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SUFFICIENCY OF JETS WITH LINE SINGULARITIES

HANS BRODERSEN

§0. Introduction

In this paper we will study sufficiency of jets with line singularities. Let
z : (R', 0) - (R, 0) he an r-jet identified with a polynomial of degree r with
r > 2. Let E(z) denote z's critical set and assume that y(2) is a 1-dimensional
manifold L. After a change in coordinates, we may assume that L = R x {0} C
R x RTh. We say that z is jet with line singularities. Let

	

he the set of CT
mappings whose critical set contains L. Let 7Z be the set of homeomorphism
germs h : (R,0) - (R,0) leaving L invariant.

Definition. We say that a jet z E JT(n + 1, 1) is sufficient in E1 if any two f, g
in

	

with jTf(O) = jTy(0) = z are R.-equivalent
In this paper we will give a necessary and sufficient condition for a jet to be

sufficient in

Before we state our main theorem, we will however put this theorem in relation
with now classical results about sufficiency of jets and determinacy of mappings.
Let z be a jet in JT(n,p), E[](n,p) the set of CT germs f : (RTh,0) - (RP, 0),
B an equivalence relation on E[y] (n, p) and E a subset of [r] (n, p). We will say
that z is B-sufficient in E if any two f, g E E with jTf(0) = jrg(0) = z are B-
equivalent. The study of sufficiency of jets started with classical papers of Kuiper
[5], Kuo [61 and [7] and Bochuak and Lojasiewicz [1]. In these papers sufficiency of
r-jets in E[y] (is, 1) =	 and [r-f-l] with respect to topological right-equivalence and
sufficiency of r-jets in [r+ (is, p) with respect to V-equivalence (two mappings f, g
are V-equivalent if f-1(0) and g1 (0) are homeomorphic) are studied and necessary
and sufficient conditions for sufficiency are giveu(see [11] for a detailed survey of
these results). I all cases the necessary and sufficient conditou is formulated in terms
of a Lojasiewicz inequality which has to be satisfied. This Lojasiewicz inequality
implies that every realization of the jet is, in some sense, non-singular outside 0.
If we consider an unfolding (ft, t) of the given jet with all levels of the unfolding
t'[r] (or E[+i]) realizations of this jet, the Lojasiewicz inequality will imply that we
can define vectorfields, which will have coutiuous flows, trivializing the unfolding
(in the case of V-sufficiency the flow will trivialize the varities ft '(0)). On the
other hand if the Lojasiewicz inequality does not hold for the jet z, we can find
two realizations of z, one which have a singularities outside 0 and one which is
non-singular outside 0 and which are not topologically equivalent. What we here
mean by singular and non-singular depends on the toplogical equivalence relation
we consider. When we are considering topological right-equivalence among [r] (or
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2	 HANS RBODEHSEN

