithographie Galvanoformung Abfor-
mung), and EDM (Electro Discharge Machining) are making
these microdevices possible. The capability to batch fabricate
and automate these fabrication technologies makes these micro-
devices inexpensive (Howe et al., 1990; Bryzek et al,, 1994;
Reed, 1993). Inherent with these new technologies is the need
to develop fundamental science and engineering of small de-
vices. Microdevices tend to behave differently than the objects
we are used to handling in our daily life. The inertial forces,
for example, tend to be quite small and surface effects tend to
dominate their behavior. Friction, electrostatic forces, and vis-
cous effects due to the surrounding air or liquid become increas-
ingly important as the devices become smaller.

This paper focuses on the fundamental laws and the metrol-
ogy of gas microflows, i.e., gas flows in devices with character-
istic dimension of the order of a micron (xm). They are encoun-
tered in many applications of Micro-Electro-Mechanical Sys-
tems (MEMS) such as instrumentation, microelectronics,
bioengineering, and advanced energy systems (Gabriel et al.,
1988; O’Connor, 1992). An example of such a device is a
polysilicon, surface-micromachined side-drive micromotor. The
fabrication, operation, and performance of such a motor have
been studied extensively in recent years by Tai et al. (1989),
and Mehregany et al. (1990). Figure 1 shows a sketch of such
a motor along with the characteristic dimensions. Typical op-
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erating conditions for an angular speed of w = 5000 rad/sec
show that the Reynolds number Re = 1 for the flow in the gap
and that the Mach number M < 0.01 based on the rotor tip
speed. In this small gap, a gas flow cannot be modeled based
on the continuum hypothesis. The deviation of the state of the
gas from continuum is measured by the Knudsen number (Kn),
which is defined as Kn = N/L, where X is the mean free path
of the molecules and L is representative of the domain length.
For this micromotor, using the rotor base dimensions (L = 3
upm) and assuming that operation conditions are atmospheric,
we obtain the value Kn = 0.022.

While the nominal Knudsen number is relatively small for
the above example, there are other applications of microflows
where the Knudsen number is significantly larger. For example,
in magnetic disk storage, the gap between the magnetic head
and the recording medium varies from 0.2 to 0.05 pm with the
smaller dimension corresponding to an increase in recording
capacity. The Knudsen number in this case is above one. Simi-
larly, other microflows such as flows in helium leak detection
microdevices and mass spectrometers correspond to a Knudsen '
number that may achieve values up to 200 (Tison, 1993).

As the value of Knudsen number increases, rarefaction effects
become more important and thus pressure drop, shear stress,
heat flux and corresponding mass flowrate cannot be predicted
from flow and heat transfer models based on the continuum
hypothesis. On the other hand, simple models based on kinetic
gas theory concepts are not appropriate either. An exception is
the very high Knudsen number regime corresponding to near
vacuum conditions in finite size devices or at atmospheric con-
ditions but at device dimensions of the order of nanometer
(nm). The appropriate. flow and heat transfer models depend
on the range of the Knudsen number. A classification of the
different flow regimes is as follows (Schaaf and Chambre,
1961): For Kn = 10~ the fluid can be considered as a contin-
uum, while for Kn = 10 it is considered a free molecular flow. A
rarefied gas can neither be considered an absolutely continuous
medium nor a free-molecule flow in the Knudsen number range
between 107 and 10. In that region, a further classification is
needed, i.e., slip-flow (10™* < Kn < 0.1) and transition flow
(0.1 < Kn < 10). This classification is based on empirical
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Fig. 1 Diagram of a side-driven micromotor with typical dimensions

information and thus the limits between the different flow re-
gimes may depend on the problem geometry and special condi-
tions. A comprehensive review on the theory of internal flows
at low pressures is given by Thompson and Owens (1975); a
‘general review on rarefied gas dynamics is given by Muntz
(1989).

A verification of this taxonomy is provided in Fig. 2 where we
plot the experimental data by S. Tison obtained at the National
Institute of Standards (NIST) at very low pressures in a pipe
of diameter d = 2 mm (Tison, 1994). Both inlet and outlet
pressures were varied in the experiment while the corresponding
Krudsen number varied from almost 0 to 200. In this log-log
plot, we can easily identify three distinct flow regimes, although
the corresponding values at the boundaries between the different
regimes is somewhat different than the aforementioned ones
(Schaaf and Chambre, 1961). In particular, the slip flow regime
extends up to Kn = 0.6 and the transition regime up to Kn =
17. It is interesting to notice the very slow variation of mass
flowrate in terms of the pressure difference in the transition
regime. In that range of Knudsen number a minimum occurs
in the mass ﬂowrate divided by the difference of inlet and exit
pressures (M/AP) if the data are replotted in terms of the
average pressure between inlet and outlet. This minimum was
first identified by Knudsen (1909) and has been observed in
many experimental and analytical studies (Tison, 1993; Loyalka
and Hamoodi, 1990; (see Kennard, 1938 p. 309). The. form of
the plot in Figure 2 also suggests that a nonlinear pressure drop
takes place in this rarefied pipe flow. Scaling of the mass flow-
rate with the difference of pressure squares is characteristic of
low Reynolds number, compressible flows in long channels.

