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Topics in this lecture 3. quUld pI'OCe Ssmg
Small volume liquid mjcrocomponents aIld deViceS

processing :
Components and devices
units: principles, designs,

ne * Introduction

Sl e e Structural elements and integration:
Overview to research and developments of microfluidic
e components

considered as the “heart” of

new microfluidic platform — Device versus component

developments, e.g., in (bio) — Valves, pumps, mixers, flow sensors
chemical screening . iy
experiments. e Examples of microfluidic “platforms”
Applications — Dispensers
Examples related to specific : :
ol s el Al — Particle handling
somewhat more exotic
. -
A 1% B rssted Outlook: Future developments
that are designed by the °

knowledge of specific Summary

physical/chemical effects,
e.g., hydrophobicity.
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Topics in this section Il’ltl'O dIlCti()n

Fluidics goes small

e Smaller must be also better!

— Manufacture length scale.

- High-throughput screening due to

large-scale integration.

Slbsbaladigl — Devices for research to understand

phenomena in high-risk
applications (chemistry, toxicology,
high electrical field, high pressure
etc.).

ms DU

Farylene probe, 8 Taksuck: et al., Lab Chip, 2005, 5, 519-523
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3.1. Introduction

Smaller = better and cheaper?

From production point of view

- Only if there are many to make, otherwise to
extensive in development time and cost.

From application point of view:

+ Needs to fulfill a specific functionality when
integration at high costs is pursued.

- Miniaturization often has drawbacks, too. These
have to be either compensated by design or a
functional sacrifice is cost-driven!

i >, We will further discuss these
aspects in the last lecture
of this week: Design Issues.

Attp Shwwwv.tecan.co.uicf
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3.1. Introduction

Length scale of manufacture

+ Laminar flow: minimal convection.

Enhance the net diffusion rate by increasing the interface
area between the two fluid streams.

Fast response of sensor elements due to minimized diffusion
length.
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3.1. Introduction

Guided fluid flow

Control of fluid flow width

- Channel dimensions result in laminar flow profiles

Macromolecule
in solution A

S0 pum

Solution B

For example: Focused macromolecule
stream in solution B

Solution B
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3.1. Introduction

Laminar flow application

Protein folding kinetics
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J.B. fmght, et al. f Phys. Rev. Leit. 80, 1998, 3803-3860
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3.1. Introducti . .
e On-line laminar flow
sample derivatization and detection

T
Birection * Reference and sample

of Flow | . .
it Fhdcacion solution are brought into
zones contact with a detection

solution downstream.
« Reactions occur on-line in the

interdif fusion (mixed)
zones.

Magnifiec cross section of
atect

Dataction stream |

Reference stream
Sample siream

micronics

Reterence Sample inlet

solution inlet

Detaction stream iniet Source: P. Yager, Univ. of Waskington, USA
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3.1. Introduction
Time-periodic re-circulating

Spatial confinement-assisted reaction kinetics
- Microfluidic network for controlling reaction in time.
» Recirculation caused by the shearing interaction with the walls.

no dispersion

H. Seng, JO. Tice and R.F. lemagilov, A, Angew. Chem. Int. Bd. 42, 2003, 7658-772
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3.1. Introduction

Components in a hybrid platform =
advanced systems for high-throughput!

Microdigestion of proteins (MS)

Ekstrom et al,, Anal Chem 2000; 72:286-93,
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3.1. Introduction

Process monitoring sample handling?

Programmable liquid handling
Operator independent efficient/fast reaction kinetic probing.

