

SMR.1670 - 32

INTRODUCTION TO MICROFLUIDICS

8 - 26 August 2005

Chip-based NMR

H. Gardeniers University of Twente, Enschede, The Netherlands

Chip-based NMR

Han Gardeniers MESA+ Institute for Nanotechnology University of Twente

Summer School in Microfluidics ICTP, Trieste, Italy

NMR: how does it work?

NMR = Nuclear Magnetic Resonance

Without a magnetic field spins are randomly oriented (A)

In a magnetic field spins align parallel (B) or anti-parallel (C)

A matching r.f. signal will switch the spins from state B to C

When r.f. is turned off, the spins relax to low-energy state B in a precession process

Energy level description

Switching between spin-up and spin-down requires/delivers energy

Hydrogen (proton) NMR

To take a specific example, for protons $\gamma = +2.67 \times 10^8$ rad s⁻¹ T⁻¹, so in a magnetic field of 4.7 T the Larmor frequency of a spin with chemical shift zero is

$$\nu_0 = -\frac{1}{2\pi} \gamma (1+\delta) B_0$$

= $-\frac{1}{2\pi} \times 2.67 \times 10^8 \times 4.7 = -200 \times 10^6 \text{ Hz}.$

In other words, the Larmor frequency is -200 MHz.

Atom	Frequency/Tesla
1H	42.58 MHz/T
¹³ C	10.71 MHz/T
³¹ P	17.12 MHz/T

Chemical shift

NMR resolution

Electron clouds around atoms shield them from the main magnetic field. This changes the rotation frequency of the atoms. The amount of shielding depends on the atomic environment in the molecule.

Example: ethanol

Short NMR history

High frequency microwave tube used for radar in WOII were now put to work for NMR.

- 1945/6 First NMR measurement (Purcell et al. and Bloch et al.)
- 1949 W.D. Knight observes NMR chemical shifts
- 1952 First commercial NMR spectrometer (30 MHz Varian)

1953 The first problem solved by NMR spectroscopy by E.J.Corey, then of the University of Illinois.

- 1962 Introduction of superconductive magnets
- late 1960s Introduction of Fourier Transformed NMR
- 1972 First MRI image (Lauterbur)

MESA thttp://www.beyonddiscovery.org/ & http://www.wooster.edu/chemistry/is/brubaker/nmr/nmr_landmark/itmisity of twenter

Protein structures from NMR

NMR equipment

Pulsed NMR measurement

NMR coils B_0

Solenoidal

Saddle

Planar

Helmholtz

NMR sample containers

Test tube

Capillary

Solenoidal NMR microcoil around capillary http://www.protasis.com/

Chip

NMR chip with integrated coils and microfluidic channels C.Massin e.a. EPFL Lausanne, CH

NMR resolution with microchannels

NMR resolution with microcoils

resolution ≈ 0.106 ppm

resolution ≈ 0.066 ppm

C.Massin, J.Magn.Res. 164, 2003, 242

resolution ≈ 0.024 ppm The sample chamber is nearly a perfect sphere which ensures a uniform B_0 field.

J.H. Walton, Anal Chem 75, 2003, 5030

Planar coil design

The sensitivity of the coil is directly related to magnetic field B_1 created with a unit current:

sensitivity
$$\propto B_1 = \mu_0 \mu_r \frac{I}{2r_1}$$

 B_I = magnetic field generated by the coil I = unit current $\mu_0\mu_r$ = magnetic permeability r_I = coil radius

Noise originates from resistive (Johnson) noise of the coil:

noise
$$\propto \sqrt{R} = \sqrt{\rho \frac{2\pi r_1}{A}}$$

R = coil resistance $\rho = \text{resistivity}$ A = coil area $r_1 = \text{coil radius}$

The coil should be as small as possible, while still enclosing the sample (high filling factor)

Planar coil design

Every additional winding gives more signal, and more noise. At some point, the extra noise is more than the extra signal and no more windings should be added.

Planar coil design

Skin effect:

The tendency of alternating currents to increasingly flow nearer the surface of a conductor as frequency increases

Proximity effect:

The redistribution of current in a conductor brought about by the proximity of another current carrying conductor.

MESA+

Planar coil design: signal to noise

Finite element simulations results:

• The resistance of the coils should be optimized for a high SNR

•A smaller winding width is better

So the best SNR is limited by fabrication techniques

Micro coil and chip design

Microcoil chip fabrication (1)

- 1. Lithography
- 2. Powder blasting
- 3. Direct bonding
- 4. Thinning down
- 5. Lithography
- 6. Electroplating

Microcoil chip fabrication (2)

- 1. Lithography
- 2. Powder blasting
- 3. Direct bonding
- 4. Thinning down
- 5. Lithography
- 6. Electroplating

University of Twente

<u>MESA</u>+

Water ¹H-NMR at 60 MHz in microcoil chip

NMR of ethanol in microcoil chip

Chip for reaction monitoring

<u>MESA</u>+

Example reaction: imine formation

Reaction monitoring

MESA7

Conversion

New concept: Transmission line

Stripline on PCB

J.van Bentum e.a. Radboud University Nijmegen, NL, unpublished

First results

Portable NMR ?

J.Bart & H. Wensink, Univ. Twente, 2003

0.6 Tesla mini-magnet; Moresi e.a. Conc. Magn. Res. B Magn.Res. Eng. 19, 35-43 (2003)

Magnetic Resonance Imaging (MRI)

MESA+

Magnetic Resonance Imaging (MRI)

Total head image showing blood flow

Slice of the head, with different acquisition parameters

Cytoplasm

µm x 100 µm

p.967-970

Nucleus

MRI of oocyte with microcoil on microchannel; resolution: 16 µm x 23

Massin e.a. Proc. Transducers 2003,

J.P.Hornak, http://www.cis.rit.edu/htbooks/mri/

Small-scale MRI

Bottom left: Different diffusion coefficients inside a cell Right: proton MR images of the time-resolved evolution of water distribution in Xenopus laevis oocyte undergoing extended heat stress. Collected at 11.7 T using probe containing a 1 mm ID solenoid RF coil. 10 μ m x 20 μ m x 200 μ m voxel resolution every 8.5 min.

Ciobanu e.a., Prog. Nucl. Magn. Res. Spec. 42, 69-93, 2003