t[+l]) function-germs, the germs which are non-singular outside 0 are germs which
are submersions outside 0, but in the case of V-equivalence we consider germs f
such that their varieties f' (0) are non-singular outside 0. In [2] the author studies
sufficiency of jets in [r] (n, p) with respect to left-topological equivalence. Again
the necessary and sufficient condition is a Lojasiewicz inequality implying that
every [r] realization of the given jet is one-to-one and also an immersion outside
0. In a forth-coming paper, [ 4], we will prove some sufficiency theorems with
respect to topological-left-right equivalence for a restricted class of jets from the
plane to the plane Here sufficiency is characterized by Lojasiewicz inequalities
giving that realizations of the jets have no worse than fold singularities outside
o and no critical double points. Looking for necessary and sufficient condition
characterizing sufficiency of jets with line-singularities, we are therefore seeking
Lojasiewicz inequalities which imply that all E1-realizations of z have in some
sense well-behavied singularities outside 0 relevant for Re-equivalence. Looking
at the cases of sufficiency of jets with repect to topological right-equivalence, V-
equivalenc, left-equivalence and left-right-equivalence we have discussed above, we
find that the non-singular behaviour or well-behaved singularities outside 0 we
require of our realizations of germs are the same as those required of complex
analytic-finite determined germs with respect to analytic right-equivalence, contact-
equivalence, left-equivalence or left-right-equivalence. Same non-singular or nice
singular behavior are also required in the case of smooth infinite-determinacy of
map-germs (see [11] Theorem 2.1 and 6.1 and [3] for further details). The cases of
finite determinacy of complex analytic functions or smooth-infinitely determinacy of
smooth functions with line singularities are studied in [81 and [9]. The equivalences
in these cases are either complex analytic or smooth right-equivalence leaving the
singular set L invariant. The finite or infinite determined germs are here among
those which are non-singular outside L and the singularities along L outside 0 are
Morse-singularities in the direction transverse to L . In the case of sufficiency, we
will therefore need Lojasiewicz inequalities which will give that every E1-realization
of the jet is non-singular outside 0 and have only Morse-singularties along L outside
o in the direction transverse to L.
We will now formulate the Lojasiewicz inequalities relevant for sufficiency of jets
with line singularities. Let us identify a jet z E Jr(n + 1, 1) with a polynomial
P : - R. Assume E(P) = L. Let f E with jTf(O) = z. Let us denote the
coordinates in W = 11. x R by (x, ,) = (x, , ..., y). Since L the becomes the
x-axis, and the partial derivatives of f vanish along L all the partial derivatives of

a'r	 a(k-) Ofthe form		and		mustvanish along L when 0 < ic <r. Especially, we
ax

		

3xi3y,
kp	 ('')	 p	 (k1)

	

j
get ---(0) = -.(0) = U and k1 -(0) = 1k1 -(0) = 0, and from this

ax	 ax	 ax	 uy,	 ax

	

uy,
it is easy to see that P must have the form P(x, y) =

	

yy1Pj(x, y) where Pij
1<i,j <ii

is a polynomial of degree r - 2 and P&j = P5. Let Sym(n) denote the symmetric
n x m matrices, and let A(n) C Sym(n) denote the subset of singular matrices.
Let DP(x) E Sym(n) denote n x n matrix (F(x,0)). (Note that allthough the

P(x, y)'s are not uniquely determined the matrix DP(x) is determined by P
beeing the Hessian matrix of P in the y-direction.) The following theorem gives
necessary and sufficient conditions for a jet to be sufficient in
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Theorem. The following two conditions are. equivalent

(1) z is sufficient E.

(2) There exists a constant C > 0 and a neighborhood U of 0 such that
UP	 UP		r-2

(i)	 -(x, y) (x, )M + (>		(x, )MM ˆ CMyM2M (x, y)		for (x, y) E U,(IX

	

1=1 oy
and

(ii) dist(DP(x), A(n)) ˆ CMxMT2 for x E U fl L.

The rest of the article is organized as folows: In section 1 we will prove the
necessity of the inequalities of (2) and in section 2 we will prove that the inequalities
are sufficient conditions. In section 3 we will give some examples of sufficient jets
with line singularities.





§1. Proof of (1)=J(2).

Assume (2) fails. We will construct different representations of z which cannot be
R.-equivalent. First assume that (i) fails. Then there exists a sequence

	

Ym)
0 with Ym ˆ 0 such that		

n

I 	 Tx-	 i=1
(xm, ym)UKxm, ym)M + (	 r(xm, ym)D MYmM = oOymM2 ftx, )MT2)

We may assume that (xm+i,ym+i)M < ftxm,ym). We may also assume that
Yml ˆ Ymi for all in and i. For each in consider the linear function hmi defined
by




	1UP		vYmi3T		1 UP
hmi(x.y) =	
	Xm,Ym)_L		xn,ym)+y(Iem,ym)(x-xm),	'dJml 021	 i=2 2Yml CJj		Ymi ox

and for i = 2-n.n the constant functions			

UP		1
h,1(x,y) =			 (Xm,yn,)	WY-

			

