

SMR1671/16

Advanced School and Workshop on Singularities in Geometry and Topology

(15 August - 3 September 2005)

Sufficiency of jets with line singularities

Hans Brodersen

University of Oslo Institute of Mathematics Oslo, Norway

SUFFICIENCY OF JETS WITH LINE SINGULARITIES

HANS BRODERSEN

§0. Introduction

In this paper we will study sufficiency of jets with line singularities. Let

 $z: (\mathbf{R}^{n+1}, 0) \to (\mathbf{R}, 0)$ be an *r*-jet identified with a polynomial of degree *r* with r > 2. Let $\Sigma(z)$ denote *z*'s critical set and assume that $\Sigma(z)$ is a 1-dimensional manifold *L*. After a change in coordinates, we may assume that $L = \mathbf{R} \times \{0\} \subset \mathbf{R} \times \mathbf{R}^n$. We say that *z* is jet with line singularities. Let $\mathcal{E}_{[r]}^L$ be the set of C^r mappings whose critical set contains *L*. Let \mathcal{R}_0^L be the set of homeomorphism germs $h: (\mathbf{R}^{n+1}, 0) \to (\mathbf{R}^{n+1}, 0)$ leaving *L* invariant.

Definition. We say that a jet $z \in J^r(n+1,1)$ is sufficient in $\mathcal{E}_{[r]}^L$ if any two f, g in $\mathcal{E}_{[r]}^L$ with $j^r f(0) = j^r g(0) = z$ are \mathcal{R}_0^L -equivalent

In this paper we will give a necessary and sufficient condition for a jet to be sufficient in $\mathcal{E}_{[r]}^L$.

Before we state our main theorem, we will however put this theorem in relation with now classical results about sufficiency of jets and determinacy of mappings. Let z be a jet in $J^r(n,p)$, $\mathcal{E}_{[r]}(n,p)$ the set of C^r germs $f: (\mathbf{R}^n, 0) \to (\mathbf{R}^p, 0)$, R an equivalence relation on $\mathcal{E}_{[r]}(n,p)$ and E a subset of $\mathcal{E}_{[r]}(n,p)$. We will say that z is R-sufficient in E if any two $f, g \in E$ with $j^r f(0) = j^r g(0) = z$ are Requivalent. The study of sufficiency of jets started with classical papers of Kuiper [5], Kuo [6] and [7] and Bochnak and Lojasiewicz [1]. In these papers sufficiency of r-jets in $\mathcal{E}_{[r]}(n,1) = \mathcal{E}_{[r]}$ and $\mathcal{E}_{[r+1]}$ with respect to topological right-equivalence and sufficiency of r-jets in $\mathcal{E}_{[r+1]}(n,p)$ with respect to \mathcal{V} -equivalence (two mappings f, gare \mathcal{V} -equivalent if $f^{-1}(0)$ and $g^{-1}(0)$ are homeomorphic) are studied and necessary and sufficient conditions for sufficiency are given(see [11] for a detailed survey of these results). I all cases the necessary and sufficient conditon is formulated in terms of a Lojasiewicz inequality which has to be satisfied. This Lojasiewicz inequality implies that every realization of the jet is, in some sense, non-singular outside 0. If we consider an unfolding (f_t, t) of the given jet with all levels of the unfolding $\mathcal{E}_{[r]}$ (or $\mathcal{E}_{[r+1]}$) realizations of this jet, the Lojasiewicz inequality will imply that we can define vectorfields, which will have continuous flows, trivializing the unfolding (in the case of V-sufficiency the flow will trivialize the varities $f_t^{-1}(0)$). On the other hand if the Lojasiewicz inequality does not hold for the jet z, we can find two realizations of z, one which have a singularities outside 0 and one which is non-singular outside 0 and which are not topologically equivalent. What we here mean by singular and non-singular depends on the toplogical equivalence relation we consider. When we are considering topological right-equivalence among $\mathcal{E}_{[r]}$ (or

