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1. Introduction

For a given hypersurface V ⊂ P
n, the fundamental group π1(P

n − V ) plays a crucial role

when we study geometrical objects over P
n which are branched over V . By the hyperplane

section theorem of Zariski [56], Hamm-Lê [17], the fundamental group π1(P
n − V ) can be

isomorphically reduced to the fundamental group π1(P
2 −C) where P

2 is a generic projective

subspace of dimension 2 and C = V ∩ P
2. A systematic study of the fundamental group was

started by Zariski [55] and further developments have been made by many authors. See for

example Zariski [55], Oka [35] ∼ [37], Libgober [23]. For a given plane curve, the fundamental

group π1(P
2−C) is a strong invariant but it is not easy to compute. Another invariant which

is weaker but easier to compute is the Alexander polynomial ∆C(t). This is related to a

certain infinite cyclic covering space branched over C. Important contributions are done by

Libgober, Randell, Artal, Loeser-Vaquié, and so on. See for example [21, 14, 47, 27, 51, 11,

10, 46, 31, 2, 15, 25, 48, 3, 50, 8] The main purpose of this note is to give an introduction to

the study of the fundamental group and the Alexander polynomial (§§2,3).

The fundamental group π1(P
2 − C) is a strong invariant of the curve but it is not strong

enough to distinguish certain singularities. We will show that the fundamental groups π1(C
2
L−

C) for various tangent line L carry more information, where C
2
L = P

2−L. As for the Alexander

polynomial ∆(t), it is also not enough to consider only the generic line at infinity. We define

the tangential Alexander polynomials ∆C(t, P ), P ∈ C and study their properties.

Most of the description of this note follows that of [42] except the non-generic affine fun-

damental group.

2. Fundamental groups

2.1. van Kampen Theorem. Let C ⊂ P
2 be a projective curve which is defined by C =

{[X,Y,Z] ∈ P
2 |F (X,Y,Z) = 0} where F (X,Y,Z) is a reduced homogeneous polynomial

F (X,Y,Z) of degree d. The first systematic studies of the fundamental group π1(P
2 − C)

were done by Zariski [55, 54, 56] and van Kampen [52]. They used so called pencil section

method to compute the fundamental group. This is still one of the most effective method to

compute the fundamental group π1(P
2 − C) when C has many singularities.
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Let �(X,Y,Z), �′(X,Y,Z) be two independent linear forms. For any τ = (S, T ) ∈ P
1, let

Lτ = {[X,Y,Z] ∈ P
2 |T�(X,Y,Z) − S�′(X,Y,Z) = 0}. The family of lines L = {Lτ | τ ∈ P

1}

is called the pencil generated by L = {� = 0} and L′ = {�′ = 0}. Let {B0} = L ∩ L′. Then

B0 ∈ Lτ for any τ and it is called the base point of the pencil. We assume that B0 /∈ C. Lτ is

called a generic line (resp. non-generic line) of the pencil for C if Lτ and C meet transversally

(resp. non-transversally). If Lτ is not generic, either Lτ passes through a singular point of C

or Lτ is tangent to C at some smooth point. We fix two generic lines Lτ0 and Lτ∞ . Hereafter

we assume that τ∞ is the point at infinity ∞ of P
1 (so τ∞ = ∞) and we identify P

2 − L∞

with the affine space C
2. We denote the affine line Lτ − {B0} by La

τ . Note that La
τ
∼= C.

The complement Lτ0 −Lτ0 ∩C (resp. La
τ0 −La

τ0 ∩C) is topologically S2 minus d points (resp.

(d + 1) points). We usually take b0 = B0 as the base point in the case of π1(P
2 − C). In the

affine case π1(C
2 − C), we take the base point b0 on Lτ0 which is sufficiently near to B0 but

b0 �= B0. Let us consider two free groups

F1 = π1(Lτ0 − Lτ0 ∩ C, b0) and F2 = π1(L
a
τ0 − La

τ0 ∩ C, b0).

of rank d− 1 and d respectively. We consider the set Σ := {τ ∈ P
1|Lτ is a non-generic line}∪

{∞}. We put ∞ in Σ so that we can treat the affine fundamental group simultaneously.

There exists canonical action of π1(P
1 −Σ, τ0) on F1 and F2 (see [42]). We call this action

the monodromy action of π1(P
1 − Σ, τ0). For σ ∈ π1(P

1 − Σ, τ0) and g ∈ F1 or F2, we denote

the action of σ on g by gσ. The relations in the group Fν

(R1) 〈g−1gσ = e | g ∈ Fν , σ ∈ π1(P
1 − Σ, τ0)〉, ν = 1, 2

are called the monodromy relations. The normal subgroup of Fν , ν = 1, 2 which are normally

generated by the elements {g−1gσ , | g ∈ Fν} are called the groups of the monodromy relations

and we denote them by Nν for ν = 1, 2 respectively. The original van Kampen Theorem can

be stated as follows. See also [7, 6].

Theorem 1. ([52]) The following canonical sequences are exact.

1 → N1 → π1(Lτ0 − Lτ0 ∩ C, b0) → π1(P
2 − C, b0) → 1

1 → N2 → π1(L
a
τ0 − La

τ0 ∩ C, b0) → π1(C
2 − C, b0) → 1

Here 1 is the trivial group. Thus the fundamental groups π1(P
2 − C, b0) and π1(C

2 − C, b0)

are isomorphic to the quotient groups F1/N1 and F2/N2 respectively.

We denote the commutator subgroup of G by D(G). Let L be a line and we denote its

complement P
2 −L by C

2
L. The most important case is when L and C inetrsect transversely.

In such a case, the topology of C
2
L − C does not depend on L and we call it the generic

affine complement and we often write as C
2 − C instead of C

2
L − C. The relation of the

fundamental groups π1(P
2 − C, b0) and π1(C

2
L − C, b0) are described by the following. Let

ι : C
2
L − C → P

2 − C be the inclusion map.

Lemma 2. ([34])
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(1) We have the following extension

1 → N(ω)
γ

−→π1(C
2 − C, b0)

ι�
−→π1(P

2 − C, b0) → 1

where N(ω) is the normal subgroup which is normally generated by a lasso ω for L.

(2) Assume further L is generic. Then

(2-i) ω is in the center of π1(C
2
L − C) and N(ω) is an infinite cyclic group.

(2-ii) Two commutator subgroups coincide i.e., D(π1(C
2
L − C)) = D(π1(P

2 − C)). Thus

π1(P
2 − C) is abelian if and only if π1(C

2
L − C) is abelian.

Remark 3. For non-generic line L, π1(CL − C) may be non-abelian even if π1(P
2 − C) is

abelian. For example, let C = {Y 2Z−X3 = 0} and take L = {Z = 0}. Then π1(C
2
L−C) ∼= B3

where B3 = 〈a, b; aba = bab〉.

2.2. Examples of monodromy relations. We recall several basic examples of the mon-

odromy relations. Let C be a reduced plane curve of degree d.

We consider a model curve Cp,q which is defined by yp−xq = 0 and we study π1(C
2−Cp,q).

For this purpose, we consider the pencil lines x = t, t ∈ C. We consider the local monodromy

relations for σ, which is represented by the loop x = ε(2πit), 0 ≤ t ≤ 1. We take local

generators ξ0, ξ1, . . . , ξp−1 of π1(Lε, b0)) as in Figure 1. Loops are counter-clockwise oriented.

It is easy to see that each point of Cp,q ∩ Lε are rotated by the angle 2π × q/p. Let q =

mp + q′, 0 ≤ q′ < p. Then the monodromy relations are:

(R1) ξj(= ξσ
j ) =

⎧⎨⎩ ωmξj+q′ω
−m, 0 ≤ j < p − q′

ωm+1ξj+q′−pω
−(m+1), p − q′ ≤ j ≤ p − 1

(R2) ω = ξp−1 · · · ξ0.

ξ0

ξ1

ξ2

Figure 1. Generators

For the convenience, we introduce two groups G(p, q) and G(p, q, r).