The first experimental study of microflows using micro-ma-
chined channels was conducted for both gases and liquids by
Pfahler et al. (1991) in a Reynolds number range 0.50 < Re
= 20 and Knudsen number 0.001 = Kn = 0.363 for a hydraulic
channel diameter D, = 8 um and channel length 11 mm. The
corresponding Mach number at the inlet was very small but at
the exit high subsonic values were achieved. For example, for
an inlet to exit pressure ratio of 10, exit Mach numbers as high
as 0.7 are reported by Pfahler et al. (1991) and Harley et al.
(1995). The reported skin friction reduction due to apparent
slip of the flow has been confirmed in other similar experimental
studies (Arkilic et al.,, 1994) using different microfabrication
techniques to fabricate the microchannels. In particular, in the
work of Liu et al. (1993) and Pong et al. (1994 ) the pressure
distribution along the microchannel was measured by using a
surface micromachined system with a number of sensors as part
of the surface. A nonlinear pressure distribution was clearly
demonstrated in these experiments; however more data are
needed to adequately describe its origin. Other recent work
focusmg on measuring and modeling microflows is presented
in Shoji and Esashi (1994), Wilding et al. (1994), and Zengerle
and Richter (1994).
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In our studies we have identified four xmponant etf >Cts in %

microflows. These are: compressibility, rarefaction, viscous
heating, and thermal creep effects. The current paper empha-
sizes compressibility and rarefaction effects for shear and pres-
sure driven microflows. Viscous heating is due to the work
done by viscous stresses, and it is important for microflows,
especially in creating temperature gradients within the domain
even for isothermal boundary conditions. The thermal creep
(transpiration) phenomenon is a rarefaction effect. For rarefied
gas flows it is.possible to start the motion with tangential tem-
perature gradients along the channel surface. In such a case the
gas molecules start creeping from cold to hot direction (Ken-
nard, 1938, Kruger et al., 1970). Thermal creep can be im-
portant in causing variation of pressure along tubes in the pres-
ence of tangential temperature gradients. Thermal creep effects
are also included in our model; the importance of these effects
for incompressible flows has been documented in Beskok and
Karniadakis (1994). A systematic study of thermal creep for
compressible flows. will be presented in a future publication.
Numerical simulation studies are well suited for microflows,
however the breakdown of .continuum at microscales leads to
uncertainties regarding the governing constitutive laws. In the
slip-flow regime, it is reasonable to employ the Navier-Stokes
equations modified at the surface with appropriate velocity-slip
conditions (Thompson and Owens, 1975). In previous work,
in a series of papers (Beskok and Karniadakis, 1992, 1993,
1994) we developed an incompressible flow model with high-
order velocity-slip boundary conditions. This approach essen-
tially extends the governing equations used in modeling high-
altitude slightly rarefied aerodynamic flows (Kennard, 1938;
Schaaf and Chambre, 1961). In the current work, we use a
numerical formulation we have developed for compressible no-
slip as well as slip-flows in order to quantify the compressibility
and rarefaction effects in the slip-flow regime. The results we
present are consistent with experimental studies and agree very
well in nondimensional form both for fiows in microdomains
where the Knudsen number is finite, due to the micron-size
characteristic length, as well as in flows in domains of large
size at near vacuum conditions. A fundamental question con-
cerns the validity of the dynamical similariry between these two
types of flows. In other words, are microflows at atmospheric
conditions dynamically similar to rarefied (i.e., low pressure)
flows in macro-domains. In conjunction with such questions we
propose a set of benchmark experiments which, we believe,
will aid in our fundamental understanding of the flow physics
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Fig. 2 Variation of mass flowrate as a function of (P% — P4,). The data
are for rarefied gas flow experiments conducted by S. Tison at NIST {Kn
is based on the pipe exit pressures which are very close to vacuum, and
pipe radius).
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and will validate the computational models we develop in this
work.

The paper is organized as follows: In Section 2 we summarize
the mathematical and numerical formulation and develop a
high-order velocity slip boundary condition. In Section 3 we
present typical results in shear-driven flows and compare with
analytical models. In Section 4 we include results for pressure-
driven flows and compare with experimental results. In Section
5 we propose a set of benchmark experiments motivated by
the simulation results. Finally, in Section 6 we summarize our
findings.