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}T_{E}X$

 $\mathcal{E}_{[r+1]}$) function-germs, the germs which are non-singular outside 0 are germs which are submersions outside 0, but in the case of \mathcal{V} -equivalence we consider germs f such that their varieties $f^{-1}(0)$ are non-singular outside 0. In [2] the author studies sufficiency of jets in $\mathcal{E}_{[r]}(n,p)$ with respect to left-topological equivalence. Again the necessary and sufficient condition is a Lojasiewicz inequality implying that every $\mathcal{E}_{[r]}$ realization of the given jet is one-to-one and also an immersion outside 0. In a forth-coming paper, [4], we will prove some sufficiency theorems with respect to topological-left-right equivalence for a restricted class of jets from the plane to the plane. Here sufficiency is characterized by Lojasiewicz inequalities giving that realizations of the jets have no worse than fold singularities outside 0 and no critical double points. Looking for necessary and sufficient condition characterizing sufficiency of jets with line-singularities, we are therefore seeking Lojasiewicz inequalities which imply that all $\mathcal{E}_{[r]}^{L}$ -realizations of z have in some sense well-behavied singularities outside 0 relevant for \mathcal{R}_0^L -equivalence. Looking at the cases of sufficiency of jets with repect to topological right-equivalence, Vequivalenc, left-equivalence and left-right-equivalence we have discussed above, we find that the non-singular behaviour or well-behaved singularities outside 0 we require of our realizations of germs are the same as those required of complex analytic-finite determined germs with respect to analytic right-equivalence, contactequivalence, left-equivalence or left-right-equivalence. Same non-singular or nice singular behavior are also required in the case of smooth infinite-determinacy of map-germs (see [11] Theorem 2.1 and 6.1 and [3] for further details). The cases of finite determinacy of complex analytic functions or smooth-infinitely determinacy of smooth functions with line singularities are studied in [8] and [9]. The equivalences in these cases are either complex analytic or smooth right-equivalence leaving the singular set L invariant. The finite or infinite determined germs are here among those which are non-singular outside L and the singularities along L outside 0 are Morse-singularities in the direction transverse to L. In the case of sufficiency, we will therefore need Lojasiewicz inequalities which will give that every $\mathcal{E}_{[r]}^{L}$ -realization of the jet is non-singular outside 0 and have only Morse-singularties along L outside 0 in the direction transverse to L.

We will now formulate the Lojasiewicz inequalities relevant for sufficiency of jets with line singularities. Let us identify a jet $z \in J^r(n+1,1)$ with a polynomial $P: \mathbf{R}^{n+1} \to \mathbf{R}$. Assume $\Sigma(P) = L$. Let $f \in \mathcal{E}_{[r]}^{L}$ with $j^{r} f(0) = z$. Let us denote the

 $P: \mathbf{R}^{k+1} \to \mathbf{R}. \text{ Assume } \Sigma(P) = L. \text{ Let } f \in \mathcal{C}_{[r]} \text{ with } f(0) = 2. \text{ Let us denote the coordinates in } \mathbf{R}^{n+1} = \mathbf{R} \times \mathbf{R}^n$ by $(x, y) = (x, y_1, ..., y_n).$ Since L the becomes the x-axis, and the partial derivatives of f vanish along L all the partial derivatives of the form $\frac{\partial^k f}{\partial x^k}$ and $\frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial f}{\partial y_i}$ must vanish along L when $0 < k \leq r$. Especially, we get $\frac{\partial^k P}{\partial x^k}(0) = \frac{\partial^k f}{\partial x^k}(0) = 0$ and $\frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial P}{\partial y_i}(0) = \frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial f}{\partial y_i}(0) = 0$, and from this it is easy to see that P must have the form $P(x, y) = \sum_{\substack{1 \leq i, j \leq n \\ 1 \leq$ is a polynomial of degree r-2 and $P_{ij} = P_{ji}$. Let $\operatorname{Sym}(n)$ denote the symmetric $n \times n$ matrices, and let $\Lambda(n) \subset \operatorname{Sym}(n)$ denote the subset of singular matrices. Let $D_u^2 P(x) \in \text{Sym}(n)$ denote $n \times n$ matrix $(P_{ij}(x,0))$. (Note that all though the $P_{ij}(x,y)$'s are not uniquely determined the matrix $D_y^2 P(x)$ is determined by P beeing the Hessian matrix of P in the y-direction.) The following theorem gives necessary and sufficient conditions for a jet to be sufficient in $\mathcal{E}_{[r]}^L$.

(1) z is sufficient $\mathcal{E}_{[r]}^L$.

(2) There exists a constant C > 0 and a neighborhood U of 0 such that

$$(i) \ |\frac{\partial P}{\partial x}(x,y)| \|(x,y)\| + (\sum_{i=1}^{n} |\frac{\partial P}{\partial y_{i}}(x,y)|) \|y\| \ge C \|y\|^{2} \|(x,y)\|^{r-2} \ for \ (x,y) \in U$$

and

(ii)
$$dist(D_y^2 P(x), \Lambda(n)) \ge C ||x||^{r-2}$$
 for $x \in U \cap L$.