G(p, q) := 〈ξ1, . . . , ξp, ω | R1, R2〉, G(p, q, r) := 〈ξ1, . . . , ξp, ω | R1, R2, R3〉

where R3 is the vanishing relation of the big circle ∂DR = {|y| = R}:

(R3) ωr = e.



Now the above computation gives the following.

Lemma 4. We have π1(C
2 − Cp,q, b0) ∼= G(p, q) and π1(P

2 − Cp,q, b0) ∼= G(p, q, 1).

The groups of G(p, q) and G(p, q, r) are studied in [36, 13]. For instance, we have

Theorem 5. ([36]) (i) Let s = gcd(p, q), p1 = p/s, q1 = q/s. Then ωq1 is the center of

G(p, q).

(ii) Put a = gcd(q1, r). Then ωa is in the center of G(p, q, r) and has order r/a and the

quotient group G(p, q, r)/ < ωa > is isomorphic to Zp/s ∗ Za ∗ F (s − 1).

Corollary 6. ([36]) Assume that r = q. Then G(p, q, q) = Zp1
∗Zq1

∗F (s−1). In particular,

if gcd(p, q) = 1, G(p, q, q) ∼= Zp ∗ Zq.

Let us recall some useful relations which follow from the above model.

(I) Tangent relation. Assume that C and L0 intersect at a simple point P with intersection

multiplicity p. Such a point is called a flex point of order p − 2 if p ≥ 3 ([55]). This

corresponds to the case q = 1. Then the monodromy relation gives ξ0 = ξ1 = · · · = ξp−1

and thus G(p, 1) ∼= Z. As a corollary, Zariski proves that the fundamental group π1(P
2 − C)

is abelian if C has a flex of order ≥ d − 3. In fact, if C has a flex of order at least d − 3,

the monodromy relation is given by ξ0 = · · · = ξd−2. (Recall that a smooth point P ∈ C is

called a flex of order k if the intersection multiplicity of the tangent line TP C and C at P

is k + 2. Thus we also say a flex of intersection multiplicity k + 2.) On the other hand, we

have one more relation ξd−1 . . . ξ0 = e. In particular, considering the smooth curve defined by

C0 = {Xd − Y d = Zd}, we get that π1(P
2 − C) is abelian for a smooth plane curve C, as C

can be joined to C0 by a path in the space of smooth curves of degree d.

Example 7. Let C be an irreducible quartic and assume that the singularity configuration

Σ(C) is not 3A2. Then by the classification of the singularity configuration and the flex number

formula in §3.2, C has at least one flex point. Thus π1(P
2 − C) = Z/4Z.

(II) Nodal relation. Assume that C has an ordinary double point (i.e., a node) at the origin

and assume that C is defined by x2 − y2 = 0 near the origin. This is the case when p = q = 2.

Then as the monodromy relation, we get the commuting relation: ξ1ξ2 = ξ2ξ1. Assume that

C has only nodes as singularities. The commutativity of π1(P
2 − C) was first asserted by

Zariski [55] and is proved by Fulton-Deligne [12, 16]. See also [30, 46, 45].

(III) Cuspidal relation. Assume that C has a cusp at the origin which is locally defined

by y2 − x3 = 0 (p = 2, q = 3). Then monodromy relation is: ξ1ξ2ξ1 = ξ2ξ1ξ2. This relation

is known as the generating relation of the braid group B3 (Artin [4]). Similarly in the case

p = 3, q = 2, we get the relation ξ1 = ξ3, ξ1ξ2ξ1 = ξ2ξ1ξ2.

2.3. First Homology group H1(P
2 − C). Assume that C is a projective curve with r

irreducible components C1, . . . , Cr of degree d1, . . . , dr respectively. By Lefschetz duality, we

have the following.

Proposition 8. H1(P
2 − C, Z) is isomorphic to Z

r−1 × (Z/d0Z) where d0 = gcd(d1, . . . , dr).

In particular, if C is irreducible (r = 1), the fundamental group is a cyclic group of order d1.
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2.4. Relation with Milnor Fibration. Let F (X,Y,Z) be a reduced homogeneous poly-

nomial of degree d which defines C ⊂ P
2. We consider the Milnor fibration of F [26]

F : C
3 − F−1(0) → C

∗ and let M = F−1(1) be the Milnor fiber. By the theorem of Kato-

Matsumoto [19], M is path-connected. We consider the following diagram where the vertical

map is the restriction of the Hopf fibration.

C
∗⏐⏐�i

j
↘

M
ι

↪→ C
3 − F−1(0)

F
−→ C

∗

p
↘

⏐⏐�q

P
2 − C

Proposition 9. ([34])(I) The following conditions are equivalent.

(i) π1(P
2 − C) is abelian.

(ii) π1(C
3 − F−1(0)) is abelian.

(iii) π1(M) is abelian and the first monodromy of the Milnor fibration h∗ : H1(M) → H1(M)

is trivial.

(II) Assume that C is irreducible. Then π1(M) is isomorphic to the commutator subgroup of

π1(P
2 − C) ([38]). In particular, π1(P

2 − C) is abelian if and only if M is simply connected.

2.5. Degenerations and fundamental groups. Let C be a reduced plane curve. The

total Milnor number µ(C) is defined by the sum of the local Milnor numbers µ(C,P ) at

the singular points P of C. We consider an analytic family of reduced projective curves

Ct = {Ft(X,Y,Z) = 0}, t ∈ U where U is a connected open set with 0 ∈ C and Ft(X,Y,Z)

is a homogeneous polynomial of degree d for any t. We assume that Ct, t �= 0 have the same

configuration of singularities so that they are topologically equivalent but C0 obtain more

singularities, i.e., µ(Ct) < µ(C0). We call such a family a degeneration of Ct at t = 0 and

we denote this, for brevity, as Ct → C0. Then we have the following property about the

fundamental groups.

Theorem 10. There is a canonical surjective homomorphism for t �= 0: ϕ : π1(P
2 − C0) →

π1(P
2 − Ct). In particular, if π1(P

2 − C0) is abelian, so is π1(P
2 − Ct).

Thus if Ct ∪ L → C0 ∪ L is a degeneration, we get

Corollary 11. There is a a surjective homomorphism: π1(C
2
L − C0) → π1(C

2
L − Ct).

Corollary 12. Let Ct, t ∈ C be a degeneration family. Assume that we have a presentation

π1(P
2 − C0) ∼= 〈g1, . . . , gd |R1, . . . , Rs〉

Then π1(P
2 − Ct), t �= 0 can be presented by adding a finite number of other relations.

2.6. Product formula. Assume that C1 and C2 are reduced curves of degree d1 and d2

respectively which intersect transversely and let C := C1 ∪ C2. We take a line at infinity L∞

such that L∞∩C1∩C2 = ∅ and we consider the the corresponding affine space C
2 = P

2−L∞.



Theorem 13. (Oka-Sakamoto [44]) Let ϕk : C
2 − C → C

2 − Ci, k = 1, 2 be the inclusion

maps. Then the homomorphism ϕ1# × ϕ2# : π1(C
2 − C) → π1(C

2 − C1) × π1(C
2 − C2) is

isomorphic.

Corollary 14. Assume that C1, . . . , Cr are the irreducible components of C and π1(P
2 −Cj)

is abelian for each j and they intersect transversely so that Ci ∩ Cj ∩ Ck = ∅ for any distinct

three i, j, k. Then π1(P
2 − C) is abelian.

2.7. Covering transformation. Assume that C is a reduced curve defined by f(x, y) = 0

in the affine space C
2 := P

2 − L∞. Take positive integers n ≥ m ≥ 1. We assume that the

origin O is not on C and the coordinate axes x = 0 and y = 0 intersect C transversely and

C ∩ {x = 0} and C ∩ {y = 0} has no point on L∞. Consider the doubly branched cyclic

covering

Φm,n : C
2 → C

2, (x, y) �→ (xm, yn).

Put fm,n(x, y) := f(xm, yn) and put Cm,n = {fm,n(x, y) = 0} = Φ−1
m,n(C).