Yml

HUm ym)HLet rm =	 and Dm the disc D((xm,ym),rm). It is easy to see that for
r-2

	

al",
all and in we have hmj(x,y) = o(M(x,y)M	 ) when (x, y) e Dm,	

Ox

	

=

oO(x, y)I') and all other partial derivatives of mi vanish for each i and in. A
standard construction gives us that for each in there exist smooth functions p,,.,
such that 0 < Pm < 1, p vanishes outside D, and Pm 1 on the smaller disq
D((xm, ym), 4rm) and such that there exists constants Ck independent of in such

U PM

	

C
that	 for each multundex a. Let us redefine each hmj by putting

U(x,y)

	

Tm

hmi := pmmi Now the sum	 h defines a smooth map h on RTh+T - {0} such
m=i

UHh
that

U(x,y)
= o((x,y)T 2-H) for each multiindex a. It easy to see that these
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inequalities allow us to extend this function to a C2 function at the origin with

all derivatives vanishing at 0, and that the function h(x, y) = y1yh becomes

a CT function with all derivatives vanishing at 0. A straight forward calculation
now shows that f(x, y) = P(x, y) - h(x, y) have critical points along the sequence
(xm,, Ym) and also along L. It is an easy exercise to see that we can perturb h further
such that we actually can assume that f has Morse singularities along (x,, y") and
such that f still has critical points also along the x-axis (this can actually be done
by adding a suitable smooth function which is flat at 0).
Let cm = f(xm, Pm). Since {cm} is a sequence converging to 0, we may either
assume that all the cm's are distinct and 0 or each of them are equal 0, so
we can consider their union as a 0-dimensional manifold. We wish to construct a
representative of P, g, such that g resticted to - L has the sequence (cm)
as regular values. To this end, consider the map F(x, y, a) = P(x, y) + ajy1.

i= 1
Here (x, y) e Rn+l -Land a = (a,,..., an) e Ittm. For (x, y) E ftfl -L we

must have yj 74 0 for some i. Hence	 (XI Y) = y' 74 0. This shows that F is
Oaj

a submersion and therefore is transverse to the manifold Ucm. By an application
of Sard's Theorem there exsits a reidual set in R such that each map Fa also is
transverse to this mainifold on - L when a is in this set. So, put p =
for such a. Now p is another representative of P SO if f and g are R -equivalent,
the set g1(cm) - L and f'(cm) - L much be homeomorphic and the germ of
f at (xm, pm) must be C°-right equivalent with the germ of p at some point in
g' (cm) - L. This is however impossible since the first germ is a Morse singularity
and the other germ is non-singular.

Assume that (ii) fails. Then there exists a sequence (xm) such that
dist(DP(xm),A(n)) = oaxmMTl). We may assume that each im is in the same
component of L-{0}. Since P is a polynomial, we must either have DP(x) E A(n)
for all x in a neighborhood of 0, or that DP(x) A(n) when x 0. In the first
case we will show that we can find a polynomial representative f of P such 0 is
isolated in (Df)'A(n). Again, since P is a polynomial the rank of DP(x) must
be constant for x 14 0 say, Ic < it. Let I = {i1, .., ik} he a subsets of {1, ..n} of
cardinality lv let A he an ii x ii symmetric matrix and A(I) he the lv x lv submatrix
of A we get by removing the lines and columns corresponding to the the index set
{1, .., n} - I. It is an exercise in linear algebra to see that if A is symmetric of
rank lv, there exists I such that A(I) is non-singular. Using this and the fact that
P is algebraic we may assume that the upperleft lv x lv submatrix of DP(x) is
non-singular for x 14 0. Let D(x) denote the corresponding lv x lv minor. Let