The rest of the article is organized as follows: In section 1 we will prove the necessity of the inequalities of (2) and in section 2 we will prove that the inequalities are sufficient conditions. In section 3 we will give some examples of sufficient jets with line singularities.

§1. Proof of $(1) \Rightarrow (2)$.

Assume (2) fails. We will construct different representations of z which cannot be \mathcal{R}_0^L -equivalent. First assume that (i) fails. Then there exists a sequence $(x_m, y_m) \to 0$ with $y_m \neq 0$ such that

$$\left|\frac{\partial P}{\partial x}(x_m, y_m)|\|(x_m, y_m)\| + (\sum_{i=1}^n |\frac{\partial P}{\partial y_i}(x_m, y_m)|)\|y_m\| = o(\|y_m\|^2 \|(x, y)\|^{r-2}).$$

We may assume that $||(x_{m+1}, y_{m+1})|| \leq \frac{1}{2} ||(x_m, y_m)||$. We may also assume that $|y_{m1}| \geq |y_{mi}|$ for all m and i. For each m consider the linear function h_{m1} defined by

$$h_{m1}(x,y) = \frac{1}{2y_{m1}} \frac{\partial P}{\partial y_1}(x_m, y_m) - \sum_{i=2}^n \frac{y_{mi}}{2y_{m1}^2} \frac{\partial P}{\partial y_i}(x_m, y_m) + \frac{1}{y_{m1}^2} \frac{\partial P}{\partial x}(x_m, y_m)(x - x_m) + \frac{1}{y_{m1}^2$$

and for i = 2, ..n the constant functions

$$h_{mi}(x,y)=rac{\partial P}{\partial y_i}(x_m,y_m)rac{1}{y_{m1}}.$$

Let $r_m = \frac{\|(x_m, y_m)\|}{4}$ and D_m the disc $D((x_m, y_m), r_m)$. It is easy to see that for all *i* and *m* we have $|h_{mi}(x, y)| = o(\|(x, y)\|^{r-2})$ when $(x, y) \in D_m$, $|\frac{\partial h_{m1}}{\partial x}|(x, y) = o(\|(x, y)\|^{r-3})$ and all other partial derivatives of h_{mi} vanish for each *i* and *m*. A standard construction gives us that for each *m* there exist smooth functions p_m such that $0 \leq p_m \leq 1$, p_m vanishes outside D_m and $p_m \equiv 1$ on the smaller disq $D((x_m, y_m), \frac{1}{2}r_m)$ and such that there exists constants C_k independent of *m* such that $\frac{\partial^{|\alpha|}p_m}{\partial(x, y)^{\alpha}} \leq \frac{C_{|\alpha|}}{r_m^{|\alpha|}}$ for each multiindex α . Let us redefine each h_{mi} by putting $h_{mi} := p_m h_{mi}$. Now the sum $\sum_{m=1}^{\infty} h_{mi}$ defines a smooth map h_i on $\mathbb{R}^{n+1} - \{0\}$ such that $\frac{\partial^{|\alpha|}h_i}{\partial(x, y)^{\alpha}} = o(\|(x, y)\|^{r-2-|\alpha|})$ for each multiindex α . It easy to see that these

inequalities allow us to extend this function to a C^{r-2} function at the origin with all derivatives vanishing at 0, and that the function $h(x, y) = \sum_{i=1}^{n} y_1 y_i h_i$ becomes a C^r function with all derivatives vanishing at 0. A straight forward calculation now shows that f(x, y) = P(x, y) - h(x, y) have critical points along the sequence (x_m, y_m) and also along L. It is an easy exercise to see that we can perturb h further such that we actually can assume that f has Morse singularities along (x_m, y_m) and such that f still has critical points also along the x-axis (this can actually be done by adding a suitable smooth function which is flat at 0).