When the line at infinity L∞ is generic, the topology of the complement of Cm,n(C) depends

only on C and m,n. We will call Cm,n(C) as a generic (m,n)-fold covering transform of C.

We denote the canonical homomorphism (Φm,n)� : π1(C
2−Cm,n(C)) → π1(C

2−C) by φm,n

for simplicity.

Theorem 15. ([38]) Assume that n ≥ m ≥ 1 and let Cm,n(C) be as above. Then the canonical

homomorphism

φm,n : π1(C
2 − Cm,n(C)) → π1(C

2 − C)

is an isomorphism.

Furthermore if the line at infinity L∞ is generic, it induces a central extension of groups

1 → Z/nZ
ι

−→π1(P
2 − Cm,n(C))

gφm,n
−→π1(P

2 − C) → 1

The kernel of φ̃m,n is generated by an element ω′ in the center and φ̃m,n(ω′) is homotopic to

a lasso ω for �L∞ in the target space. The restriction of φ̃m,n gives an isomorphism of the

respective commutator groups φ̃m,n� : D(π1(P
2 − Cm,n(C))) → D(π1(P

2 − C)). We have also

the exact sequence for the first homology groups:

1 → Z/nZ → H1(P
2 − Cm,n(C))

Φm,n
−→ H1(P

2 − C) → 1

Corollary 16. ([38]) Assume that the line at infinity L∞ is generic for C. Then

(1) π1(P
2 − Cm,n(C)) is abelian if and only if π1(P

2 − C) is abelian.

(2) Assume that C is irreducible. Put

F (x, y, z) = zd f(x/z, y/z), Fm,n(x, y, z) = zdn fm,n(x/z, y/z)

Let Mm,n and M be the Minor fibers of Fm,n and F respectively. Then we have an isomorphism

of the respective fundamental groups: π1(Mm,n) ∼= π1(M).

For a group G, we consider the following condition : Z(G) ∩ D(G) = {e} where Z(G) is the

center of G. This is equivalent to the injectivity of the composition: Z(G) → G → H1(G).
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When this condition is satisfied, we say that G satisfies homological injectivity condition of

the center (or (H.I.C)-condition in short).

3. Examples of curves with easy fundamental groups

For a better understanding, we will give some examples.

3.1. Abelian fundamental groups. A curve C with small singularities has often commu-

tative fundamental group π1(P
2 − C). Some xamples are here:

(0) C is a smooth irreducible curve.

(1) Irreducible curves with only A1-singularities (i.e., nodes) by [55, 16, 12, 18, 30, 46].

This was a conjecture and proved by Fulton.

(2) irreducible curve of degree d with a nodes and b cusps (i.e., A2) with 6b+2a < d2 ([30]).

(3) π1(P
2 − C) (respectively π1(C

2
L − C)) is abelian for any irreducible curve of degree d

which has a flex of order ≥ d − 3 (resp. of order d − 2) ([55]).

Example 17. For example, the following curve is a rational curve of degree n with (n−1)(n−2)
2

nodes and three flexes of order n − 2 and π1(P
2 − Dn) ∼= Z/nZ. See [32].

Dn : u(t) = tn, v(t) = (−1 − t)n.

Now we consider π1(C
2
L − C). If π1(P

2 − C) is abelian and L is generic for C, π1(C
2
L − C)

is also abelian by Lemma 2. However for non-generic L, this is not always true. Let us recall

Proposition 18. ([38]) Let f : C
2 → C be a polynomial mapping and assume that 0 is not

an atypical value at infinity and C = f−1(0) is smooth in C
2. Then π1(C

2 − C) ∼= Z.

Recall that α is a atypical value at infinity if the topological triviality at infinity fails at

t = α for the family f−1(t) (see [53]). A property of such curves C̄ is that their singular points

are on the line at infinity. We give several important such curves.

Proposition 19. Assume that C is an irreducible smooth curve of degree d in P
2. Then

π1(C
2
L − C) ∼= Z for any line at infinity L.

Proof. The assertion is well-known if L is generic. For non-generic line at infinity, we

consider the polynomial f(x, y) which defines C in C
2
L. Then it is easy to see that f : C

2
L → C

has no atypical value at infinity. Thus the assertion follows from Proposition 18. �

Remark 20. The assertion is not true without the smoothness of C. For example, for a

cubic curve C : Y 2Z −X3 = 0, π1(P
2 −C) = Z/3Z but π1(C

2
L −C) is isomorphic to the braid

group B3 where L = {Z = 0}. Thus non-generic affine complements contain more geometrical

informations.

Example 21. Assume that f(x, y) be a strongly convenient polynomial which has a non-

degenerate outside Newton boundary in the sense of Kouchnirenko [20] and [39]. Then f :



C
2 → C has no atypical value at infinity (Theorem 3.10,[39]). Thus if C := f−1(0) is smooth

in C
2, π1(C

2 − C) and also π1(P
2 − C) are abelian.

For example, we can take f(x, y) = x5y6 + x + y.

Definition 22. Let C ⊂ P
2 be an irreducible curve of degree d and let ξ0 ∈ C be a singular

point such that (C, ξ0) is locally irreducible. We say (C, ξ0) has the maximal tangency at ξ0 if

there is a line L passing through ξ0 such that the local intersection multiplicity I(C,L, ξ0) = d.

Proposition 23. Assume that C is an irreducible curve with a single singularity ξ0 such that

(C, ξ0) is irreducible and has a maximal tangent line L. Then π1(C
2
L −C) and π1(P

2 −C) are

abelian.

Proof. Taking L as a line at infinity and ξ0 = (1 : 0 : 0), let f(x, y) be the defining

polynomial of C in C
2
L. We know that f has no atypical value at infinity ( [?, 1]. Thus

π1(C
2
L − C) = Z. �

3.2. Class formula and flex formula. As we have seen in the previous subsection, to have

a non-abelian fundamental group π1(P
2 − C), it is necessary that C has some singularities.

Also if it has a flex of order greater than or equal to deg C − 3, it is abelian. Thus let us

recall the following formula about the number of flex points. Let d = degree (C), ď be the

degree of the dual curve Č, Σ(C) be the singular points of C and let α be the number of the

flex points.

ď = d(d − 1) −
∑

P∈Σ(C)

(µ(C,P ) + m(C,P ) − 1)(1)

α = 3d(d − 2) −
∑

P∈Σ(C)

γ(P,C)(2)

where m(C, p) is the multiplicity of C at P and γ(P,C) is the flex defect of the singularity P

[28, 40]. (In [40], we have denoted γ(P,C) as δ(P,C).) For the formula γ(P,C), see [40].

By the above consideration, the existence of a flex is very strong for curves of low degree. In

fact, the lowest degree where there exists an irreducible curve C with non-abelian π1(P
2 −C)

is 4, as an irreducible cubic has a flex. Note also that irreducible quartic has at least one flex

except three cuspidal quartics. However for π1(C
2
L −C), d = 3 is the lowest. In fact, we have

Proposition 24. (1) Let C be an irreducible curve of degree 3. (a) Then π1(P
2−C) ∼= Z/3Z.

(b) On the other hand, for a cuspidal cubic and L is a (in fact unique) flex tangent line,

π1(C
2
L − C) = π1(C

2 − {x3 + y2 = 0}) ∼= B3.

(2) Let C be an irreducible curve of degree 4. (a) Then π1(P
2 − C) is abelian except C has 3

A2.

(b) π1(C
2
L − C) is abelian except

• Σ(C) = {3A2} and for any L.

• Σ(C) = {E6} with a flex of order 2 and L is the flex tangent line.

• Σ(C) = {2A2 + A1} with a flex of order 2 and L is the flex tangent line.
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Note that except above three configurations, irreducible quartics have at least 3 flexes. Let

us give some more information for later purpose.

