

SMR.1670 - 14

Introduction to Microfluidics

8 - 26 August 2005

Liquid Processing Microcomponents and Devices

R. Luttge University of Twente, Enschede, The Netherlands

Topics in this lecture

Small volume liquid processing

Components and devices units: principles, designs, and fabrication.

From µTAS to Lab-on-a-Chip

Overview to research and developments of dispensers, which are considered as the "heart" of new microfluidic platform developments, e.g., in (bio) chemical screening experiments.

Applications

Examples related to specific technical problems also somewhat more exotic components are presented that are designed by the knowledge of specific physical/chemical effects, e.g., hydrophobicity.

Tuesday, August 16, 2005

3. Liquid processing microcomponents and devices

- Introduction
- Structural elements and integration: developments of microfluidic components
 - Device versus component
 - Valves, pumps, mixers, flow sensors
- Examples of microfluidic "platforms"
 - Dispensers
 - Particle handling
- Outlook: Future developments
- Summary

Regina Luttge

Topics in this section

Fluidics goes small

Components for platforms

Introduction

- Smaller must be also better!
 - Manufacture length scale.
 - High-throughput screening due to large-scale integration.
 - Devices for research to understand phenomena in high-risk applications (chemistry, toxicology, high electrical field, high pressure etc.).

Parylene probe, S. Takeuchi et al., Lab Chip, 2005, 5, 519-523

Smaller = better and cheaper?

From production point of view

 Only if there are many to make, otherwise to extensive in development time and cost.

From application point of view:

- Needs to fulfill a specific functionality when integration at high costs is pursued.
- Miniaturization often has drawbacks, too. These have to be either compensated by design or a functional sacrifice is cost-driven!

We will further discuss these aspects in the last lecture of this week: *Design Issues*.

http://www.tecan.co.uk/

Tuesday, August 16, 2005

Regina Luttge

3.1. Introduction

Length scale of manufacture

- Laminar flow: minimal convection.
- Enhance the net diffusion rate by increasing the interface area between the two fluid streams.
- Fast response of sensor elements due to minimized diffusion length.

Guided fluid flow

Control of fluid flow width

· Channel dimensions result in laminar flow profiles

Tuesday, August 16, 2005

Regina Luttge

MESA+

3.1. Introduction

Laminar flow application

Protein folding kinetics

J.B. Knight, et al. / Phys. Rev. Lett. 80, 1998, 3863-3866

D.E. Hertzog, et al. / Proc. Micro Total Analysis Systems Conf. 2003, Squaw Valley, Oct. 5-9, 2003, pp. 891-894

3.1. Introduction

On-line laminar flow sample derivatization and detection

- Reference and sample solution are brought into contact with a detection solution downstream.
- Reactions occur on-line in the interdiffusion (mixed) zones.

Tuesday, August 16, 2005

Regina Luttge

3.1. Introduction

Time-periodic re-circulating

Spatial confinement-assisted reaction kinetics

- Microfluidic network for controlling reaction in time.
- Recirculation caused by the shearing interaction with the walls.

3.1. Introduction Components in a hybrid platform = advanced systems for high-throughput!

Microdigestion of proteins (MS)

Tuesday, August 16, 2005

3.1. Introduction

Process monitoring sample handling?

Programmable liquid handling

Operator independent efficient/fast reaction kinetic probing.