2 Models and Formulation

2.1 Compressible Navier-Stokes Algorithm. We con-
sider here the slip-flow regime where we assume that gas mi-
croflows are governed by the Navier-Stokes equations and ap-
propriate velocity-slip boundary conditions. In a previous study
(Beskok and Karniadakis, 1994), we developed an incompress-
ible flow formulation; however, the experimental results re-
ported by Liu et al. (1993) show nonlinear pressure distribution
in microchannel experiments suggestive of strong compressibil-
ity effects. For this reason, we have developed a new algorithm
that solves the compressible Navier-Stokes equations using a
spectral element/time-splitting algorithm. The algorithm treats
the inviscid part (Euler equations) first using the characteristic
decomposition procedure and a Gauss-Lobatto-Legendre collo-

- cation algorithm. Subsequently, the viscous part is discretized
using a Galerkin formulation that enforces interelemental conti-
nuity conditions. Details of the algorithm including the treat-
ment of element interface boundary conditions as well as-valida-
tion of the spectral element algorithm for subsonic compressible
flows in complex geometries is presented elsewhere (Beskok
and Karniadakis, 1996).

In the results that follow, a systematic study of discretization
errors has been performed by p-type grid refinements (increas-
ing the order of polynomial expansions). The discretization
errors are estimated by using the global mass and momentum
balances. A maximum error of 1 percent in global conservation
laws is taken as an acceptable norm. It was found that continuity
is satisfied with 0.05 percent error and momentum is conserved
with less than 1 percent error in all cases.

2.2 Velocity-Slip and Temperature-Jump Conditions.
In previous studies (Beskok and Karniadakis, 1992, 1993,
1994 ) with incompressible flow. models we employed the veloc-
ity-slip and temperature-jump boundary conditions given in the
following non-dimensional form:

2~0, Kn _6_U_,
o, 1 —-bKn dn

U,-U, =

+}—(y — 1) Kn? Rea—T, (1a)
2r Os

2—o0r| 2v [KnodT
T, —Tp= —L} it
£ or [y + 1] Pr on (15)

where U, and T, refer to the gas velocity and temperature,
respectively, and U, and T, are the corresponding wall quanti-
ties. Also 8/8n and 8/8s denote the normal and tangential
derivatives evaluated at the surface, respectively. Here o, and
orare the accommodation coefficients of the solid surface (Sax-
ena and Joshi, 1981), and b is a high-order slip coefficient (see
Beskok and Karniadakis, 1994). The case b = 0 corresponds
to classical Maxwell (first-order) slip boundary condition.
The numerical implementation of Eqs. (1a) and (1b) are
somewhat complicated due to the mixed-type (Robin ) boundary
conditions. An explicit (in time) implementation of Eq. (1a)
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at time level (n + 1) At (ignoring for simplicity the temperature
term) is as follows:

U:-H - Uw

U T2-0,({ Kn \oUT™ ,
- ou 2
E“{ (1-bm)&l +OAr), (2)

where «; denotes the weights necessary to obtain the time-
accuracy @ (Ar’) with At the time step, and J the order of
integration rule (e.g., J = 2 for second-order time accuracy).
However, explicit treatment of boundary conditions is an extrap-
olation process and thus it is numerically unstable, e.g., for high
values of Knudsen number. ‘ _ '

Through numerical experimentation, we have determined that
the overall Navier-Stokes solution, with explicitly implemented
velocity-slip boundary conditions, becomes unstable when the
calculated slip amount (U, — U,) at a certain time step is
sufficiently large to cause a sudden change of the sign of wall
vorticity, in the next time step. This empirical finding can be
readily justified by considering the following argument. For a
linear Couette flow (see Section 3) with driving velocity U,
and local gas velocity U, at a distance (Ay) away from the
wall, it is possible to approximate (to a first-order.accuracy and
for o, = 1) the slip velocity U, as:

U|_Uo

U, — Uy =Kn
& 0 Ay

(3)

For no-change in the sign of vorticity at the wall, we require
that (Up — Uy) > (U — U,) = —Kn (U, — Upy)/ Ay; this is
satisfied if Ay > Kn (in nondimensional form). This limit is a
significant restriction, especially for spectral-based methods as
the one we use in our discretization, where collocation points
are clustered very rapidly close to the bouhdaries. Therefore,
spectral and high-order methods that typically provide high-
order accuracy are amenable to numerical instabilities of this
form.

To circumvent this difficulty and model high-order rarefac-
tion effects accurately, we present here a reformulation of the
velocity-slip boundary condition. This will be obtained by an
approximate analysis of the motion of a monatomic gas near
an isothermal surface. To this end, we consider the tangential
momentum flux near the surface. We then assume that approxi-
mately half of the molecules are coming from the layer of gas
one mean free path (\) away from the surface with an average
tangential velocity of U,, while the other half of the molecules

are reflected from the wall. Furthermore, we assume that ¢, of'

the molecules are reflected from the wall diffusively (i.e., with
average tangential velocity corresponding to that of the wall),
and that (1 — ¢,) of the molecules are reflected from the wall
specularly (i.e., conserving their average incoming tangential
velocity U)). Following Schaaf and Chambre (1961), the slip
velocity for isothermal surfaces is then

g=%[U)\+(1 - o) U + o ,U.]. (4)

This was also our starting point in the derivation of Eq. (1a)
including second-order effects (Beskok and Karniadakis,
1994). In this new approach, we first find all locations at a
distance (\) away from the surface. We then perform spectrally
accurate interpolations to find the local flow variables (U,, T})
at these locations, and subsequently evaluate the slip velocity
using Eq. (4).