(1) Let C = f(x, y) = 0 be a 3 cuspidal quartic where

f(x, y) := −
1

2
y4 −

1

2
− 3x2 y2 + y2 +

3

2
x4 − 4x3 + 3x2

For generic L, for example {z = 0},

π1(C
2
L − C) = 〈ξ, ζ|ξ ζ ξ = ζ ξ ζ, ξ2 = ζ2〉

For L = {y = 0} (this is the tangent cone of a cusp),

π1(C
2
L − C) = 〈ξ, ζ|ξ ζ ξ = ζ ξ ζ〉 = B3 (braid group)
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Figure 2. 3 cuspidal Quartic(left:L = {z = 0}, right: L = {y = 0})

(2) Consider the following degenerated quartic with E6 and one flex of order 2 at P =

(0, 1, 0).

C : f(x, y) = y3 + x4 = 0

Take the flex line z = 0. Then

π1(C
2
L − C) ∼= G(3, 4)

(3) We consider quartic with Σ(C) = 2A2 + A1 with a degenerated flex of order 2 at infinity:

C :
16

9
z3 − 2 z2 − 6 z +

15

2
− 6 y2 z − 9 y2 −

1

2
y4 = 0

π1(C
2
L − C) = 〈ξ1, ξ2, ξ3|ξ1ξ2ξ1 = ξ2ξ1ξ2, ξ3ξ2ξ3 = ξ2ξ3ξ2, ξ3ξ2ξ1ξ3 = ξ2ξ1ξ3ξ2〉
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Figure 3. C ∩ C
2
L

Remark 25. The other part of the proof is due to a direct computation. However the following

fact is useful: a generic quartic with Σ(C) = {E6} or {2A2 + A1}, there are 2 flex points

respectively. The above quartics in (2) and (3) are degenerated in the sense that two flexes

collapse into a flex of order 2. For other configuration, there are at least 3 flex points, and

using this flex points, we can easily compute the fundamental group to be abelian.

3.3. Non-abelian case: Curves of torus type. Assume that p, q are positive integers

greater than 1 and consider the curve

Cp,q : fp(x, y, z)q + fq(x, y, z)p = 0

where fj(x, y, z) is a polynomial of degree j. Cp,q is called a curve of (p, q)-torus type. If

two curves fp = 0 and fq = 0 intersects at pq distinct points transversely, Cp,q has pq cusp

singularities yp + xq = 0. The fundamental group π1(P
2 − Cp,q) is generically isomorphic to

Zp ∗ Zq ([35]).

We can also consider a more general curve: let d be a positive integers with two partition

d =
∑r

i=1 niai =
∑s

j=1 mjbj and consider

Ca,b : f1(x, y, z)a1 · · · fr(x, y, z)ar + g1(x, y, z)b1 · · · gs(x, y, z)bs = 0

where degree fi(x, y, z) = ni, degree gj(x, y, z) = mj, a = (a1, . . . , ar), b = (b1, . . . , bs) and we

assume the following genericity. The curves fi(x, y, z) = 0 and gj(x, y, z) = 0 intersect trans-

versely and the singularity Σ(C) is on the intersections
⋃

i,j {(x, y, z); fi(x, y, z) = gj(x, y, z) =

0} and any two curves fi = fk = 0 or gj = g	 = 0 intersect outside of C. Then at the intersec-

tion P ∈ {fi = gj = 0}, (C,P ) has a singularity (topologically isomorphic to ) xai + ybj = 0.
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Put a := gcd (a1, . . . , ar) and b := gcd(b1, . . . , bs). Assume that gcd(a, b) = 1 to make C

irreducible. We can deform C keeping the genericity assumption to a curve

C ′ : h1(x, z)a1 · · ·hr(x, z)ar + k1(y, z)b1 · · · ks(y, z)bs = 0

Thus by [36], π1(P
2 − C) ∼= Za ∗ Zb.

4. Alexander polynomial

4.1. Infinite cyclic covering and its invariant. Let X be a topological space which has a

homotopy type of a finite CW-complex and assume that we have a surjective homomorphism:

φ : π1(X) → Z. Let t be a generator of Z and put Λ = C[t, t−1]. Note that Λ is a principal ideal

domain. Consider an infinite cyclic covering p : X̃ → X such that p#(π1(X̃)) = Ker φ. Then

H1(X̃, C) has a structure of Λ-module where t acts as the canonical covering transformation.

Thus we have an identification:

H1(X̃, C) ∼= Λ/λ1 ⊕ · · · ⊕ Λ/λn

as Λ-modules. We normalize the denominators so that λi is a polynomial in t with λi(0) �= 0

for each i = 1, . . . , n. The Alexander polynomial ∆(t) is defined by the product
∏n

i=1 λi(t).

The classical one is the case X = S3 − K where K is a knot. As H1(S
3 − K) = Z, we

have a canonical surjective homomorphism φ : π1(S
3 − K) → H1(S

3 − K, Z) induced by the

Hurewicz homomorphism. The corresponding Alexander polynomial is called the Alexander

polynomial of the knot K. If K is a link of a plane curve singularity p ∈ C, it is equal to the

characteristic polynomial of the Milnor fibration at P ([26]).

In our situation, we consider a plane curve C = C1 ∪ · · · ∪ Cr defined by a homogeneous

polynomial F (X,Y,Z) of degree d and take a line at infinity L = L∞. Then let φ be the

composition

φ : π1(P
2 − C ∪ L∞)

ξ
−→H1(P

2 − C ∪ L∞, Z) ∼= Z
r s
−→Z

where ξ is the Hurewicz homomorphism and s is defined by s(a1, . . . , ar) =
∑r

i=1 ai. We call

s the summation homomorphism.

Let X̃ → P
2 − C ∪ L be the infinite cyclic covering corresponding to Ker φ.

Definition 26. The corresponding Alexander polynomial is called the Alexander polynomial

with respect to L we denote it by ∆C(t;L). If L is generic, we call ∆C(t;L) generic Alexander

polynomial of C and we denote simply ∆C(t). It does not depend on the choice of the generic

line at infinity L∞. When C has a maked point P and L = TP C (the tangent line at P ∈

C), we denote ∆C(t;L) as ∆C(t;P ) and we call the tangential Alexander polynomial at P .

Similarly we define the doubly tangential Alexander polynomial ∆C(t;P,Q) as ∆C∪TP C(t;Q).

Let M = F−1(1) ⊂ C
3 be the Milnor fiber of F . The monodromy map h : M → M

is defined by the coordinate-wise multiplication of exp(2πi/d). Randell showed in [47] the

following important theorem.

Theorem 27. The generic Alexander polynomial ∆C(t) is equal to the characteristic polyno-

mial of the monodromy h∗ : H1(M) → H1(M). Thus the degree of ∆C(t) is equal to the first

Betti number b1(M).



Lemma 28. Assume that C has r irreducible components. Then the multiplicity of the factor

(t − 1) in ∆C(t) is r − 1.

Proof. As hd = idM , the monodromy map h∗ : H1(M) → H1(M) has a period d. This

implies that h∗ can be diagonalized. Assume that ρ is the multiplicity of (t − 1) in ∆C(t).

Consider the Wang sequence:

H1(M)
h∗−id
−→ H1(M) → H1(E) → H0(M) → 0

where E := S5 −V ∩S5 and V = F−1(0). Then we get b1(E) = ρ+ 1. On the other hand, by

Alexander duality, we have H1(E) ∼= H3(S5, V ∩ S5) and b1(E) = r. Thus we conclude that

ρ = r − 1. �

Definition 29. We say that Alexander polynomial of a curve C is trivial with respect to L if

∆C(t;L) = (t − 1)r−1 where r is the number of the irreducible components of C.

The following Lemma describes the relation between the generic Alexander polynomial and

local singularities.

Lemma 30. (Libgober [21]) Let P1, . . . , Pk be the singular points of C (including those at

infinity) and let ∆i(t) be the characteristic polynomial of the Milnor fibration of the germ

(C,Pi). Then the generic Alexander polynomial ∆C(t;L∞) divides the product
∏k

i=1 ∆i(t)

Lemma 31. (Libgober [21]) Let d be the degree of C. Then the Alexander polynomial

∆C(t;L∞) divides the Alexander polynomial at infinity ∆∞(t).