Smaller interference by less sample, IBIS Technologies,
e.g. biofermentation. ler xyz- needle

Conductivit
detector

High Voltage

------
......
cccccc
......
QQQQQQ

Analytical chip

Sample rack

Source: R Schasfoart, University of Twente
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3.1. Introduction

Handling protocol at the scale of 0.5 to 10l

Head-end injection Au'rosan_wp!er--
Needle injector

+  Autosampler interface to chip

To syrnge pump

To Peristaitic Pump

l

=, In for injection

AN

Out for drain

3
ample *Double needle”

4
Source: R Schasfoort, University af Twente
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3.1. Introduction

+ High Pressure
- High electrical fields
-+ Toxicity
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3.1. Introduction

Microfluidic markets

Life Sciences

chem
Engineernng
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Structural elements and
integration

Topics in this section

Components

¢ Components
— Valves
— Pumps
— Actuation-based (active) mixers
— Flow sensors
— Micro, nano, picoliter dispensers
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3.2. Structural elements and integration

Passive microvalves etched in silicon
Bossed Valve Membrane Valve

Duckbill Valve Flap Valve
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3.2. Structural elements and integration

Injector valve

p
fluid 1 Py fluid 1+2 fluid 1 : fluid 1
==z g e ]l =s
i £ A J
P> ; / Pz
fluid 2 I fluid 2'
Py <P perforated membrane P> Py
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3.2. Structural elements and integration

Passive valve computing
Microfluidic flip-flop
(amplifier based on Coanda effect_

it Fluidic micro-oscillator with
vent feedback channel
¢ attachment wall control port feedback channel

control port
—— supply nozzle

Microfluidic proportional amplifier

Pi
Ap output 1
?5; vent é
; vent
output 2
B2

Tuesday, Aﬁgust-16_, 2005 Regina Luttge

outlet 1

\:ﬂlcl 2 supply

nozzle

outlet 2

[l

Tae-Hyvun Kim et al., J. Micromech. Microeng. 8 (1908) 7-14

MRt

3.2. Structural elements and integration

Electrostatic microvalve

Cover plate Inlet Outlet

AN

|
1

LI

' I
Silicon Silicon dioxide Gold-electrode Glass plate

J. Branebjerg and P. Gravesen. 4 New Electrostatic Actuator providing
improved Stroke Length and Force. Proc. MEMS Workshop 1992. p 6
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3.2. Structural elements and integration

Silicon-based electrostatic microvalves

Tuesday, August 16, 2005 Regina Luttge

3.2. Structural elements and integration

Thermal (bimetal) microvalve

Torsion bar suspension & thermal isolator
/ Nickel heating re5|stor Bimetal actuator: e.g., 30pm Ni over 30 pym Si

88mm

Orifice (e.g., 180 ym square) Valve seat (e.g., 20 ym wide)

Saurce picture: Hewlett-Packard Company, Palo Alte, T4, US4

H. Jerman, Blectrically-Activated, Micromackined Diaphragm Valves
Techn, Digest Hilton Head Workshap, 1990, p. 65
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3.2. Structural elements and integration

Piezoelectric actuation principle

M) " 4 expansion/contraction
33 *

I > e <« J
I * d@l *

bending

S;=d;; E;
— ~»
S l_d3 1 E3
S = strain = dL/L, relative Length change

E = electric field
example: for PZT d,; = -75 nm/V; d,, =223 nm/V
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3.2. Structural elements and integration

Piezoelectric 3-way microvalve

glass

silicon

L]

piezo-stack —

JIEHT

™

(a) (b) A -

M Esashi, nfegrated micre flow control systems, Sensers & Act A21-23, 1990, p. 161
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3.2. Structural elements and integration

Hydrophobic valving

8,(C,Fy) = 110° LA AL P2

i Yo 7 . : 7
Source: uninown
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3.2. Structural elements and integration

Electrical actuated application of
* Variable focus liquid lens hyd_roph()bicity

a ident I b
( ) Incident light Insulating ( J
fluid

Insulator

o V. oy
F——6 mm—— S. Kuiper e.a. Appl. Phys. Lett. 85, 2004, 1128
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3.2. Structural elements and integration