Next we show that Eq. (4) corresponds to a high-order slip
boundary condition by simply expanding U, in (4) in terms of
U,, using Taylor series expansion. This results in:
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2= o[y, () , Ke* (8T
Ug"Uw= o [Kn(an ),+ 2 (8":):

Kn® [ 0°U
+?(5F>’+ ..}, (35)

where the subscript s denotes the surface where shp occurs and
n is the normal coordinate.

For the temperature-jump boundary condition, a derivation
based on kinetic theory of gases is given in (Kennard, 1938).
We propose the following form for the high-order temperature-
jump condition by analogy with Eq. (5):

2-or[ 2y |11 KH(QZ)
or v+ 1}§Pr on/,
Kn® [ 0°T Kn? 63T>
> (== — | = |, (6
3 (an2>,+ 6 (6n3 ot ©

which can be re-arranged by recognizing the Taylor series

T, - T, =

" expansion of T, about T, to give a temperature-jump boundary

condition similar to Eq. (4) as:

(2 —or) Y
Pr (y+1)
+ (2 - or)

Pr

T)‘ + UTTW

T, = )

If temperature gradients are present along the surface, the
velocity slip is modified to include thermal creep (Kennard,
1938). Equation (4) should then include the term (30./8) (uR/
P)(8T/8s), where s denotes the direction along the surface.

We have found that these new boundary conditions (Egs. (4)
and (7) are numerically stable for values of Knudsen number
up to 0.5, covering essentially the entire slip-flow regime. The
previous boundary condition developed in (Beskok and Karnia-
dakis, 1994) caused numerical instabilities for typical flows
above Kn > 0.1.

As regards accuracy of the two velocity-slip boundary condi-
tions, i.e., Eq. (1a) versus Eq. (4) we can analyze the differ-
ences for the two-dimensional pressure-driven incompressible
flow between parallel plates separated by a distance 4 in the
slip-flow regime. Assuming isothermal conditions and that the
slip is given by Eq. (4), the corresponding velocity distribution
is

XLy 2P (Ka?

K dP[y* y 2-o0,
h* h oy

- Kn)] v (8)

which is identical to the results obtained using the Eq. (1a) up
to second-order terms in Kn given below:

This can be easily seen by expanding the last term in Eq. (9)
as a geometric series expansion in terms of powers of Kn.
However, it still contains nonphysical third- and higher-order
corrections whereas the new approach gives exact results
(within the physical model -assumptions). The leading error in
Eq. (9) is therefore proportional to (h%/2u)|(OP/8x)] Kn®.

2.3 Summary of Computational Models. We summa-
rize here, for convenience, all the computational models we
have developed which are implemented in the spectral element
code pFlow. This code can be used to analyze rarefaction,
compressibility, viscous heating, and thermal creep effects and
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their relative importance. The current capabilities of theSe codes*
are summarized in Table 1.

Our incompressible models incorporate both the new (Eq.
(4)) and the old boundary conditions (Eq. (1a)). There are
no fundamental limitations in implementing the new boundary
conditions for three-dimensional flows. The new boundary con-
ditions have also been implemented. in the version of incom-
pressible flow solver, which solves the momentum equation
only. In the following sections, we use the code uFlow to study
in detail rarefaction and compressibility effects in gas mi-
croflows.

3 Shear-Driven Microflows -

Shear-driven flows are encountered in micromotors and mi-
crobearings. In the simplest form, the linear Couette flow can
be used as a prototype flow to model such flows driven by a
moving plate. An analytical solution is easy to obtain given the
simplicity of the geometry consisting of two plates separated
by a distance . The flow is driven by moving the upper plate
at a constant velocity U.; the upper plate temperature is at T,
while the bottom plate is assumed to be adiabatic. Also for
simplification, viscosity and thermal conductivity are assumed
to vary linearly with temperature (ie, k ~ g ~ T), and the
Prandtl number is fixed (for air Pr = 0.72). For a no-slip
Couette flow it is possible to obtain the friction coefficient (C;
= 1,/(0.5pU%)) (Liepmann and Roshko, 1957; p. 313):

1+Pr——-7;1M§,

C=2 ™ . (10$)
where M., is the Mach number based on the upper plate velocity
and temperature, and Re is the Reynolds number based on the
channel height 4.