If L∞ is generic, ∆∞(t) is given by (td − 1)d−2(t− 1). In particular, the roots of the genric

Alexander polynomial are d-th roots of unity.

4.2. Fox calculus. Suppose that φ : π1(X) → Z is a given surjective homomorphism. As-

sume that π1(X) has a finite presentation as

π1(X) ∼= 〈x1, . . . , xn |R1, . . . , Rm〉

where Ri is a word of x1, . . . , xn. Thus we have a surjective homomorphism ψ : F (n) → π1(X)

where F (n) is a free group of rank n, generated by x1, . . . , xn. Consider the group ring of

F (n) with C-coefficients C[F (n)]. The Fox differential

∂

∂xj
: C[F (n)] → C[F (n)]

is C-linear map which is characterized by the property

∂

∂xj
xi = δi,j,

∂

∂xj
(uv) =

∂u

∂xj
+ u

∂v

∂xj
, u, v ∈ C[F (n)]

The composition φ ◦ ψ : F (n) → Z gives a ring homomorphism γ : C[F (n)] → C[t, t−1]. The

Alexander matrix A is m × n matrix with coefficients in C[t, t−1] and its (i, j)-component is

given by γ(∂Ri

∂xj
). Then it is known that the Alexander polynomial ∆(t) is given by the greatest

common divisor of (n − 1)-minors of A ([9]). The following formula will be useful.

∂

∂xj
ωk = (1 + ω + · · · + ωk−1)

∂

∂xj
ω,

∂

∂xj
ω−k = −ω−k ∂

∂xj
ωk
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Example 32. We gives several examples.

1. Consider the trivial case π1(X) = Z and φ is the canonical isomorphism. Then π1(X) ∼=

〈x1〉 (no relation) and ∆(t) = 1. More generally assume that π1(X) = Z
r with φ(n1, . . . , nr) =

n1 + · · · + nr. Then

π1(X) = 〈x1, . . . , xr |Ri,j = xixjxi
−1xj

−1, 1 ≤ i < j ≤ r〉

As we have

γ

(
∂

∂x	
Ri,j

)
=

⎧⎪⎪⎨⎪⎪⎩
1 − t � = i

t − 1 � = j

0 � �= i, j

,

we have ∆(t) = (t − 1)r−1.

2. Let C = {y2z − x3 = 0} and X = C
2
L − C, L = {z = 0}. Then L is the tangent line at the

flex point P = (0, 1, 0). Then π1(P
2 − C) ∼= Z/3Z but

π1(X) = 〈x1, x2 |x1x2x1 = x2x1x2〉.

is known as the braid group B(3) of three strings and the Alexander polynomials are given by

∆C(t) = 1 and ∆C(t;P ) = t2 − t + 1.

3. Let us consider the curve C := {y2z3 − x5 = 0} ⊂ C
2 and put X = C

2 − C, L = {z =

0}, P = (0, 1, 0). Then π1(P
2 − C) ∼= Z/5Z and

π1(X) ∼= G(2, 5) = 〈x0, x1 |x0(x1x0)
2x−1

1 (x1x0)
−2〉

In this case, we get

∆C(t) = 1, ∆C(t;P ) = t4 − t3 + t2 − t + 1 =
(t10 − 1)(t − 1)

(t2 − 1)(t5 − 1)
.

4.3. Computation of Alexander polynomials from position data of singularities.

Let C be a given plane curve of degree d defined by f(x, y) = 0 and let Σ(C) be the singular

locus of C and let P ∈ Σ(C) be a singular point. Consider an embedded resolution of C,

π : Ũ → U where U is an open neighbourhood of P in P
2 and let E1, . . . , Es be the exceptional

divisors. Let us choose (u, v) be a local coordinate system centered at P and let ki and mi be

the order of zero of the canonical two form π∗(du∧ dv) and π∗f respectively along the divisor

Ei. We consider an ideal of OP generated by the function germ φ such that the pull-back π∗φ

vanishes of order at least −ki + [kmi/d] along Ei and we denote this ideal by JP,k,d. Namely

JP,k,d = {φ ∈ OP , (π∗φ) ≥
∑

i

(−ki + [kmi/d])Ei}

Let us consider the canonical homomorphisms induced by the restrictions:

σk,P : OP → OP /JP,k,d, σk : H0(P2,O(k − 3)) →
⊕

P∈Σ(C)

OP /JP,k,d

where the right side of σk is the sum over singular points of C. We define two invariants:

ρ(P, k) = dimC OP /JP,k,d, ρ(k) =
∑

P∈Σ(C)

ρ(P, k)



Let �k be the dimension of the cokernel σk. Then the formula of Libgober [22] and Loeser-

Vaquié [25], combined with a result of Esnault and Artal [15, 2], can be stated as follows.

Lemma 33. The generic Alexander polynomial ∆C(t) is written as the product

∆̃C(t) =

d−1∏
k=1

∆k(t)
	k , k = 1, . . . , d − 1

where

∆k = (t − exp(
2kπi

d
))(t − exp(

−2kπi

d
)).

5. Zariski pairs and marked Zariski pairs

Definition 34. A pair of reduced plane curves of a same degree {C,C ′} is called a Zariski

pair if there is

(1) a homeomorphism α̃ : N(C) → N(C ′) of the respective tubular neighborhood N(C), N(C ′)

which induces by restriction a homeomorphism α : (C,Σ(C)) → (C ′,Σ(C ′)) so that the

two germs (C,P ), (C ′, α(P )) are topologically equivalent as germs of plane curves for each

singularity P ∈ Σ(C) but

(2) the pair of spaces (P2, C) and (P2, C ′) are not homeomorphic.

Corollary 35. ([38]) Let {C,C ′} be a Zariski pair and assume that π1(P
2 − C ′) satisfies

(H.I.C)-condition. Then for any n ≥ m ≥ 1, {Cm,n(C), Cm,n(C ′)} is a Zariski pair.

See also Shimada [48].

Example 36. First example of Zariski pair is given by Zariski [55]. It is a pair of sextics

with 6A2 such that one is of torus type and the other is not.

Definition 37. Now we consider a fixed mark point P ∈ C. There is a line L which passes

throught P and the local intersection number I(L,C;P ) is sytrictly larger than the multiplicity

of (C,P ). At a smooth point, it is the usual tangent line. At singular points, it is one of the

tangent line to a branch at P . We denote the tangent line at P by TP C. (To make it unique,

P must be either a smooth point or a singular point where C is locally irreducible.) We call

(C,P ) a curve with a marked point P . Two curves with marked points (C,P ) and (C ′, P ′)

are called a marked Zariki pair if {C ∪ TP C,C ′ ∪ TP ′C ′} is a Zariki pair.

Similarly we can consider a curve with k-marked points (C,P1, . . . , Pk). Two curves with k-

marked points (C,P1, . . . , Pk) and (C ′, P ′

1, . . . , P
′

k) are called a k-marked Zariki pair if {C∪k
i=1

TPi
C, C ′ ∪ ∪k

i=1TP ′

i
C ′} is a Zariki pair.

5.1. Tangential Alexander spectrum. As we have seen Proposition 24, for irreducible cu-

bic curves, the fundamental group is abelian. For quartic, the only exception is a three cuspidal

quartic. In this case, using Fox calculus, we can easily conclude that the generic Alexander

polynomial is trivial. We have observed there that non-generic Alexander polynomials are

more fruitful.
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Definition 38. For the sharper usage of Alexander polynomial, we consider the tangential

Alexander polynomial ∆C(t;P ) := ∆C(t;TP C) and consider the set

t-AS (C) := {∆C(t;P );P ∈ C}

and we call t-AS (C) the tangential Alexander spectrum of C.

We can also define the k-ple tangential Alexander spectrum of C, denoted as t-AS(k)(C),

by

t-AS(k)(C) := {∆C∪TP C(t;P1, . . . , Pk);Pk, ∈ C}

Example 39. 0. For smooth curves, the tangential Alexander spectrums are trivial by Propo-

sition 19.