Phase-change microvalve

T HE FLUISTORT™

Source: Redwood MicroSystems, Menlo Park CA, USA - www.redwoodmicro.com
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3.2. Structural elements and integration

Electrokinetic valving: FlowFET

u-Transparent Integrated Channel

W. Therkstraa, PhD thesis, University of Twente R.Bchagfoort et ai., Science, 286, (1999), 942-945,
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3.2. Structural elements and integration

Electromagnetic microvalve

~electroplated gold coil

nitride (insulation)

highly doped poly-silicon

electromagnet

encapsulation

- pyrex

actuation r:hip{ - silicon

pyrex

outlet

Membrane valve Ball valve

Source: A. Meckes, IMEAS, Usniversity af Bremen, Germany
O, Krusemark, Technische Universitat Hamburg-Harburg, Hamburg, Germany
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3.2. Structural elements and integration

Thermo-viscous valve

+ Principle: viscosity N1 ‘ T S
variation of liquid due to 4NN '] | |
temperature changes " ; fof_":@; N\ | : |

heateR 1;1:.-5 ! “3‘%‘- . , : S S :
L

: i | )

£1m 1077 l | - — — —

o s

f | i |

S
hydraulic restriction

1m 10t + 1
ey |
. | |
. |

Source: A Klein, Dresden Umversity of Technology, Germany

Tarkan duwse Ler Methpne
1w o0 — — Hydragen
: 1 1 I bt
—30 a 20 ] &0 a0 100 120
Temgperature, C
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3.2. Structural elements and integration

Freeze-melt valve

CROSS SECTION OF DISPENSING CHAMBER AND REAGENT VALVE

— E—
-~ frozen plug

HERMETIC AlR SPACE

e

0 mnm Smm

N, Kaartinen, Proc, I[EEE MEMS workshap, San Diego, TA, US4, 1906, p. 395
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3.2. Structural elements and integration

Electrochemical microvalve

SigN, membrane

5l wader 1 |

Si waifer 2 |

Cu Poty mash
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3.2. Structural elements and integration

Piezoelectric micropump

piezo-disc

H.T.G. van Lintzl, F.C.M v.d. Pol and 5. Bowwstra,
A piezoelectric Micropump based on micromachining of silicon, Sensors & Act. 15, 1988, p. 153.
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3.2. Structural elements and integration

Thermo-pneumatic actuated micropump

Heater resistor Air chamber Flow sensor

N/ /

Glass
Glass / /
f 7
\" / Valve 1 / Valve 2 \'
Inlet Pump chamber Outlet

Silicon etching + anodic wafer bonding

Micra dosing system, 1992, University of Twente

Tuay, August 16, 2005 Regina Luttge M



3.2. Structural elements and integration

Piezoelectric bimorph micropump

adhesive diaphragm with

piezo-bimorph
integrated buffer

N
base plate port 1 port 2

d: switching step ¢

&: pump mode

M Stehr, 3. Messner, H. Sandmaier and E. Zengerle,

A new micropump with bidirectional fluid transpart and selfblocking effect,

Proc. IEEE MEMS workshop, 1996, p. 485
Tuesday, August 16, 2005 M
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3.2. Structural elements and integration

current source

. |
1 s
I Am—k meander reservoir

Electrochemical pump

Ap capillar

elecirodes \

iy
Ry

to dosing target
gas bubbles ~

. & Sprenkelsetal | Un.i.\:;;;;ty of Twente
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3.2. Structural elements and integration

Surface micromachined mixer array

- Stirring with a micromachined rotor: complete mixing
in 55s
Ding Cu Diepenit and patiem

|......:, P et ooyt
) | Fakutrte ~ (hiAM Fich dimples on Cu
sacrificinl layer.
d Nl
: A [EcE R e SRR Electroplate rolors,
: b | Tp

Photosis
| Pattern and remonve Cu
| m— R (oo o remone

(ed | otores ist

“lectroplate hub.