To validate the developed code pFlow, we have performed
a series of simulations corresponding to top plate temperature
= 300 K and Reynolds number Re = 5. The simulations
are performed by using 9 elements with 6™ order polynomial
expansions per direction in each element. The Mach number
M.. is specified by varying the driving velocity of the top plate
U... Correspondingly, rarefaction effects are spec1ﬁed through
the Knudsen number, since

wy/2 M.
Re

Kn, = (11)

The variation of friction coefficient as a function of Mach
number and corresponding Knudsen number is shown in Fig.
3. The friction coefficient of no-slip compressible flow increases
quadratically in agreement with Eq. (10), well above the con-
stant value of the corresponding incompressible flow. The no-

slip compressible flow simulations match the theoretical results

exactly. For rarefied flows, slip effects change the friction coef-
ficient significantly. Compressible slip-flow results are denoted
by open circles in Fig. 3; for the specified conditions they
correspond to small deviations from the incompressible slip-
flow results obtained from

2 1
Cf=‘— ———eee———— . (12)
Re |y 422 9vgy

Oy

In linear Couette flow the pressure is constant and therefore
compressibility effects are due to temperature changes only. As
M. increases the temperature difference between the two plates
gets larger (due to the viscous heating). Correspondingly, com-
pressibility effects become significant. It is seen in Fig. 3 that
significant deviations from incompressible flows (slip/no-slip)
are obtained for M., > 0.3. In particular, we investigated a case
where the bottom plate is kept at T,, = 350 K while the top
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Table 1 Flow models and boundary conditions implemented in the uFlow code

Flow type - B.C. type 2-D/3-D V. Slip T. Creep T. Jump Kn limit
Incomp 1 6(Kn, Kn?) 2-D/3-D Yes Yes | Yes <0.1
Incomp 2 O6(Kn™) 2-D Yes assigned No >0.1
Comp _ 6(Kn") 2-D Yes - Yes Yes <0.5

plate is kept at 7. = 300 K. The friction coefficient of this case
is also given in Fig. 3 (indicated as AT = 50 K). The simulation
results are shown by solid and open triangles for the no-slip
and the slip cases, respectively. The trend is different than the
adiabatic bottom plate case. No-slip results show small variation
of C; as a function of M, while for slip flows (; is reduced
significantly as Kn is increased.

The density variation across the channel for compressible no-
slip as well as slip flows is shown in Fig. 4 for the case with
adiabatic bottorn wall. Here, we have normalized the density
variation by the top plate density of the no-slip case (solid
line). The no-slip cases exhibit large density variations for rela-
tively large values of M... Since the pressure is constant, density
variation across the channel is due to the drastic change in
temperature, which is attributed to viscous heating effects. How-
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Fig. 3 Variation of skin friction as a function of M and Kn for Couette
flow (Re = §, T. = 300 K)
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Fig. 4 Couette flow density variation across the channel for various
values of M and Kn (Re = 5, T, = 300 K)
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ever, density variations are reduced in slip flows. There are two
reasons for this behavior: First, the shear stress is reduced due
to slip, reducing the viscous heating (work done by viscous
stresses in the energy equation). Second, a temperature jump
exists at the driving (top) plate; there is no temperature-jump
on the bottom plate since it is adiabatic.

The flow in a micromotor or a microbearing is more compli-
cated than the linear Couette flow. We therefore consider a
shear-driven grooved channel flow in order to model the geo-
metric complexity of these microdevices. A segment of the
domain is shown in Fig. 6. The flow separates and starts to
recirculate in the grooves even for small Reynolds number
flows. In our numerical model we have assumed that the top
wall is moving with speed U.., and both surfaces are kept at the
same temperature (300 K). We also assumed that the geometry
repeats itself along the flow direction. Therefore the flow is
periodic, and only a section of the channel is simulated. In our
simulations the Reynolds number is fixed (Re = 5.0), and the
Knudsen number is increased by decreasing the channel gap
(and correspondingly the entire geometry is reduced by the
same scale to ensure dynamic similarity of channels). Therefore
the top wall speed U, is increased to keep the Reynolds number
constant, resulting in an increase of flow Mach number ac-
cording to Eq. (11). The domain is discretized with 12 elements
of 6" order polynomial expansions in each direction per ele-
ment. The accuracy of the results was tested by increasing the
order of polynomial expansions (p-refinement), and no signifi-
cant changes in the resuits were observed. '

In order to identify the accuracy of an incompressible model
we compare the results of the incompressible model with the
compressible model for the same Reynolds and Knudsen num-
ber. In Fig. 5 we present the variation of mass flow rate in the
channel versus the drag on the top channel wall normalized
with its no-slip incompressible counterpart. Drag reduction due
to rarefaction is clearly seen. For example, for Kn = 0.128,
about 30 percent drag reduction is observed. Both models pre-
dict a reduction in mass flow rate for slip flow. This is due to

Kn=0.0

A
0.08 - A 4
Kn=0.042
2
=
~
‘2 0.6 - -
a
A
Kn=0.086

.

004 4 Incompressible -

'Kn=0.128
I & Compressible
A
1 . [ 1 —
0.7 0.8 0.8 1

Drag/Drag,,

Fig. 8 Variation of mass flow rate versus drag force for the grooved
channel, normalized with values of corresponding incompressibie no-
slip model
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the reduction in the volumetric flow rate. The mass flow rate
predicted by the incompressible model is less than that of the
compressible one due to the inability of the incompressible
model to predict variations in density.