Q(x,y)=xT( E
i=k+1

A straightforward calculation of determinants shows that

detD(P + Q)(x) =

From above it follows that we can find a polynomial representative f of P such that
0 is isolated in (Df)'A(n). From continuity it is clear that the index of Df(x)
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is constant on each component of L - {O}. It is an easy exercise in linear algebra
to show that if A e A(n), then A is inflnetcly close to two non-singular matrices
with different indices. Since we have assumed that (ii) fails, we can therefore find a
sequence (xm, 0) E L - {0} such that Xm 0, and a sequence Am E Sym(n) such
that AmM = oOxnMT_2) and such that DP(xm) +Am is non-singular symmetric
matrix chosen such that the indices of these matrices are different for ui and in + 1
(so the index is not a constant function of in for in large). Using an argument
similar to one we used above, we can extend the map (Xm, 0) -+ Am to a smooth

map A : R.n+1 -
{0} - Sym(n) such that	 = o( (1,)T2H+), and we

D(x,y)
can extend it further to a C2 map on R' with all derivatives vanishing at 0.
Write A(x,y) = (A1(x,y)) and define h(x,y) =

	

yy1A(x,y). It is easy to see

that h becomes a CT function with all derivatives vanishing at 0. Put g = P + Ii.
Then Dg(xrn) = DP(xni)+Am. Assume f and g are Ri-equivalent, then for each
in there exists a point Zm in L such that the germ of f at Zm is right-equivalent
with the germ of g at rem and the equivalence will leave L invariant. Since the
x, 's belong to the same component of L - {0} and the equivalences of the germs
at rem and z, come from the same equivalence in R.6, the Z,,,'5 must also all
belong to a common component of L - {0}. So for each in we have a germ of a
homeomorphism Hm of form Hm(x,y) = (hm(x,yfhrn(x,y)) with hm(x,0) = 0,
Htn(xm,O) = (z,,,, 0) and f(h(x,y),h(x,y)) = g(x,y). Let us distinguish the
germs of the coordinate function in L at uim and Zm by denoting them by x and z
respectively. For each re and z let lix and f denote the map germs y - g(x, y) and
y - f (z, y) respectively. Hence we get deformations re - lix and z - f ofg and
.tZm respectively. Both these deformations consist of germs which are singular at 0,
and since YXm = Ym and fzm = fm both are Morse function the deformations are
trivial, and can be trivialized by one-parameter families of smooth diffeomorphisms
of germs (RTh, 0) - (Rn, 0) and these diffeomorphisms depend smoothly of the
parameter. Redefining H2 by composing with these families in a suitable manner,
we may suppose that the germs of g(x, y) and f(z, y) at utm and Zm are independent
of re and z respectively, so f(z,y) = f, (y) and g(x,y) = g(y), and we still have
f 0 TIm = g. We will now show that this is impossible. To this end we will need a
lemma.

Lemma. Consider the two non-degenerate quadratic function Q and R on Lx R'
defined by Q(x,y1,...,y) = -y - -y +y1 + +y and R(x,y1,...,y) =
-y 2	 2	 2

-...-y+y1+...+y2whereO<r<l<n Then QandRarenot
R'-equivalent.
Proof. The case n = 1 is obvious. Assume n > 1. If the germs are Re-equivalent,
the set-germs Q'(a) and R'(a) must be homeomorphic for any value a. If r = 0,
then Q'(a) = 0 and R'(a) 0 for a < 0. So these sets are not homeomor-
phic. The case 1 = ii is similar. If 0 < r < I < n, it is easy to see that for
a <0, Q'(a) and R'(a) is homotopically equivalent with S'1 and S1' respec-
tively. Since these spheres have different homology, Q'(a) and TC'(a) cannot be
homeomorphic. This proves the lemma.