Pentonsmmet
(&

_ 1 Flectroplate cap

= Fvaporate 2nd O layer,
&

ms o
- Mot ~
Remiwe Cu layors and

B oo

telesee devics

Li-H. Lu, K5 Ryu and C, Liu, Froc. Micre Total Analysic Systems 2001, pp. 28-30.
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3.2. Structural elements and integration

Electrokinetic instability mixer

| Function| .~ High-Voltage!

\Generator| - Amp:liﬂer
el 1
(Fluid A —
'Syringe | Stirred|
Pump Fluid |
Fluid B—

Source: Oddy et al, Sianford Univ.,, Anal Chem. 73(24), 2001, 5822
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3.2. Structural elements and integration

Fluidic sensors

Physical parameter sensing

* Pressure sensors * Density sensors
* Flow sensors * Cytometers
« Temperature sensors Thermal conductivity

sensors

» Viscosity sensors _ _
» Optical absorption sensors

Chemical parameter sensing

IsFET
ChemFET

+ Electrical conductivity
sensors

etc...
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3.2. Structural elements and integration

Membrane-based gas pressure sensors

Pressure sensors with - capacitive read-out
* piezo-resistive read-out

membrane

diffused silicon
strain gauges

% Commercial activities: Honeywell, U.S A.

Motorola, U.S.A.

NovaSensor, U.S.A.

SensoNor, Norway

Kulite Sensors Limited, U.K.
Tuesday, August 16, 2005 Regina Luttge




3.2. Structural elements and integration

Membrane-based liquid pressure sensor

+ Viscous drag flow sensor: measures the dissipated kinetic
energy in a hydraulic resistor by means of pressure drop sensing

pressure sensors resistance channel

B W W
e e
[ Albw |

Source: RE. Oosterbroek, MESA+ Research Institute - Transducers Technology Laboratory
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3.2. Structural elements and integration

Thermal flow sensing principles

e Hot wire anemometer * Heat transfer ¢ Time of flight

Measures: Time between
generating a heat pulse
and sensing the pulse at
some distance.

Measures: Heat transfer
from heater to sensors or
balancing temperature of
two heaters/sensors.

Measures:
power needed to keep
constant temperature.

heater {(wire) sensor (wire)

@ o o
rmal boundary layer heat Pulsei—}u
t=0

t=At

heater (wire) heater (wire)  sensor (wire)

thermal boundary layer

heater (wire)

thermal boundary layer
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3.2. Structural elements and integration

Microphone-based gas flow sensor

Planar intergrate “hot-wire anemometer”

@ icroflown Technologies B.V.
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3.2. Structural elements and integration

Fluidic flow sensors

«  Coriolis flow sensor: measures the induced Coriolis force on
a moving mass flow

double-loop frame fixture

o

™ o

support frame ~ 1\,

N a R fidlet
; \ fluid outlet

double-loop tube

Source: P. Bnoksson, Royal Institute af Technology, Dept. of signals, sensors & systems, Stockholm, Sweden
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. Examples of microfluidic
Topics in this section i ,r
Heart of fluidic platforms: platf orms

The dispensers.

® Dispensers

| Transducer L4 Othcr dCV]_CCS
Ink supply at ‘
atmospheric

pressure

Nozzle E
&
.,

Ink droplets

R

Single nozzie “Drop On Demand” inkjet print-head

Tuesday, August 16, 2005 Regina Lutige M

3.3. Examples of microfluidic “platforms”

Thermally actuated inkjet

Heasting, vepor bubble nuclestion

i Frt

Bubble growth, drop formation

n Til printheads,
gress on Advances in no,
alogies, Soc. [ Se. and Te

. (15&T)

MESA*

Tuesda:




3.3. Examples of microfluidic “platforms”

Thermally actuated inkjet
bond contact ink droplet nozzle heating element

CMOS-circuit

/.
throttle slit
membrane ink channel
vapour bubble ink <110>-silicon

MRt

Source: M Haruta, Canon Iic., Japan
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3.3. Examples of microfluidic “platforms”