Tuesday, August 16, 2005

3.1. Introduction

Handling protocol at the scale of 0.5 to 10µl

Head-end injection

· Autosampler interface to chip

Autosampler-Needle injector

"Double needle"

MESA+

Tuesday, August 16, 2005

Regina Luttge

3.1. Introduction

High-risk application

High Pressure

· High electrical fields

Toxicity

3.1. Introduction

Microfluidic markets

Tuesday, August 16, 2005

Regina Luttge

Components Lawrence Livermore 200 µm fluid path hole

Tuesday, August 16, 2005

Structural elements and integration

Components

- Valves
- Pumps
- Actuation-based (active) mixers
- Flow sensors
- Micro, nano, picoliter dispensers

Passive microvalves etched in silicon

3.2. Structural elements and integration

Injector valve

Passive valve computing Microfluidic flip-flop (amplifier based on Coanda effect_ Fluidic micro-oscillator with outlet 1 feedback channel feedback channel attachment wall control port control port supply nozzle outlet 1 supply outlet 2 nozzle Microfluidic proportional amplifier output 1 outlet 2 output 2 Tae-Hyun Kim et al., J. Micromech. Microeng. 8 (1998) 7-14 Tuesday, August 16, 2005 Regina Luttge

3.2. Structural elements and integration

Electrostatic microvalve

J. Branebjerg and P. Gravesen, A New Electrostatic Actuator providing improved Stroke Length and Force, Proc. MEMS Workshop 1992, p 6

Silicon-based electrostatic microvalves

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Thermal (bimetal) microvalve

Source picture: Hewlett-Packard Company, Palo Alto, CA, USA

H. Jerman, Electrically-Activated, Micromachined Diaphragm Valves Techn. Digest Hilton Head Workshop, 1990, p. 65

Piezoelectric actuation principle

S = strain = dL/L, relative Length change

E = electric field

example: for PZT $d_{31} = -75 \text{ nm/V}$; $d_{33} = 223 \text{ nm/V}$

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Piezoelectric 3-way microvalve

M. Esashi, Integrated micro flow control systems, Sensors & Act. A21-23, 1990, p. 161

Hydrophobic valving

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Electrical actuated application of

Variable focus liquid lens

hydrophobicity

Tuesday, August 16, 2005

Phase-change microvalve

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Electrokinetic valving: FlowFET

μ-Transparent Integrated Channel

W. Tierkstraa, PhD thesis, University of Twente Tuesday, August 16, 2005

R.Schasfoort et al., Science, 286, (1999), 942-945.

Electromagnetic microvalve

Source: A. Meckes, IMSAS, University of Bremen, Germany
O. Krusemark, Technische Universität Hamburg-Harburg, Hamburg, Germany

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Thermo-viscous valve

 Principle: viscosity variation of liquid due to temperature changes

Source: A. Klein, Dresden University of Technology, Germany

Freeze-melt valve

N. Kaartinen, Proc. IEEE MEMS workshop, San Diego, CA, USA, 1996, p. 395

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Electrochemical microvalve

Tuesday, August 16, 2005

Piezoelectric micropump

H.T.G. van Lintel, F.C.M. v.d. Pol and S. Bourstra, A piezoelectric Micropump based on micromachining of silicon, Sensors & Act. 15, 1988, p. 153.

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Thermo-pneumatic actuated micropump

Tuesday, August 16, 2005

Piezoelectric bimorph micropump

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

current source

Electrochemical pump

Tuesday, August 16, 2005

A. Sprenkels et al., University of Twente

Regina Luttge

Surface micromachined mixer array

Stirring with a micromachined rotor: complete mixing in 55s

L.-H. Lu, K.S. Ryu and C. Liu, Proc. Micro Total Analysis Systems 2001, pp. 28-30.

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Electrokinetic instability mixer

Source: Oddy et al., Stanford Univ., Anal. Chem. 73(24), 2001, 5822

Fluidic sensors

Physical parameter sensing

- Pressure sensors
- Flow sensors
- Temperature sensors
- Viscosity sensors
- Density sensors
- Cytometers
- Thermal conductivity sensors
- Optical absorption sensors

Chemical parameter sensing

- IsFET
- ChemFET
- Electrical conductivity sensors
- etc...

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Membrane-based gas pressure sensors

- Pressure sensors with
- piezo-resistive read-out
- capacitive read-out

Commercial activities: Honeywell, U.S.A.

Motorola, U.S.A. NovaSensor, U.S.A.