The temperature contours for no-slip and slip (Kn = 0.086)
flows are given in Fig. 6. The increase in temperature in the
middle of the channel is due to viscous heating resulted from
large shear stresses in this low Reynolds number flow. The
viscous heating for slip flow is less than that of no-slip flow
due to the reduction in shear stresses caused by the velocity
slip. Also, the temperature of the gas.near the walls is not the
same with the prescribed -wall temperature due to the tempera-
ture jump effects. This may create a problem for micro-gas-
flow temperature measurements. Finally, the change in the tem-
perature due to the viscous heating seems to be small in magni-
tude. However, in microflows the gradients in temperature can
be quite large due to the small length scales even for one degree
temperature difference.

4 Pressure-Driven Microflows
We consider here two-dimensional flow between parallel

~ plates at a distance h, with L being the channel length, where

L/h > 1. The flow is sustained by a pressure gradient dP/dx.
We also assume that the Reynolds number is relatively low and
that the Knudsen number Kn < 0.5. It is therefore possible to
simplify the Navier-Stokes equations for a uni-directional, iso-
thermal flow by neglecting the inertial terms (pu; (8u,/8x))) in
the governing equations. This results in the following analytical
solution for the streamwise velocity profile,
2 2 -
=k dP[Z;my-ﬁ——-ﬂ(an-Kn)], (13)
h h o,

where we have used the new high-order boundary conditions
(Eq. (4)). Notice that the second-order correction, which is
typically omitted in other works (Arkilic et al., 1994), has the
opposite sign compared to the first-order term,; its contribution
may be significant, especially for surfaces for which o, < 1.
The corresponding mass flow rate is computed from M = p

foh U(y)dy, where p = P/RT, assuming we can still treat the

rarefied gas as an ideal gas. Expressing the Knudsen number at
a Jocation x as a function of the local pressure, i.e., Kn = Kn,

Po/P, where the subscript ‘0"’ refers to exit conditions, we

obtain:

. h3P2
M=———[II?-1
24uRTL l )
+12 229 (g, (TL - 1) — Kn} In IT,)], (14)
Iy

where we have defined I, = P,/P, as the pressure ratio between
inlet and exit. The corresponding flowrate without rarefaction
is given by

_ h*P} .
ns = 24uRTL (I17 - 1). (15)
Kn=0.0 Kn=0.086
] U—s;
= z 7
= it

:

Fig. 6 Temperature contours In no-slip and slip grdoved channel
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Fig. 7 Varlation of mass flow rate normalized with the corresponding
no-slip mass flow rate as a function of pressure ratio

Therefore, the increase in mass flow rate due to rarefaction can
be expressed as

_122—0'|,Kn% ]nn,‘

a, -1

1t is seen from this formula that the effect of the second-order
correction is to reduce the increase in mass flow rate due to first-
order slip. In other words, the often-used first-order velocity-slip
boundary condition over-predicts the mass flowrate for a given
pressure ratio IT;.

Having obtained the mass flowrate, the corresponding pres-
sure distribution along the channel can be easily obtained as

(16)

1-og,

1-I1% + 12 Kn, (1 - II)

v

+ 12229

KndIn (IT) = B(L - %), (17)
where B is a constant such that I1(0) = II,. Here we have
defined I[1(x) = P/ Py, i.e., the pressure at a station x normalized
with the exit pressure. The above equation provides an implicit
relation for IT(x); the pressure distribution for a first-order
boundary condition is obtained explicitly by neglecting the sec-
ond-order terms (¢ (Kn?)) in Eq. (17).

The formula for the flow rate has been tested directly using
experimental data reported by Arkilic et al. (1994) as well as
simulation results obtained using our code uFlow. The results
are plotted in Fig. 7 in terms of ratio of slip mass flow rate to
the corresponding no-slip flow rate predicted by Eq. (16) as a
function of pressure ratio. Microchannel helium flow experi-

" ments of Arkilic et al. (1994) show a maximum of 10 percent

deviation from the first-order theoretical curve. The deviations
are more significant especially for low pressure ratio cases. The
gain in the mass flow rate due to slip effects is very significant
but it is reduced as the pressure ratio is increased. Comparison
of the high-order formula with the first-order formula shows
about 8 percent deviations for small pressure ratios; the devia-
tions are reduced for higher pressure ratio cases. The numerical
predictions for helium flow are consistent with the high-order
formula, validating the accuracy of Eq. (16) for helium flows
up to the pressure ratios studied in this paper. Both the rarefied
air flow (Kn = 0.075) and the no-slip air flow show deviations
from the high-order formula especially for high pressure ratios.
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Fig. 8 Computed pressure distribution along the channel center for air
flow (results are due to uFlow)

The numerical predictions show less mass flow rate than the
values predicted by the formula. The reason for this is the
pronounced compressibility effects caused by the inertial terms
in the Navier-Stokes equations, which were neglected in the
derivation of Eq. (16).