Let us complete the proof of (1)(2). Since the indices of g(y) and g,+,(y) are
different and the indices of all fm(y)'s are the same
(because the Z,'5 belong to the same component of L - {0}), we may assume that
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the indices of g(x, y) g,(y) and f(z, y) = f(y) are different.We may therefore
apply Morse-Lemma and suppose that fm and g have the form of Q and R in
the Lemma above (since they have different indices). It follows directly from the
conclusion of this lemma that there exists no map Hm such that f 0 Hm g.

§2. Proof of (2)= (1).

Assume (2). Let h: (R',0) -f (R, 0) be a germ of a cr mapping with L C (h)
and jTh(0) = 0. It is obviously sufficient to prove that P and P+ h are
equivalent. Let F(x,y,t) = (P(x,y) + th(x,y),t). Put f(x,y,t) = (x, Y) =

P(x,y) +th(x,y). Using Morse-Lemma, we find that h can be written in the form
h(x, y) =	 yy3h3(x,y) where hij are C2 functions with r - 2 jet equal 0

1ˆi,jˆTh
at 0. From this it is clear that

(x, y) = o(I2 (x Y)Mr2)

arid that

	y)y =o( yM2M(x, r2)
ayi

From this and the inequality in (i) it follows that

Of,
(x, y) (x, )M + (	 I Of, (x, )DMM > (C/2)2 (	

r2

i=1Tx-	 ay

for t e [0, 1] and (x, y) in a perhaps smaller neighbourhood contained in U.

Consider the vector field X(x, y, t) on RTh+l x R defined by

{(o,o,1)-

(001).V!Vf when y14 O
X(x,y,t)=

	

MV!
(0,0, 1) when ,q 0

Let us consider R' x R as a stratified space with {0} x R, (L - {0}) x Rand
(R'- L) x R as strata. We wish to see that X(x, y, t) is a rugose stratified vector
field in the sense of Verdier (see [10 ]). We have

3faft
(X1	 (X1 Y) 11 +

	

-(x,y)DM(x,y)

> I Oft (x,y)(x,y)M + (I Oft (x,y))MyM- TIT i=1 Oyi

> (C/2)
2 M (x, )

r2

It follows that
	Vf(x, y, t)M ˆ (C/2(n + 1))IyI2M(x, y)r3
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Since also h(x,y) = o(MyM2M(x,y)MT2), we get that

11 (O,O,1)Vf
VfI 2 VA =

Vf(x, y, t)
= o( (x, y) ).

This proves that X restricted to the strata {O} x ft and (ftTh - L) x ft satisfies
Verdier'rugosity condition. That X restricted to the strata {0} x ft and (L -

{O}) x ft satisfies Verdier'rugosity condition is obvious. Let us now consider the
strata (L - {0}) x ft and (ftThl - L) x ft. Given (no, 0, to) e (L - {0}) x ft, we
need to prove that there exists a neighbourhood V around (no, 0, to) and a constant
C> 0, such that for every pair (x, 0, t) and (x', y', t') in this neighbourhood we have

X(x, 0, t) - X(x', y', t') 11 <C (x, 0, t) - (x', y', t') 11.
We will need the following Lemma

Lemma. Let gl(n) be the space of n xx matrices equipped with the usual Endedcan
norm (by identifying gl(n) with ftfl2). Let A e Sym(n). Then dist(A, A(n)) = JAI
where A is an esgenvalue ofA with minimal absolute value.

Proof. This is left to the reader.

For each (x, y, t) let D2 (ft) y) be the linear operator on fttm with matrix repre-

sentation (__0
ft

(X, Y) . We find that D(fo)(x,0) = DP(x). From (ii) in the
3Pi3Pj

	

I
Theorem and the lemma above it follows that DP(x)VII ˆ CxT_2IvI for any
vector v E fttm. Since h is of the form

	

yyh(x,y), where the r - 2 jet of
'ˆi,jˆn

each h1 at 0 is 0, it is easy to see that we must have ftDP(x) -D(ft)(x, 0))vM ˆ
(C/2)r2MvM for all t e [0,1] in a neighbourhood of 0 and any vector v e fttm.
From continuity it follows that given (no, 0, to) we can find a neighborhood V
around (no, 0, t0) such that y') (X, 0) - D (ft)(x, y) < (C/4)Ix2 for all