1. Let C be an irreducible conic. Then t-AS(C) = {1}.

2. Let C be an irreducible cubic. For smooth or nodal cubics, we have t-AS (C) = {1}. For

a cuspidal cubic C,

t-AS (C) = {1, t2 − t + 1}

The non-trivial spectrum is given by taking P at the unique flex point of C.

3. Let C be an irreducible conic. Then the secondary Alexander polynomial ∆C(t;P,Q) is

given by (t − 1)(t2 + 1). Note that this is equal to the local Alexander polynomial of A3.

However we have

Proposition 40. Let C be a smooth curve of degree d ≥ 3. Then for any non-flex point Q

and an arbitrary point P �= Q, we have ∆C(t;P,Q) = (t − 1).

Proof. We know that π1(C
2 − C) ∼= Z where C

2 = P
2 − TP C. Fix affine coordinates (x, y)

and let p : C
2 → C be the projection to x coordinate. There is a polydisk B := BR × BS so

that B ⊃ C ∩ p−1(BR) and π1(B − C) ∼= Z. Take a generic point Q near infinity so that

TQC ∩ B = ∅. Then we can see that TQC ∩ C ∩ p−1(BR) = ∅ and TQC ∩ C has at least one

transversal point as we have assumed d ≥ 3. Using pencil section C ∩ {x = η}η∈C, we see

immediately that π1(C
2 − C ∪ TQC) = Z

2. �

5.2. Configuration space. Let Σ be a finite set of topological equivalent class of curve sin-

gularity and let M(Σ, n) be the configuration space of plane curves of degree n with singu-

larity configuration Σ. The generic Alexander polynomial is an invariant of the connected

components of the configuration space. However the tangential Alexander spectrum is finer

invariant. To understand it better, we introduce the dual stratification S(M(Σ, n)) of M(Σ, n)

as follows. Consider the Gauss map image M̌(Σ, n) of M(Σ, n). On this image, there is a

canonical stratification by the configuration of the singularities Σ(Č), Č ∈ M̌(Σ, n). The dual

stratification S(M(Σ, n)) is defined by the inverse images of this stratification by the Gauss

map. Two points on the same stratum P,Q can be joined by a path Pt with P0 = P and

P1 = Q. This induces µ-constant family C ∪ TPtC. Thus

Proposition 41. The tangential Alexander spectrum is an invariant of each stratum of the

dual stratification.



Example 42. We consider M(2A2 + A1, 4) and M(E6, 4). By class formula, the dual curve

Č of a generic member C of M(2A2 + A1, 4) or M(E6, 4) is a quartic with 2A2 + A1 in

either case. (C has generically 2 flex points.) There are strata corresponding to degenerated

members which has one flex of order 2. Thus let us consider

M1 := {C ∈ M(2A2 + A1, 4);Σ(Č) = {2A2 + A1}},

M2 := {C ∈ M(2A2 + A1, 4);Σ(Č) = {E6}}

N1 := {C ∈ M(E6, 4);Σ(Č) = {2A2 + A1}},

N2 := {C ∈ M(E6, 4);Σ(Č) = {E6}}

We can easily see that {M1, M2}, {N1, N2} are respective dual stratifications. We observe

that M2 ⊂ M̄1 and N2 ⊂ N̄1. In fact, under the canonical topology of the space of quartics,

M̄1 = M1 ∪ M2 ∪ N1 ∪ N2. The respective tangential Alexander spectrum are

t-AS(M1) = {1}, t-AS (M2) = {1, t2 − t + 1}

t-AS (N1) = {1}, t-AS (N2) = {1, (t2 − t + 1)(t4 − t2 + 1)}

The non-trivial Alexander polynomials can be obtained by Fox calculus applied to the presen-

tation given in Proposition 24.

5.3. Degeneration and Alexander polynomial. We consider a degeneration Ct → C0.

By Corollary 12 and Fox calculus, we have

Theorem 43. Assume that we have a degeneration family of reduced curves {Cs | s ∈ U} at

s = 0. Let ∆s(t) be the Alexander polynomial of Cs. Then ∆s(t)|∆0(t) for s �= 0.

Remark 44. Theorem 43 can be generalized to a degeneration of marked curves (Cs, Ps) →

(C0, P0) when Cs ∪ TPsCs → C0 ∪ TP0
C0 is a degeneration.

6. Triviality of the Alexander Polynomials.

We have seen that the generic Alexander polynomial is trivial if C is irreducible and π1(C
2
L−

C) is abelian. However this is not a necessary condition, as we will see in the following. Let

F (X,Y,Z) be the defining homogeneous polynomial of C and let M = F −1(1) ⊂ C
3 the

Milnor fiber of F .

Theorem 45. Assume that C is an irreducible curve. The generic Alexander polynomial

∆C(t) of C is trivial if and only if the first homology group of the Milnor fiber H1(M) is at

most a finite group.

Proof. By Theorem 27, the first Betti number of M is equal to the degree of ∆C(t). �

Corollary 46. Assume that π1(P
2 − C) is a finite group. Then the generic Alexander poly-

nomial is trivial.

Proof. This is immediate from Theorem 9 as D(π1(P
2 − C)) = π1(M) and it is a finite

group under the assumption. �
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6.1. Examples. 1. (Zariski’s three cuspidal quartic, [55]) Let Z4 be a quartic curve with

three A2-singularities. The corresponding moduli space is irreducible. Then the fundamental

groups are given by [55, 37] as

π1(C
2 − Z4) ∼= 〈ρ, ξ | ρ ξ ρ = ξ ρ ξ, ρ2 = ξ2〉

π1(P
2 − Z4) ∼= 〈ρ, ξ | ρ ξ ρ = ξ ρ ξ, ρ2ξ2 = e〉

Then by an easy calculation, ∆C(t) = 1. This also follows from Theorem 45 as π1(P
2 − Z4)

is a finite group of order 12 by Zariski [55]. By Theorem 15, the generic covering transform

Cn,n(Z4) has also a trivial Alexander polynomial for any n.

2. We have seen that the generic Alexander polynomials are trivial for any irreducible cubics

or quartics. We can also prove that this is also true for irreducible quintic with simple

singularities, using Lemma 33 but the detail of calculation is left to the reader.

3. Curves of torus type. We consider a generic curve of torus type Cp,q. By the caculation

of the fundamental group, we have

Theorem 47. The generic Alexander polynomial is the same as the characteristic polynomial

of the Pham-Brieskorn singularity Bp,q which is given by

∆C(t) =
(tp1q1s − 1)s (t − 1)

(tp − 1) (tq − 1)
(3)

where s = gcd (p, q), p = p1s, q = q1s.

6.2. Sextics of torus type. The most interesting torus curve is a sextic of torus type. Let

us consider a sextic of torus type

C : f2(x, y)3 + f3(x, y)2 = 0, degree fj = j, j = 2, 3,

as an example. Assume that C is reduced and irreducible. A sextic of torus type is called tame

if the singularities are on the intersection of the conic f2(x, y) = 0 and the cubic f3(x, y) = 0.

A generic sextic of torus type is tame but the converse is not true. Then the possibility of

generic Alexander polynomials for sextics of torus type is determined as follows.

Theorem 48. ([43, 41]) Assume that C is an irreducible sextic of torus type. The generic

Alexander polynomial of C is one of the following.

(t2 − t + 1), (t2 − t + 1)2, (t2 − t + 1)3

Moreover for tame sextics of torus type, the generic Alexander polynomial is given by t2−t+1

and the fundamental group of the complement in P
2 is isomorphic to Z2 ∗ Z3 except the case

when the configuration is [C3,9, 3A2]. In the exceptional case, the generic Alexander polynomial

is given by (t2 − t + 1)2.

7. Weakness of generic Alexander polynomial.

We have already observed a weakness of generic Alexander polynomials: it does not tell

us any geometrical information if π1(P
2 − C) is abelian. Another weakness is for reducible

curves, which we are going to explain. Let C1 and C2 be curves which intersect transversely.



We take a line at infinity L∞ for C1 ∪C2 so that L∞ does not contain any points of C1 ∩C2.