Let $c_m = f(x_m, y_m)$. Since $\{c_m\}$ is a sequence converging to 0, we may either assume that all the c_m 's are distinct and $\neq 0$ or each of them are equal 0, so we can consider their union as a 0-dimensional manifold. We wish to construct a representative of P, g, such that g resticted to $\mathbf{R}^{n+1} - L$ has the sequence (c_m) as regular values. To this end, consider the map $F(x, y, a) = P(x, y) + \sum_{i=1}^{n} a_i y_i^{r+1}$. Here $(x, y) \in \mathbf{R}^{n+1} - L$ and $a = (a_1, ..., a_n) \in \mathbf{R}^n$. For $(x, y) \in \mathbf{R}^{n+1} - L$ we must have $y_i \neq 0$ for some i. Hence $\frac{\partial F}{\partial a_i}(x, y) = y_i^{r+1} \neq 0$. This shows that F is a submersion and therefore is transverse to the manifold $\cup c_m$. By an application of Sard's Theorem there exsits a reidual set in \mathbf{R}^n such that each map F_a also is transverse to this mainifold on $\mathbf{R}^{n+1} - L$ when a is in this set. So, put $g = F_a$ for such a. Now g is another representative of P so if f and g are \mathcal{R}_0^L -equivalent, the set $g^{-1}(c_m) - L$ and $f^{-1}(c_m) - L$ much be homeomorphic and the germ of f at (x_m, y_m) must be C^0 -right equivalent with the germ of g at some point in $g^{-1}(c_m) - L$. This is however impossible since the first germ is a Morse singularity and the other germ is non-singular.

Assume that (ii) fails. Then there exists a sequence (x_m) such that $dist(D_y^2P(x_m), \Lambda(n)) = o(||x_m||^{r-2})$. We may assume that each x_m is in the same component of $L - \{0\}$. Since P is a polynomial, we must either have $D_y^2P(x) \in \Lambda(n)$ for all x in a neighborhood of 0, or that $D_y^2P(x) \notin \Lambda(n)$ when $x \neq 0$. In the first case we will show that we can find a polynomial representative f of P such 0 is isolated in $(D_y^2f)^{-1}\Lambda(n)$. Again, since P is a polynomial the rank of $D_y^2P(x)$ must be constant for $x \neq 0$ say, k < n. Let $I = \{i_1, ..., i_k\}$ be a subsets of $\{1, ...n\}$ of cardinality k let A be an $n \times n$ symmetric matrix and A(I) be the $k \times k$ submatrix of A we get by removing the lines and columns corresponding to the the index set $\{1, ..., n\} - I$. It is an exercise in linear algebra to see that if A is symmetric of rank k, there exists I such that A(I) is non-singular. Using this and the fact that P is algebraic we may assume that the upperleft $k \times k$ submatrix of $D_y^2P(x)$ is non-singular for $x \neq 0$. Let D(x) denote the corresponding $k \times k$ minor. Let

$$Q(x,y) = x^{r-1} (\sum_{i=k+1}^{n} y_i^2).$$

A straightforward calculation of determinants shows that

$$\det D_u^2(P+Q)(x) = x^{(n-k)(r-1)}D(x).$$

From above it follows that we can find a polynomial representative f of P such that 0 is isolated in $(D_u^2 f)^{-1} \Lambda(n)$. From continuity it is clear that the index of $D_u^2 f(x)$

