

SMR.1670 - 31

INTRODUCTION TO MICROFLUIDICS

8 - 26 August 2005

Chip-based GC

H. Gardeniers University of Twente, Enschede, The Netherlands

Chip-based GC

Han Gardeniers MESA+ Institute for Nanotechnology University of Twente

Summer School in Microfluidics ICTP, Trieste, Italy

to identify and measure chemicals in Titan's atmosphere During descent, the GCMS analyzes pyrolysis products (i.e., samples altered by heating) passed to it from the Aerosol Collector Pyrolyser. Finally, the GCMS measures the composition of Titan's surface, by heating the GCMS

instrument just prior to impact in order to vaporize the surface material upon contact

http://www.esa.int/SPECIALS/Cassini-Huygens

Cassini-Huygens GCMS

GCMS overview and some components

capillary separation column

The enrichment cell (right) is a separate instrument that uses the MS detector to analyze its samples. It is essentially a small container coated with carbon absorber on which organic components will collect. Whatever compounds do not stick to the enrichment cell pass into a rare gas cell

source: http://huygensgcms.gsfc.nasa.gov/

Why small GC's?

Table 1. Classification of portable chromatographs

Туре	Purpose	Advantages, capabilities
Compact	For mobile and stationary laboratories	Saving of costs, power, materials, and space with analytical characteristics similar to those of stationary chromatographs, weight 10–25 kg
Portable, transportable, field	For on-site analysis	Small weight, rapid analysis, gas and power self-supporting, weight 5–15 kg
Chip-based chromatographs (sili- con micromachining technology), handheld, personal, pocket	For on-site analysis, handheld	For the fast resolution of relatively simple analytical problems, fully self-supporting, restricted analytical capabilities, weight 0.2–3 kg
Specially designed chromato- graphs, micro chromatographs	For space investigations	Automated analysis, small weight, resistant to impact and shaking

from: Yashin e.a. J.Anal.Chem. 56, 794-805 (2001) -mainly Russian developments

University of Twente

GC instrumentation

GC in the ol'days

Gas chromatograph of the late 1950's

Fatty acid gas chromatogram (1951)

Lunar Gas Chromatograph designed in 1962.

1941: Gas chromatography mentioned by Martin and Synge in paper on liquid chromatography (1) 1951: Martin and James publish first gas chromatograph (2) 1979: Dandeneau developes polymer-coated fused silica capillary (3)

1. A.J.P. Martin and R.L.M. Synge, Biochem. J. 35, 1358 (1941)

2. A.T. James and A.J.P. Martin, Biochem. J. 50, 679 (1952) 3. R.D. Dandeneau and E.H. Zerenner, High Res.Chrom.&Chrom.Commun. 2(6), 351–356 (1979)

http://www.chromatography-online.org/GC/ http://www.quadrexcorp.com/new/history.htm

Modern injectors

source: http://www.chromatography-online.org/GC/

Injection procedures to reduce plug width

Retention Gap Method of Sampling

Solute Focusing Method sampling

The injector is designed such that there are two consecutive, independently heated and cooled zones located at the beginning of the column.

Different stationary coatings and coating procedures

Temperature programming

Slowly ramping T throughout the separation provides a basis for the separation of sample components based on boiling point.

Comparison of of isothermal (top) and programmed temperature chromatography. Column: 1.6 mm ID and 6 m long, containing 3% Apiezon L (liquid phase) on 100/120 mesh VarAport 30 solid support. He flow rate 10 ml/min. Detector sensitivity in top graph is 16 times that of bottom.

H.M. Mcnair and E.J. Boneli, Basic gas chromatography, Palo Alto, CA, Varian Istrument Div. 1968

Gas Chromatography Detector Overview

Electron capture

Flame detector overview

Flame photometric detector

http://www.chromatography-online.org/GC/ & http://ull.chemistry.uakron.edu/chemsep/

<u>Thermal Conductivity Detector</u> <u>or "Katherometer"</u>

http://www.chromatography-online.org/GC/

Comparison FID and TCD

Sensitivity of different detection methods

http://ull.chemistry.uakron.edu/chemsep/

University of Twente

Hyphenated GC

2-D GC relies on passing a portion of effluent to a second column using flow switching