Piezoelectric dispenser - tube format

voltage supply

liquid transport to storage bin

nozzle

seal
Tuesday, August 16, 2005 Regina Lutige




3.3. Examples of microfluidic “platforms”

Piezoelectric flow-throug

microdispenser

Plexiglass
backing
eeeeeoeeeooo-- Piezoceramic
i + multilayer actuator

1/e"
Teflon tubing

Silicone
tubing

Nozzle

J. Micromach., Microeng. 1999, §, 369-378
Tuesday, August 16, 2005 Regina Lutige
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3.3. Examples of microfluidic “platforms”

Microdispenser development

Dispenser platform

250-100 nL inlet to nozzle
Typical droplet volume: 50-100 pL
Nozzle dimensions: 30-50 um
Dispense rate: < 9 kHz
Viscosity interval

0.36 mPas (25°C) acetone

65 mPas (25°C) gycerol/water
Surface tension

22 mN/m, ethanol
Sourasc Th, Lourdl 73 mN/m, water
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3.3. Examples of microfluidic “platforms”

Component to platform

Ejector nozzel and operation

Plmm200kU S49E2 =645-24 ELMAT

Source: Th. Laurell
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3.3. Examples of microfluidic “platforms”
Capillarity-defined picoliter dispenser

Ou“ et Siliconnitride Air inlet I nlet

- capillary pressure: Dp=2g,,cosq./h

- surface micromachined microchannels

- injection of gas bubble

- direction by geometric asymmetry in channel height
- very small and precise stroke volume (pl)

- hydrophobic patches for gas inlet/outlet

M. Tas et al, University of Twente
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3.3. Examples of microfluidic “platforms”

Picoliter bubble dispenser schematic

N, Tas et al, University of Twvente
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3.3. Examples of microfluidic “platforms”

Nano fabrication results

N, Tas et al, University of Twente

s  T— __& J
2um Y
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3.3. Examples of microfluidic “platforms”

Picoliter dispensing operation

P 800
[mbar] 600

400
200

N, Tas et al. University of Twente
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3.3. Examples of microfluidic “platforms”
Picoliter dispensing operation

Pneumatic pump stroke: Capillary refill:

I,40.00 s It1.00s

008 5 rt1.08s

1o+0.17 s o+l 17s

10t0.25s tl125s

1,40 33 s 1,+1.33s

N Taset al, University of Twente
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3.3. Examples of microfluidic “platforms”

» Acoustic particle handling

P

o z’x’z“f.’f:/_ =

E.

V. Vivek, . Zeng and E. 5. Kim, University of Hawaii at Manca, Honolulu
Regina Luttge
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3.3. Examples of microfluidic “platforms”

Fabrication and test set-up

Step 1.Evaporate Aluminum on bomn $ides of the PZT Ceramics

Step 2 Front and back aluminum patterning 8US Layer
1 [

sguare switching

wave network

modulation
Step 3. 8U-8 iayer deposdion source

RF signal RF RF

generator | | switch amplifier

V. Vivek, ¥. Zeng and B. 5 Kim, Umiversity of Hawaii at Manoa, Honolulu
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3.3. Examples of microfluidic “platforms”

Particle movement

s

ng and B. S, Kim, University of Hawan at Manoa, Honolulu
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Outlook: Future developments

Microfluidics... - 1- ; i
Nanofluidics. e Nanofluidics is on its way....
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Summary

* Many components were identified
to be “nanofluidics” since they are
dispensing nanoliter droplets or
fluid flows of nanoliter/time unit.

e Flow control components often as
stand-alone units developed.

wource: IMM “Zylion waxer”

¢ Components are assembled as
hybrid microfluidic systems or
platforms for many applications,
e.g., in analytical chemistry and
medical diagnostics.
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