Next we examine the pressure distribution along the channel;
the experimental results by Liu et al. (1993) and Pong et al.
(1994) show a nonlinear pressure distribution. In Fig. 8 we plot
the pressure distribution for air flow for different values of
pressure ratios (IT; ) obtained from simulation. Also included is
the pressure distribution for the corresponding compressible,
no-slip flows. The curvature in the pressure distribution is more
pronounced for the no-slip compressible flows than the rarefied
flows, and this effect gets more dominant as the pressure ratio
(I1;) is increased. For cases with I1; = 1.75, the pressure drop
is practically linear, resembling an incompressible flow.

To investigate the compressibility and rarefaction effects fur-
ther, deviations from linear pressure distribution for helium and
air flows for pressure ratio I, = 3.5 is given in Fig. 9. Here
we see that unlike the experimental findings of Liu et al. (1993)
and Pong et al. (1994) the curvature in the pressure distribution
for helium is less pronounced compared to the air microflow.
This trend should be expected since for the same pressure ratio
and exit pressure, the local Mach number for helium flow is
smaller than the Mach number for air flow. Also the rarefaction

ot = Air, Kn=0.104

=~=--- He, Kn=0.0
————— He, Kn=0.30

X/L

Fig. 9 Deviation from linear pressure drop for air and helium flows (h
= 0.65 um, I, = 3.5, P, = 1 atm). Results are due to uFlow)
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Fig. 10 Deviation from linear pressure drop for I, = 2.02, nitrogen fiow,
{h = 1.25 um); circles correspond to experimental data by Liu et al.
{1993)

effects for helium flow is larger than that of the air flow due to
the relatively large mean free-path of helium molecules com-
pared to air. Our simulation results indicated that rarefaction
causes the opposite effect than compressibility, which is also
evident from the analytical expression (Eq. (17)). This is
shown in Fig. 10 where we plot the analytical predictions taking
into account first- and second-order Knudsen number effects.
The simulation results for nitrogen flow of Kn = 0.156, corre-
sponding to the experiments of Liu et al. (1993), are also in-
cluded. We see that pressure distribution agrees with the high-
order curve. The discrepancies are due to the neglected inertial
terms in Eq. (17). The trends of experimental data and the
simulations are qualitatively the same. They both predict smaller
deviations from linear pressure drop than the corresponding no-
slip flow. There are, however, quantitative differences such as
the maximum deviation location from linear pressure drop,
which is at X/L = 0.4 for the experiments, and X/L = 0.55
for the simulation. We observed a larger disagreement with the
‘‘second generation’’ experimental data obtained by Pong et al.
(1994). Because of current uncertainties in these measurements
(a different pressure distribution is measured if the flow direc-
tion is reversed) we have not included this comparison in the
present paper.

Before we end this section, we would like to comment on
the limitations of the analytic formulas given in (14) and (15).
The derivation of these formulas is based on the additional

assumptions that density and pressure across the channel at any

given location are constant. Thermal effects are also neglected.
Due to these limitations the analytic formulas can be applied
to low Mach number flows (typically M, = 0.10). In our simu-
lations we have computed non-negligible density variations
across the channel, especially for large pressure drop of nitrogen
and air flows. The importance of inertial terms compared to the

“cross flow diffusion terms (= Re(h/L)) is estimated by using

the aspect ratio L/h = 20, and the Reynolds number obtained
by uFlow. The difference between the analytic predictions and
the solution of full Navier-Stokes equations is expected to be
less than 20% for the most severe cases simulated in this paper.
Equation (15) is indeed similar to an incompressible model
where (dP/dx) = (P, — P,.)/L, and density is evaluated at
average pressure in the channel (i.e., po = ((Pin + Pou)/2)/
RT).

5 Proposed Benchmark Experiments
There are several difficulties in performing microflow experi-

ments. First, the mass flow rate is quite small (10~ ~ 10-"
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kg/s) and therefore difficult to measure. Second, pointwise
measurements of pressure and temperature are difficult to make;
the only pressure distribution obtained experimentally so far is
due to Liu et al. (1993). Finally, the size and shape of micro-
channels are difficult to characterize. In the following, we intro-
duce ideas for specific experiments that can alleviate some of
these difficuities. The primary objective is the generation of
accurate data bases for validating predictive computational
models for gas microflows, and developing absolute standards
for measurements.

Pressure-Driven Microflow. The purpose of this experi-
ment is to measure and correlate the mass flowrate and pressure
drop in microchannel flows. The pressure distribution in the
channels should also be measured to identify compressibility
effects. A critical aspect of this benchmark experiment is the
ability to modify and characterize the microchannels. Many
different channel cross-sections, such as rectangular as well as
triangular (in the shape of V-grooves) should be etched. Before
the final assembly of the channels, surface characteristics, shape
and dimensions of the channels should be accurately measured.