is constant on each component of $L - \{0\}$. It is an easy exercise in linear algebra to show that if $A \in \Lambda(n)$, then A is infinitely close to two non-singular matrices with different indices. Since we have assumed that (ii) fails, we can therefore find a sequence $(x_m, 0) \in L - \{0\}$ such that $x_m \to 0$, and a sequence $A_m \in \text{Sym}(n)$ such that $||A_m|| = o(||x_n||^{r-2})$ and such that $D_y^2 P(x_m) + A_m$ is non-singular symmetric matrix chosen such that the indices of these matrices are different for m and m+1(so the index is not a constant function of m for m large). Using an argument similar to one we used above, we can extend the map $(x_m, 0) \rightarrow A_m$ to a smooth map $A: \mathbf{R}^{n+1} - \{0\} \to Sym(n)$ such that $\frac{\partial^{|\alpha|}A}{\partial(x,y)^{\alpha}} = o(\|(x,y)\|^{r-2-|\alpha|})$, and we can extend it further to a C^{r-2} map on \mathbf{R}^{n+1} with all derivatives vanishing at 0. Write $A(x,y) = (A_{ij}(x,y))$ and define $h(x,y) = \sum_{i,j} \frac{1}{2} y_i y_j A_{ij}(x,y)$. It is easy to see that h becomes a C^r function with all derivatives vanishing at 0. Put g = P + h. Then $D_y^2 g(x_m) = D_y^2 P(x_m) + A_m$. Assume f and g are \mathcal{R}_0^L -equivalent, then for each m there exists a point z_m in L such that the germ of f at z_m is right-equivalent with the germ of g at x_m and the equivalence will leave L invariant. Since the x_m 's belong to the same component of $L - \{0\}$ and the equivalences of the germs at x_m and z_m come from the same equivalence in \mathcal{R}_0^L , the z_m 's must also all belong to a common component of $L - \{0\}$. So for each m we have a germ of a homeomorphism H_m of form $H_m(x,y) = (h_m(x,y), k_m(x,y))$ with $k_m(x,0) = 0$, $H_m(x_m,0) = (z_m,0)$ and $f(h_m(x,y),k_m(x,y)) = g(x,y)$. Let us distinguish the germs of the coordinate function in L at x_m and z_m by denoting them by x and z respectively. For each x and z let g_x and f_z denote the map germs $y \to g(x, y)$ and $y \to f(z, y)$ respectively. Hence we get deformations $x \to g_x$ and $z \to f_z$ of g_{x_m} and f_{z_m} respectively. Both these deformations consist of germs which are singular at 0, and since $g_{x_m} = g_m$ and $f_{z_m} = f_m$ both are Morse function the deformations are trivial, and can be trivialized by one-parameter families of smooth diffeomorphisms of germs $(\mathbf{R}^n, 0) \to (\mathbf{R}^n, 0)$ and these diffeomorphisms depend smoothly of the parameter. Redefining H_m by composing with these families in a suitable manner, we may suppose that the germs of g(x, y) and f(z, y) at x_m and z_m are independent of x and z respectively, so $f(z, y) = f_m(y)$ and $g(x, y) = g_m(y)$, and we still have $f \circ H_m = g$. We will now show that this is impossible. To this end we will need a lemma.

Lemma. Consider the two non-degenerate quadratic function Q and R on $L \times \mathbb{R}^n$ defined by $Q(x, y_1, ..., y_n) = -y_1^2 - \cdots - y_r^2 + y_{r+1}^2 + \cdots + y_n^2$ and $R(x, y_1, ..., y_n) = -y_1^2 - \cdots - y_l^2 + y_{l+1}^2 + \cdots + y_n^2$ where $0 \le r < l \le n$. Then Q and R are not \mathcal{R}_0^L -equivalent.

Proof. The case n = 1 is obvious. Assume n > 1. If the germs are \mathcal{R}_0^L -equivalent, the set-germs $Q^{-1}(a)$ and $R^{-1}(a)$ must be homeomorphic for any value a. If r = 0, then $Q^{-1}(a) = \emptyset$ and $R^{-1}(a) \neq \emptyset$ for a < 0. So these sets are not homeomorphic. The case l = n is similar. If 0 < r < l < n, it is easy to see that for a < 0, $Q^{-1}(a)$ and $R^{-1}(a)$ is homotopically equivalent with \mathbf{S}^{r-1} and \mathbf{S}^{l-1} respectively. Since these spheres have different homology, $Q^{-1}(a)$ and $R^{-1}(a)$ cannot be homeomorphic. This proves the lemma.

Let us complete the proof of $(1) \Rightarrow (2)$. Since the indices of $g_m(y)$ and $g_{m+1}(y)$ are different and the indices of all $f_m(y)$'s are the same

(because the z_m 's belong to the same component of $L - \{0\}$), we may assume that

the indices of $g(x, y) = g_m(y)$ and $f(z, y) = f_m(y)$ are different. We may therefore apply Morse-Lemma and suppose that f_m and g_m have the form of Q and R in the Lemma above (since they have different indices). It follows directly from the conclusion of this lemma that there exists no map H_m such that $f \circ H_m = g$.

§2. Proof of $(2) \Rightarrow (1)$.