Theorem 13 says that

π1(C
2 − C1 ∪ C2) ∼= π1(C

2 − C1) × π1(C
2 − C2)

which tell us that the fundamental group of the union of two curves keeps informations about

each curves C1, C2. On the other hand, the generic Alexander polynomial of C1 ∪ C2 keeps

no information about each curves C1, C2. In fact, we have

Theorem 49. Assume that C1 and C2 intersect transversely and let C = C1 ∪ C2. Then

the generic Alexander polynomial ∆C(t) of C is given by given by (t − 1)r−1 where r is the

number of irreducible components of C.

Proof. Assume that π1(C
2 − Cj), j = 1, 2 is presented as

π1(C
2 − C1) = 〈g1, . . . , gs1

|R1, . . . , Rp1
〉, π1(C

2 − C2) = 〈h1, . . . , hs2
|S1, . . . , Sp2

〉

Then by Theorem 13, we have

π1(C
2 − C) = 〈g1, . . . , gs1

, h1, . . . , hs2
|R1, . . . , Rp1

, S1, . . . , Sp2
, Ti,j , 1 ≤ i ≤ s1, 1 ≤ j ≤ s2〉

where Ti,j is the commutativity relation gi hjg
−1
i h−1

j . Let γ : C[g1, . . . , gs1
, h1, . . . , hs2

] →

C[t, t−1] be the ring homomorphism defined before (§3.1). Put gs1+j = hj for brevity. Then

the submatrix of the Alexander matrix corresponding to(
γ(

∂Ti,j

∂gk
)

)
, {i = 1, . . . , s1, j = s2} or {i = s1, j = 1, . . . , s2 − 1}, and 1 ≤ k ≤ s1 + s2 − 1

is given by (1 − t) × A where

A =

(
Es1

0

K −Es2−1

)
and E	 is the �× �-identity matrix and K is a (s2−1)×s1 matrix with only the last column is

non-zero. Thus the determinant of this matrix gives ±(t−1)s1+s2−1 and the generic Alexander

polynomial must be a factor of (t−1)s1+s2−1. As the monodromy of the Milnor fibration of the

defining homogeneous polynomial F (X,Y,Z) of C is periodic, this implies that h∗ : H1(M) →

H1(M) is the identity map. Thus ∆C(t) = (t − 1)b1 where b1 is the first Betti number of M .

On the other hand, b1 = r − 1 by Lemma 28. �

7.1. θ-Alexander polynomials and tangential Alexander polynomials. To cover the

weakness of Alexander polynomials for irreducible curves, we propose the tangential Alexander

polynomials.

To cover the weakness of generic Alexander polynomials for reducible curves, we propose

now is the following. Consider a plane curve with r irreducible components C1, . . . , Cr with

degree d1, . . . , dr respectively. We assume that the line at infinity is generic for C. For

the generic Alexander polynomial, we have used the summation homomorphism s. This is

not enough for reducible curves. We consider a fixed line at infinity L = L∞ and every

possible surjective homomorphism θ : π1(C
2
L − C) → Z and the corresponding infinite cyclic

covering πθ : Xθ → C
2
L − C. The corresponding Alexander polynomial will be denoted by



(

∆C,θ(t;L) and we call it the θ-Alexander polynomial of C with respect to L. Note that a

surjective homomorphism θ factors through the Hurewicz homomorphism, and a surjective

homomorphism θ′ : H1(C
2 − C) ∼= Z

r → Z. On the other hand, θ′ corresponds to a multi-

integer m = (m1, . . . ,mr) with gcd(m1, . . . ,mr) = 1. So we denote θ as θm hereafter. We

denote the set of all Alexander polynomials by θ-AS(C;L)

θ-AS(C;L) := {∆θ(t) | θ : π1(C
2 − C) → Z is surjective}

and we call θ-AS(C;L) the θ-Alexander spectrum with respect to L of C. (In [42], it is called

the Alexander set. To compare with the tangential Alexander spectrum, we changed the

terminology.) We say θ-AS(C;L) is trivial if θ-AS(C;L) = {(t− 1)r−1}. It is easy to see that

θ-AS(C;L) is a topological invariant of the complement P
2 − C for a generic line L.

Theorem 50. [42] The θ-Alexander spectrum θ-AS(C;L) is not trivial if there exists a com-

ponent Ci0 for which the Alexander polynomial ∆Ci0
(t;L) is not trivial.

First we define the radical
√

q(t) of a polynomial q(t) to be the generator of the radical√
(q(t)) of the ideal (q(t)) in C[t].

Lemma 51. ([42]) Assume that C is a reduced curve of degree d with a non-trivial Alexander

polynomial ∆C(t;L). Assume that C ′ is irreducible, π1(C
2
L − C ′) ∼= Z and the canonical

homomorphism π1(C
2
L −C∪C ′) → π1(C

2
L−C)×π1(C

2
L −C ′) is isomorphic. Put D = C ∪C ′.

Consider the homomorphism

θ : H1(C
2
L − D) → Z, [gj ] �→ t, [h] �→ td.

Then ∆D,θ(t;L) is divisible by
√

∆C(t;L).

Proof. First we may assume that the presentation of the respective fundamental groups are

given as

π1(C
2
L − C) = 〈g1, . . . , gk |R1, . . . , R	〉

π1(C
2
L − D) = 〈g1, . . . , gk, h |R1, . . . , R	, Tj , 1 ≤ j ≤ k〉

where Tj is the commuting relation: hgjh
−1g−1

j . Here h is presented by a lasso for C ′. Then

the image of the differential of the relation Tj by the ring homomorphism

γθ : C(F (k + 1)) → C(π1(C
2
L − D)) → C[t, t−1]

gives the raw vector vj whose j-th component is (td − 1), (k + 1)-th component is 1− t. Thus

the θ-Alexander matrix of D is given by

A′ :=

(
A O

(td − 1)Ek (1 − t)�w

)
, O = t(0, . . . , 0), �w = t(1, . . . , 1)

where A is the Alexander matrix for C with respect to the summation homomorphism. Take

k × k minor B of A′. If B contains at least a (k − 1) × (k − 1) minor of A, det B is a linear

combination of the (k − 1)-minors of A and therefore divisible by ∆C(t;L). Assume that B



does not contain such a minor. Then any k×k minor of B is divisible by td−1. As
√

∆C(t;L)

divides td − 1 by Proposition 27, we conclude that
√

∆C(t;L) divides ∆D,θ(t;L). �

Assume that k = 2 in the situation of Lemma 51. So π1(C
2
L − C) is generated by two

elements. Then each coefficients of A is divisible by ∆C(t;L) and the Alexander polynomial

∆D,θ(t;L) is given by the greatest common divisor of 2 × 2 minors. Thus we have a sharper

statement:

Corollary 52. Assume that k = 2 and θis as above. Then ∆D,θ(t;L) is given by (t − 1) ×

gcd(∆C(t;L), td − 1)

Corollary 53. ([42]) Assume that C is as in Lemma 51 with r irreducible components and

let C ′ be a curve with π1(C
2
L − C ′) = Z

s with s is the number of irreducible components of

C ′. Suppose that the canonical homomorphism π1(C
2
L −C ∪C ′) → π1(C

2
L −C)×π1(C

2
L −C ′)

is isomorphic. Then ∆C∪C′,θ(t;L) is divisible by
√

∆C(t;L) for θ = θm where m = (u,v) ∈

Z
r × Z

s, u = (1, . . . , 1) and v = (d, . . . , d).

Proof. Suppose that we have the following presentation.

π1(C
2
L − C) = 〈g1, . . . , gk |R1, . . . , R	〉

Then the presentation of π1(C
2
L − C ∪ C ′) is given by

π1(C
2
L − C ∪ C ′) = 〈g1, . . . , gk, h1, . . . , hs |R1, . . . , R	, Tj,	, 1 ≤ j ≤ k, 1 ≤ � ≤ s〉

where Tj,	 is the commuting relation: h	gjh
−1
	 g−1

j . Consider the homomorphism

θm : H1(C
2
L − C ∪ C ′) ∼= Z

r × Z
s → Z, (a,b) �→

r∑
i=1

ai + d

s∑
j=1

bj

Assume that C ′ = C ′

1 ∪ · · · ∪ C ′

s be the irreducible decomposition. Put Dj = C ′

1 ∪ · · · ∪ C ′

j .