(x, y, t) in this neighbourhood where this time, in abuse of notation, ... de-

notes the operator norm. Let \7yft(x,y) = (.-Oft (x, y), ...,	 (X10. We have
uy

	

uy

Vyft(x,y) = JD(ft)(x,ty)ydt. From above, we get that for (x,y,t) e V, we
have

!V2f(n, y) M = ft11	 D(ft)(x, ty)ydt ˆ DP(x)y -

(DP(n) -D (f)(x, 0))yMdt _f' ftD(ft)(n, ty) -D (f)(x,0))ydt ˆ

CMxMT2 Ilyll - (C/2)MxM2 Ilyll - (C/4)MxM2MyM = (C/4)MxM2MyM.
Since h(x,y) = (

	

we get that

(OOl)"Vfv

	

h(n,y)
VfM2	 fI	 Vf(x, y, t)

	

o(y).

Verdier's rugosity condition for the strata (L-{0}) x ft and (ftm+' -L) x ft follows
directly from this. So since X is rugose, we can integrate this vectorfield and obtain
a continous flow. Since the vectorfield is tangent to every level-surface of f with
t-component of form 1 + o((n,y)) and other components equal o((x,y)) the
flow will obviously trivialize the family ft and it will also fix the L-axis, proving
that fo = P and L = P+ h are 7-equivalent.
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§3. Examples.

We will now give examples of sufficient jets with line singularities. These examples
are all given in [9 ], where it is shown that regarded as smooth functions they are
infinitely determined among functions with line singularities. We will show that
they are sufficient in E regarded as r-jets.

1) P(x,y) = xy2. We have	 HKx,	 = y2l(x,l, so (i) of (2) holds with

r = 3. Furthermore DP(x) = (x) hence dist(DP(x),A(1)) = x and (ii) of (2)
also holds with r = 3. So P is sufficient.

2) P(x,y) = x22+yr, r ˆ 3. Let us first consider the case r = 3. Assume jx ˆ .
OP

Then x ˆ j(x,y)M, and we get -UKx,y)I = 2x 2M(x,y]I ˆ 727
and (i) holds since P is a 4-jet. Assume y> x. Then y >	 (x,y). We have

= 2xy + 3y2 >	 and we get IHY >		y2M(x,y)M, so (i) holds also

in this case. Let r > 3. Then			 = 2x2y + ry'. Assume that 2x2 <

Then x < y, so y >	 M(x,p)M. Ftitbermore	 >	 p('', and thereforev/2	 2

I OPIIYI >	 r > C11111()r2 for a suitable constant C. So (i) holds since P

is an r-jet. Assume that 2x2>			 We have 15-1
= 2xIy2. If x > y, we

will then get		(x,y)M ˆ y(x,y)M2,722	
and (i) holds since P is an r 4-jet.

If	 ˆ H, x >

	

N/,
lyl

-2	
2		2> C(x,p). So lap					HVx,y)M > 2Cp2M(x,y)11 .

Now since r > 4, < r - 2 and (i) holds. For all r we have DP(x) = (x2) and

dist(DP(x),A(1)) = x2, and (ii) also holds. It follows that P is sufficient for all
r>3.

3) P(x,y) = (? +y)(x2 +y +y). We have

OP
-(x,y)(x,y)M +

	

-I
OP

(x,y)DMyM =ax

	

ayi
2x!	 2

(x y) + 2(Li + 112 )(x2 +2 y2)		 ˆ 2y11
2 11(x,) 11

2,

so (i) holds since P is a 4-jet. Ftirtermore we have DP(x) =
[2 2]

and it is

easy to see that dist(DP(x),A(1)) = x2, so (ii) holds and P is sufficient.
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