Assume (2). Let $h: (\mathbf{R}^{n+1}, 0) \to (\mathbf{R}, 0)$ be a germ of a C^r mapping with $L \subset \Sigma(h)$ and $j^r h(0) = 0$. It is obviously sufficient to prove that P and P + h are \mathcal{R}_0^L equivalent. Let F(x, y, t) = (P(x, y) + th(x, y), t). Put $f(x, y, t) = f_t(x, y) =$ P(x, y) + th(x, y). Using Morse-Lemma, we find that h can be written in the form $h(x, y) = \sum_{1 \le i,j \le n} y_i y_j h_{ij}(x, y)$ where h_{ij} are C^{r-2} functions with r-2 jet equal 0 at 0. From this it is clear that

$$\frac{\partial h}{\partial x}(x,y)|\|(x,y)\| = o(\|y\|^2\|(x,y)\|^{r-2})$$

and that

$$(\sum_{i=1}^{n} |rac{\partial h}{\partial y_{i}}(x,y)|) \|y\| = o(\|y\|^{2} \|(x,y)\|^{r-2}).$$

From this and the inequality in (i) it follows that

$$|\frac{\partial f_t}{\partial x}(x,y)|\|(x,y)\| + (\sum_{i=1}^n |\frac{\partial f_t}{\partial y_i}(x,y)|)\|y\| \ge (C/2)\|y\|^2\|(x,y)\|^{r-2}$$

for $t \in [0, 1]$ and (x, y) in a perhaps smaller neighbourhood contained in U. Consider the vector field X(x, y, t) on $\mathbf{R}^{n+1} \times \mathbf{R}$ defined by

$$X(x,y,t) = egin{cases} (0,0,1) - rac{(0,0,1) \cdot
abla f}{\|
abla f\|^2}
abla f & ext{when} & y
eq 0 \ (0,0,1) & ext{when} & y = 0 \end{cases}$$

Let us consider $\mathbf{R}^{n+1} \times \mathbf{R}$ as a stratified space with $\{0\} \times \mathbf{R}$, $(L - \{0\}) \times \mathbf{R}$ and $(\mathbf{R}^{n+1} - L) \times \mathbf{R}$ as strata. We wish to see that X(x, y, t) is a rugose stratified vector field in the sense of Verdier (see [10]). We have

$$\begin{split} & |\frac{\partial f_t}{\partial x}(x,y)| \|(x,y)\| + (\sum_{i=1}^n |\frac{\partial f_t}{\partial y_i}(x,y)|)\|(x,y)\| \\ & \geq |\frac{\partial f_t}{\partial x}(x,y)| \|(x,y)\| + (\sum_{i=1}^n |\frac{\partial f_t}{\partial y_i}(x,y)|)\|y\| \\ & \geq (C/2) \|y\|^2 \|(x,y)\|^{r-2}. \end{split}$$

It follows that

$$\|\nabla f(x, y, t)\| \ge (C/2(n+1)) \|y\|^2 \|(x, y)\|^{r-3}.$$

Since also $|h(x, y)| = o(||y||^2 ||(x, y)||^{r-2})$, we get that

$$\|\frac{(0,0,1)\cdot \nabla f}{\|\nabla f\|^2}\nabla f\| = \frac{|h(x,y)|}{\|\nabla f(x,y,t)\|} = o(\|(x,y)\|).$$

This proves that X restricted to the strata $\{0\} \times \mathbf{R}$ and $(\mathbf{R}^{n+1} - L) \times \mathbf{R}$ satisfies Verdier'rugosity condition. That X restricted to the strata $\{0\} \times \mathbf{R}$ and $(L - \{0\}) \times \mathbf{R}$ satisfies Verdier'rugosity condition is obvious. Let us now consider the strata $(L - \{0\}) \times \mathbf{R}$ and $(\mathbf{R}^{n+1} - L) \times \mathbf{R}$. Given $(x_0, 0, t_0) \in (L - \{0\}) \times \mathbf{R}$, we need to prove that there exists a neighbourhood V around $(x_0, 0, t_0)$ and a constant C > 0, such that for every pair (x, 0, t) and (x', y', t') in this neighbourhood we have

$$||X(x,0,t) - X(x',y',t')|| \le C ||(x,0,t) - (x',y',t')||.$$

We will need the following Lemma

Lemma. Let gl(n) be the space of $n \times n$ matrices equipped with the usual Eucledean norm (by identifying gl(n) with \mathbf{R}^{n^2}). Let $A \in Sym(n)$. Then $dist(A, \Lambda(n)) = |\lambda|$ where λ is an eigenvalue of A with minimal absolute value.

Proof. This is left to the reader.