. The purpose of using various channel cross-sections in these

benchmark experiments is to develop the concept of the equiva-
lent ‘‘hydraulic diameter’’ for unified pressure drop predictive
models like the Moody diagram in large diameter pipes
(Schlichting, 1979).

We propose to perform pointwise pressure measurements by
connecting the tap holes on microchannels to a micro-measure-
ment system. The micro-measurement system we propose con-
sists of two volumes separated by a thin, flexible diaphragm,
which provides a sensitive measure of the pressure difference
between the pressure of two chambers it separates. This pro-
vides comparison of pressure in a micro-volume (connected to
the microchannels), with a large, and hence easily measured
volume of fluid (measurement chamber). The curvature and
deflection of the diaphragm will be measured optically, the
pressure in the measurement chamber will be adjusted till the
deflection of the diaphragm vanishes (i.e., the pressure on both
sides of the diaphragm are identical), and the pressure at the
measurement chamber will be directly recorded. Our approach
of measuring point wise pressure in microchannels differs from
that of Liu et al. (1993), where micro-pressure sensors are
manufactuted adjacent to the microchannels. The proposed
measurement system here, is based on pressure measurements
of much larger volume of fluids, and therefore it is expected to
be more accurate than the measurement system used by Liu et
al. (1993) and Pong et al. (1994).

Shear-Driven Microflow. The purpose of this experiment
is to study the rarefaction effects without the adverse effects of
compressibility, which are present in pressure-driven micro-
channel flows. Here we consider a device similar to the Taylor-
Couette device. The flow is driven by one of the surfaces of
the channels which is moving along the flow direction. The
inner cylinder is rotated at a prescribed rate; the corresponding
torque balancing the shear stress on the inner surface is mea-
sured. The gap between two cylinders should be kept in the
order of a micron. The cylinder radius and height should be a
few centimeters; this is necessary for the validity of *‘thin gap”’
approximation. Maximizing the flow surface has several advan-
tages, e.g., moré reliable data can be obtained as the magnitude
of the torque will be large, and the end-effects can be neglected.
The micro-Taylor-Couette device is conceptually a large-scale
device with micron-scale flow gap. Therefore, making such a
device does not require fabrication techniques used in MEMS.

Compressibility can be neglected for moderate rotational
speeds. However, increase in the rotational speed results in
significant compressibility and viscous heating effects. The ex-
periments should be performed in-a temperature and pressure
controlled environment. Preferably one of the cylinder surface
should be insulated, and cylinder surface temperature and pres-
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sure should also be measured. This way, compressibility and '

viscous heating effects can be identified. One other advantage
of performing the experiments in a pressure-controlled environ-
ment is the ability to vary the Knudsen number by either ad-
justing the pressure in the apparatus or changing the gas.

6 Summary

In this paper, we have investigated the combined effects of
compressibility and rarefaction in gas microflows. The flow
regime we have considered corresponds to slip-fow, with the
Knudsen number Kn = 0.3. The geometry we have primarily
considered is a flat channel in order to compare with available
experimental results and approximate theoretical models. How-
ever, the numerical models we have developed are appropriate
for complex geometries such as the grooved microchannel flow
that we modeled in Section 3. Complex geometries are of great
interest due to their practical use in fabricating channel networks
in micro-scales consisting of sudden expansions and contrac-
tions, bends, branches, etc. (Zohar, 1994).

For pressure-driven channel flows, we have found that a non-
linear pressure distribution is established in microchannels in
accordance with the experimental results of Liu et al. (1993).
In particular, for large pressure drop in air or nitrogen flow,
compressibility effects are dominant and the curvature in the
pressure distribution plot is very pronounced. However, in more
rarefied flows such as helium flow, a pressure distribution with
smaller curvature is obtained. In other words, our simulation
results as well as approximate analytical models suggest that
rarefaction negates compressibility, in contrast with experimen-
tal findings of Pong et al. (1994).

We have demonstrated that compressibility for shear-driven

‘flows is negligible, and thus rarefaction dominates the momen-

tum and energy transport. In particular, drag-reduction experi-
enced in micro-devices can be clearly explained by rarefaction
effects. Also, viscous heating effects is observed to create con-
siderable temperature gradients in micron-sized domains even
for iso-thermal boundary conditions.

Based on the studies presented here we have proposed a set
of benchmark experiments designed to validate the slip-flow
theory in modeling microflows. In particular, we focus on the
combined rarefaction and compressibility effects and suggest
specific pressure distribution and mass flowrate measurements
in microchannels of various crossections. In addition, we pro-
pose a new experiment isolating rarefaction effects only by
measuring the shear stress (torque) in a micro-Taylor-Couette
device. These experiments are also intended for the experimen-
talists to perform metrology experiments and establish second-
ary standards. Moreover, the results of these experiments will
be valuable to groups developing CAD systems for microme-
chanical research and development.
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