Regina Luttge

SensoNor, Norway Kulite Sensors Limited, U.K.

Tuesday, August 16, 2005

Membrane-based liquid pressure sensor

 Viscous drag flow sensor: measures the dissipated kinetic energy in a hydraulic resistor by means of pressure drop sensing

Source:

R.E. Oosterbroek, MESA+ Research Institute - Transducers Technology Laboratory

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Thermal flow sensing principles

Hot wire anemometer

Heat transfer

Time of flight

Measures: power needed to keep constant temperature. Measures: Heat transfer from heater to sensors or balancing temperature of two heaters/sensors. Measures: Time between generating a heat pulse and sensing the pulse at some distance.

Regina Luttge

Tuesday, August 16, 2005

Microphone-based gas flow sensor

Planar intergrate "hot-wire anemometer"

Tuesday, August 16, 2005

Regina Luttge

3.2. Structural elements and integration

Fluidic flow sensors

 Coriolis flow sensor: measures the induced Coriolis force on a moving mass flow

Source: P. Enoksson, Royal Institute of Technology, Dept. of signals, sensors & systems, Stockholm, Sweden

MESA+

Topics in this section

Heart of fluidic platforms: The dispensers.

Examples of microfluidic "platforms"

- Dispensers
- Other devices

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Thermally actuated inkjet

M.P. O'Horo, N.V. Deshpande and D.J. Drake, Drop generation process in TIJ printheads, Proc. 10th Int. Congress on Advances in non-impact printing technologies, Soc. Imaging, Sc. and Techn. (IS&T) 1994, p. 418

Tuesday

Refill

a Luttge

Thermally actuated inkjet

Source: M. Haruta, Canon Inc., Japan

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Piezoelectric dispenser - tube format

Tuesday, August 16, 2005

Piezoelectric flow-through microdispenser

3.3. Examples of microfluidic "platforms"

Microdispenser development

Dispenser platform

Source: Th. Laurell

250-100 nL inlet to nozzle
Typical droplet volume: 50-100 pL
Nozzle dimensions: 30-50 µm
Dispense rate: ≤ 9 kHz
Viscosity interval
0.36 mPas (25°C) acetone
65 mPas (25°C) gycerol/water
Surface tension
22 mN/m, ethanol
73 mN/m, water

Component to platform

Ejector nozzel and operation

Source: Th. Laurell

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Capillarity-defined picoliter dispenser

- capillary pressure: Dp = 2 g_{lg} cos q_c / h
- · surface micromachined microchannels
- · injection of gas bubble
- direction by geometric asymmetry in channel height
- · very small and precise stroke volume (pl)
- hydrophobic patches for gas inlet/outlet

N. Tas et al, University of Twente

Picoliter bubble dispenser schematic

N. Tas et al, University of Twente

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Nano fabrication results

Tuesday, August 16, 2005

Regina Luttge

MESA+

Picoliter dispensing operation

N. Tas et al, University of Twente

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Picoliter dispensing operation

Tuesday, August 16, 2005

Regina Luttge

V. Vivek, Y. Zeng and E. S. Kim, University of Hawaii at Manoa, Honolulu

Tuesday, August 16, 2005

Regina Luttge

3.3. Examples of microfluidic "platforms"

Fabrication and test set-up

V. Vivek, Y. Zeng and E. S. Kim, University of Hawaii at Manoa, Honolulu

Particle movement

Tuesday, August 16, 2005

Regina Luttge

Outlook: Future developments

Microfluidics...
...Nanofluidics.

• Nanofluidics is on its way....

Tuesday, August 16, 2005

Summary

- Many components were identified to be "nanofluidics" since they are dispensing nanoliter droplets or fluid flows of nanoliter/time unit.
- Flow control components often as stand-alone units developed.
- Components are assembled as hybrid microfluidic systems or platforms for many applications, e.g., in analytical chemistry and medical diagnostics.