We have a family of surjective homomorphisms θj : H1(C
2
L − C ∪ Dj) → Z which give the

commutative diagram:

H1(C
2
L − C ∪ C ′) → H1(C

2
L − C ∪ Dj)⏐⏐�θm

⏐⏐�θj

Z
=

−→ Z

Then the assertion follows from Lemma 51, by showing that C ∪ Dj has a non-trivial θj-

Alexander polynomial which is divisible by
√

∆C(t;L), by the inductive argument on j =

1, . . . , s. �

Now we are ready to prove the Main theorem.

Proof of Theorem 50. Assume that C has irreducible components C1, . . . , Cr and assume

that an irreducible component Ci0 has a non-trivial Alexander polynomial ∆Ci0
(t;L). For

simplicity, we assume i0 = 1. Put d1 = degreeC1. Consider a canonical surjective homo-

morphism φ : π1(C
2
L − C) → π1(C

2
L − C1) × Z

r−1. Then we consider the surjective homo-

morphism θ : H1(C
2
L − C) → Z which is defined by θ(a1, . . . , ar) = a1 + d1(a2 + · · · + ar)

and let φ̄ : π1(C
2
L − C) → Z be the associated surjection. Then ∆C,θ(t;L) is divisible by



(

∆φ̄(t) and the latter is divisible, by Corollary 53,
√

∆C1
(t;L). Thus ∆C,θ(t;L) is divisible by√

∆C1
(t;L). �

7.2. Relations among the tangential and θ-Alexander polynomials). Let C be a curve

of degree d and let P ∈ C and let L = TP C. We consider the tangential Alexander polynomial

∆C(t;P ). Let

〈g1, . . . , gk |R1, . . . , R	〉

be a presentation of π1(C
2
L−C) by generators and relations. Take a generic line L∞ for C ∪L

and let C
2 = P

2 − L∞. Then by Product theorem 13, we have

π1(C
2 − C ∪ L) = π1(C

2
L − C ∪ L∞) = π1(C

2
L − C) × π1(C

2
L − L∞) = π1(C

2
L − C) × Z

and it has a presentation:

π1(C
2 − C ∪ L) = 〈g1, . . . , gk, h, h∞ |R1, . . . , R	, T1, . . . , Tk, S〉

= 〈g1, . . . , gk, h∞ |R1, . . . , R	, T1, . . . , Tk〉

where Tj = h∞ gj h−1
∞

g−1
j and S = h∞ hω, ω is a big circle containing d points Lη ∩ C and

Lη is a generic line in the chosen pencil of the lines. Now the tangential Alexander polynomial

is associated to the surjective homomorphism

s : π1(C
2
L − C) → Z = 〈t〉, gi �→ t

and ∆C∪L(t) is associated with the canonical surjective homomorphism

s′ : π1(C
2 − C ∪ L) → Z = 〈t〉, gi �→ t, h �→ t

Now taking g1, . . . , gk, h∞ as generators, s′ corresponds to the homomorphism:

θ : π1(C
2 − C ∪ L) → Z, gi �→ t, h∞ �→ t−d−1

The last property is the result of the observation: s′(ω) = td. Thus we have shown

Theorem 54. Let
√

∆C(t;P )d+1 := gcd(
√

∆C(t;P )(t − 1), td+1−1). Then we have ∆C∪L(t) =

∆C∪L∞,θ(t;L) and √
∆C∪L(t) |∆C(t;L)(t − 1), ∆C(t;P )d+1 |

√
∆C∪L(t)

In other word,
√

∆C∪L(t) =
√

∆C(t;P )d+1.

Proof. Consider the Alexander matrix of presentation:

π1(C
2 − C ∪ L) = 〈g1, . . . , gk, h∞ |R1, . . . , R	, T1, . . . , Tk〉

As we have sen in the proof of Lemma 51, the Alexander matrix of this presentation is

given by

A′ :=

(
A O

(td+1 − 1)Ek (1 − t)�w

)
, O = t(0, . . . , 0), �w = t(1, . . . , 1)

where A is the Alexander matrix of C with respect to L. The greatest common divisor of the

k× k minors in which k− 1 rows are from A is given by ∆C(t;L)× (t− 1). Any other minors

are divisible by td+1 − 1. �



Example 55. In [33], we have shown that there exists irreducible quintics B5 with configura-

tion 4A2, 4A2 +A1, A5 +2A2, A5 +2A2 +A1, E6 +2A2, E6 +A5, 2A5, A8 +A2, A8 +A2 +A1

or A11 has two different flex points of order 1 P, P ′ such that (B5, P ) and (B5, P
′) are marked

Zariski pairs. Recall that this implies that the sextics {B5 ∪ TP B5, B5 ∪ TP ′B5} are Zariski

pairs. In fact their generic ALexander polynomials are given as

(t2 − t + 1), 1

Strictly speaking, this implies that {B5 ∪ TP B5 ∪L∞, B5 ∪ TP ′B5 ∪L∞} is a Zariki pair (this

implies {{B5 ∪ TP B5, B5 ∪ TP ′B5} is also a Zariski pair.) We can also see this directly. We

have seen that (t2 − t + 1)(t − 1) |∆B5
(t;P )6 but

√
∆B5

(t;P ′)6 = 1 by Theorem 54.

The following quintic B5 : f(x, y) = 0 has A11 singularity at the origin and 9 flex points.

Among them, the flex at P = (0, 1) is very important (a flex of torus type). One can easily

see that π1(P
2 − B5) = Z/5Z using the pencil y = η, η ∈ C. However if we kill the relations

coming from P adding the tangent line y− 1 = 0, all other flex points does not gives relations

to make the fundamental group abelian. In fact, B5 ∪ TP B5 is a sextic of torus type [33].

f(x, y) = −
33

64
y5+

(
7

8
x +

129

64

)
y4+

(
−5/4x2 −

15

8
x − 5/2

)
y3+

(
15

8
x3 +

13

4
x2 + x + 1

)
y2

+
(
−3/4x4 − 2x3 − 2x2

)
y + x5 + x4

Example 56. We have shown in [33] that there are Zariski pairs of reducible sextics, con-

sisting an irreducible quartic B4 and two flex tangents, one is of torus type and the other is

not of torus type. The corresponding confifurations are

[3A5 + 3A1], [2A5 + 2A2 + 3A1]

The corresponding configurations of the quartic B4 are [A5], [2A2] respectively. These example

correspond to doubly marked Zariski pairs.

For example, consider the following quartic B4. It has two A2 and 8 flexes. Three of then is

at P = (1, 0), Q = (−1, 0), R = (0,−1) and we have shown that B4 ∪TP B4 ∪TQB4 is a sextic

of torus type and B4 ∪TP B4 ∪TRB4 is a sextic of non-torus type. Thus (B4, P,Q), (B4, P,R)

gives a doubly marked Zariski pair. (The flex tangent line at P,Q are given by x ∓ 1 = 0.)

f(x, y) =
254143

4096
x4 −

235

16
x3 +

43

32
yx3 −

141645

2048
x2 −

5029

2048
y2x2

−
10105

1024
x2y + 1/32 y3x +

235

16
x−

43

32
xy +

275

4096
y4 +

29147

4096
−

235

1024
y3 +

5029

2048
y2 +

10105

1024
y

Example 57. Let C be a smooth cubic curve. Then it has 9 flex points and there are 12

colinear 3 flex points {P,Q,R} so that C ∪ TP C ∪ TQC ∪ TRC is a sextic of torus type with

[3A5 + 3A1]. Other choice of three flex points gives a sextic of non-torus type ([33]). This

gives an example of triple marked Zariki pair.
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Figure 4. Quintic with A11
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