Comprehensive 2-D gas chromatography

Gas Chromatograph Miniaturisation

GC basics: open-tubular column

Revisit the (classic) van Deemter equation (no A-term):

$$H = \frac{B}{u} + (c_m + c_s)u$$

with $B = 2D_m$ (~ axial diffusion)

$$C_m = \frac{4(1+9k+25.5k^2)z_0^2}{105(1+k)^2 D_m} \text{ and } C_s = \frac{2k^3 z_0^2}{3(1+k)^2 K^2 D_s}$$

 C_s and C_m can be regarded as mass transfer resistances of the analyte in the stationary phase (e.g. a liquid film) and the mobile phase (the carrier gas), i.e. ~ radial diffusion

 z_0 : half column height D_m , D_s : diffusivities in m and s phases, resp.

k: partition ratio (depends on z₀) K: partition coefficient

Miniaturized open-tubular GC

Generally, the C_s term dominates over C_m (thin film of stationary phase), and even more so in miniaturised columns.

In first order, a smaller column diameter leads to lower H (=better performance) But smaller diameter also means: higher pressure drop!

Advantage of narrow-bore columns

The first GC on a chip

Separately fabricated TCD chip was mounted at outlet

Integrated micromachined membrane valves 1.5 m long column

Low performance due to non-uniform liquid stationary phase

Terry e.a. IEEE Tr. Electron. Dev. ED-26, 1880-1886 (1979) PhD thesis Terry, 1975, Stanford University

Improved GC chip design

From US patent 4,471,647 "Gas chromatography systems and detector and method", issued Sep.18, 1984, by Jerman and Terry

Alternative ways to coat in a chip

Plasma polymerised layer as stationary phase is applied in a reactive-ion etched trench in silicon before anodic bonding to Pyrex

romatogram of several arkanes

http://www.tu-harburg.de/mst/english/forschung/gc.shtml

Hsieh e.a. Sens.Act.B 82, 287-296 (2002)

University of Twente

Silicon micromachined GC ...

 $0.2 \ \mu m \ \alpha$ -phase Cu-phtalocyanine coating was sublimed on Si and Pyrex surfaces before anodic bonding; column was 0.9 m long, 300 μm wide and 10 μm deep

MESA

... with integrated detectors

Si double-GC with integrated valves...

Miniaturized flame ionization and AES detector for gas chromatography

MESA⁺

Zimmermann e.a. Sens.Act.B 63, 159-166 (2000) & 83, 285-289 (2002)

Double plasma GC injector and detector

Stop-flow programmable selectivity with a dualcolumn ensemble

Lambertus e.a. Anal.Chem. 76, 2629-2637 (2004) & 77, 2078-2084 (2005)

Micromachined GC for clinical diagnostics

Gas sensor for micro-GC

Suspended membrane with microheater, temperature sensor and interdigitated microelectrode covered by a SnO₂-based sensitive layer

Lorenzelli e.a. Biosens.Bioel. 20, 1968-1976 (2005)

University of Twente

Preconcentrator-focuser for GC

Microheater with Carbopack X adsorbent granules loaded between the heating elements

Preconcentration factors as high as 5600 and desorbed peak widths as narrow as 0.8 s are achieved from 0.25-L samples of benzene at modest heating rates.

Tian e.a. J.MEMS 12, 264-272 (2003)

University of Twente

µChemLab[™] project at Sandia

For an overview see: D.Lindner, Lab Chip 1, 15N-19N (2001)

Concept of GC-based mChemLabTM

@ preconcentrator

gas chromatograph

acoustic mass detector

Silicon micromachined injectors

left: older format; right: format used in Varian CP-4900 micro-GC injector info: www.xensor.nl/txtfiles/ projects/xi-proj/injec.htm

Right: micromachined GC-column (replacable) Left: 200 nl detection volume TCD

From Varian micro-GC brochure

A new definition of process gas chromatography

Slide courtesy of Arno Steckenborn, Siemens, Germany

Injection step 1: fill loop

Advantages:

- Narrow start peak width
- Sample equilibrated to carrier gas pressure level (sample pressure independent)
- Injection volume adjustable by time
- Injection quality does no longer depend on valve quality
- Tolerance against quality and even leakage of the sample valve

Injection step 2: flow to injector

Injection step 3: split of slice

University of Twente

Micro TCD

Analyzer Module

<u>MESA</u>+

Slide courtesy of Arno Steckenborn, Siemens, Germany