For each (x, y, t) let $D_y^2(f_t)(x, y)$ be the linear operator on \mathbf{R}^n with matrix representation $\left(\frac{\partial^2 f_t}{\partial y_i \partial y_j}(x, y)\right)$. We find that $D_y^2(f_0)(x, 0) = D_y^2 P(x)$. From (ii) in the Theorem and the lemma above it follows that $\|D_y^2 P(x)v\| \ge C\|x\|^{r-2}\|v\|$ for any vector $v \in \mathbf{R}^n$. Since h is of the form $\sum_{1\le i,j\le n} y_i y_j h_{ij}(x, y)$, where the r-2 jet of each h_{ij} at 0 is 0, it is easy to see that we must have $\|(D_y^2 P(x) - D_y^2(f_t)(x, 0))v\| \le (C/2)\|x\|^{r-2}\|v\|$ for all $t \in [0,1]$ in a neighbourhood of 0 and any vector $v \in \mathbf{R}^n$. From continuity it follows that given $(x_0, 0, t_0)$ we can find a neighborhood V around $(x_0, 0, t_0)$ such that $\|D_y^2(f_t)(x, 0) - D_y^2(f_t)(x, y)\| < (C/4)\|x\|^{r-2}$ for all (x, y, t) in this neighbourhood where this time, in abuse of notation, $\|\ldots\|$ denotes the operator norm. Let $\nabla_y f_t(x, y) = (\frac{\partial f_t}{\partial y_1}(x, y), \ldots, \frac{\partial f_t}{\partial y_n}(x, y))$. We have $\nabla_y f_t(x, y) = \int_0^1 D_y^2(f_t)(x, ty)y dt$. From above, we get that for $(x, y, t) \in V$, we have

$$\begin{split} \|\nabla f(x,y,t)\| &\geq \|\nabla_y f_t(x,y)\| = \|\int_0^1 D_y^2(f_t)(x,ty)ydt\| \geq \|D_y^2 P(x)y\| - \\ \int_0^1 \|(D_y^2 P(x) - D_y^2(f_t)(x,0))y\|dt - \int_0^1 \|(D_y^2(f_t)(x,ty) - D_y^2(f_t)(x,0))y\|dt \geq \\ C\|x\|^{r-2}\|y\| - (C/2)\|x\|^{r-2}\|y\| - (C/4)\|x\|^{r-2}\|y\| = (C/4)\|x\|^{r-2}\|y\|. \end{split}$$

Since $|h(x,y)| = o(||y||^2 ||(x,y)||^{r-2})$, we get that

$$\|\frac{(0,0,1)\cdot\nabla f}{\|\nabla f\|^2}\nabla f\| = \frac{|h(x,y)|}{\|\nabla f(x,y,t)\|} = o(\|y\|).$$

Verdier's rugosity condition for the strata $(L-\{0\}) \times \mathbf{R}$ and $(\mathbf{R}^{n+1}-L) \times \mathbf{R}$ follows directly from this. So since X is rugose, we can integrate this vectorfield and obtain a continous flow. Since the vectorfield is tangent to every level-surface of f with t-component of form 1 + o(||(x, y)||) and other components equal o(||(x, y)||) the flow will obviously trivialize the family f_t and it will also fix the L-axis, proving that $f_0 = P$ and $f_1 = P + h$ are \mathcal{R}_0^L -equivalent.

§3. Examples.

We will now give examples of sufficient jets with line singularities. These examples are all given in [9], where it is shown that regarded as smooth functions they are infinitely determined among functions with line singularities. We will show that they are sufficient in $\mathcal{E}_{[r]}^{L}$ regarded as r-jets.

1) $P(x,y) = xy^2$. We have $\left|\frac{\partial P}{\partial x}\right| ||(x,y)|| = y^2 ||(x,y)||$, so (i) of (2) holds with r = 3. Furthermore $D_y^2 P(x) = (x)$ hence $dist(D_y^2 P(x), \Lambda(1)) = |x|$ and (ii) of (2) also holds with r = 3. So P is sufficient.

2) $P(x,y) = x^2y^2 + y^r$, $r \ge 3$. Let us first consider the case r = 3. Assume $|x| \ge |y|$. Then $|x| \ge \frac{1}{\sqrt{2}} ||(x,y)||$, and we get $|\frac{\partial P}{\partial x}|||(x,y)|| = 2|x|y^2||(x,y)|| \ge \frac{2}{\sqrt{2}}y^2||(x,y)||^2$, and (i) holds since P is a 4-jet. Assume $|y| \ge |x|$. Then $|y| \ge \frac{1}{\sqrt{2}} ||(x,y)||$. We have $|\frac{\partial P}{\partial y}| = |2x^2y + 3y^2| \ge \frac{3}{2}y^2$, and we get $|\frac{\partial P}{\partial y}||y| \ge \frac{3}{2\sqrt{2}}y^2||(x,y)||$, so (i) holds also in this case. Let r > 3. Then $\frac{\partial P}{\partial y} = 2x^2y + ry^{r-1}$. Assume that $2x^2 \le \frac{r}{2}|y|^{r-2}$. Then $|x| \le |y|$, so $|y| \ge \frac{1}{\sqrt{2}} ||(x,y)||$. Futhermore $|\frac{\partial P}{\partial y}| \ge \frac{r}{2}|y|^{r-1}$, and therefore $|\frac{\partial P}{\partial y}||y| \ge \frac{r}{2}|y|^r \ge Cy^2||(x,y)||^{r-2}$ for a suitable constant C. So (i) holds since Pis an r-jet. Assume that $2x^2 \ge \frac{r}{2}|y|^{r-2}$. We have $|\frac{\partial P}{\partial x}| = 2|x|y^2$. If $|x| \ge |y|$, we will then get $|\frac{\partial P}{\partial x}|||(x,y)|| \ge \frac{2}{\sqrt{2}}y^2||(x,y)||^{\frac{r-2}{2}}$. So $|\frac{\partial P}{\partial x}|||(x,y)|| \ge 2Cy^2||(x,y)||^{\frac{r}{2}}$. Now since $r \ge 4$, $\frac{r}{2} \le r - 2$ and (i) holds. For all r we have $D_y^2 P(x) = (x^2)$ and $dist(D_y^2 P(x), \Lambda(1)) = x^2$, and (ii) also holds. It follows that P is sufficient for all $r \ge 3$.

3) $P(x,y) = (y_1^2 + y_2^2)(x^2 + y_1^2 + y_2^2)$. We have

$$\begin{split} |\frac{\partial P}{\partial x}(x,y)|\|(x,y)\| + (\sum_{i=1}^{n} |\frac{\partial P}{\partial y_{i}}(x,y)|)\|y\| = \\ 2|x|\|y\|^{2}\|(x,y)\| + 2(|y_{1}| + |y_{2}|)(x^{2} + 2\|y\|^{2})\|y\| \geq 2\|y\|^{2}\|(x,y)\|^{2}, \end{split}$$

so (i) holds since P is a 4-jet. Furthermore we have $D_y^2 P(x) = \begin{bmatrix} x^2 & 0 \\ 0 & x^2 \end{bmatrix}$, and it is easy to see that $dist(D_y^2 P(x), \Lambda(1)) = x^2$, so (ii) holds and P is sufficient.

References

 Bochnak, J., Łojasiewicz, S., A converse of the Kuiper-Kuo Theorem LNM 192, 254-261, Springer 1971

[2] Brodersen, H., Sufficiency of jets with respect to *L*-equivalence.Real and algebraic singularities. Pitman Research Notes in Mathematics Series 381, Longman 1998, 78-83.

8

[3] Brodersen, H., On finite and infinite $C^k - \mathcal{A}$ determinacyProc. London Math. Soc. 75 (1997),369-435.

[4] Brodersen, H., Skutlaberg, O., Sufficiency of a class of jets from the plane to the plane. In preparation.

[5] Kuiper, N. H, C¹-equivalence of functions near isolated critical points Proc.
 Symp. in Infinite Dimensional Topology (Baton Rouge 1967), Annals of Math.
 Studies 1967, (Princeton, 1968) 199-218

[6] Kuo, T.C., On C⁰-sufficiency of jets of potential functions, Topology 8 (1969), 167-171

[7] Kuo, T.C., Characterizations of V-sufficiency of jets, Topology 11 (1972), 115-131

[8] Siersma, D. Isolated line singularities , Proc. Symp. Pure Math. 40 (1983), 485-496

 [9] Sun, B., Wilson L.C. Isolated Determinacy of smooth germs with real isolated line singularities, Proc. of the American Math. Soc. 129 (2001), 2789-2797 Proc.
 Symp. Pure Math. 40 (1983), 485-496

[10] Verdier, J. L. Stratifications de Whitney et Thorme de Bertini-Sard, Inventiones Math. 36 (1976), 295-312 medskipBull. London. Math. Soc. 13. (1981), 481-593

[11] Wall, C. T. C. Finite determinacy of smooth map-germs, Bull. London. Math. Soc. 13. (1981), 481-593

Departement of Matematics University of Oslo P. O. Box 1053 Blindern N-0316 Oslo Norway E-mail adress: broderse@math.uio.no