# Advanced School and Workshop on Singularities in Geometry and Topology 

(15 August - 3 September 2005)

## Sufficiency of jets with line singularities

Hans Brodersen
University of Oslo
Institute of Mathematics
Oslo, Norway

# SUFFICIENCY OF JETS WITH LINE SINGULARITIES 

Hans Brodersen

## §0. Introduction

In this paper we will study sufficiency of jets with line singularities. Let $z:\left(\mathbf{R}^{n+1}, 0\right) \rightarrow(\mathbf{R}, 0)$ be an $r$-jet identified with a polynomial of degree $r$ with $r>2$. Let $\Sigma(z)$ denote $z$ 's critical set and assume that $\Sigma(z)$ is a 1-dimensional manifold $L$. After a change in coordinates, we may assume that $L=\mathbf{R} \times\{0\} \subset$ $\mathbf{R} \times \mathbf{R}^{n}$. We say that $z$ is jet with line singularities. Let $\mathcal{E}_{[r]}^{L}$ be the set of $C^{r}$ mappings whose critical set contains $L$. Let $\mathcal{R}_{0}^{L}$ be the set of homeomorphism germs $h:\left(\mathbf{R}^{n+1}, 0\right) \rightarrow\left(\mathbf{R}^{n+1}, 0\right)$ leaving $L$ invariant.
Definition. We say that a jet $z \in J^{r}(n+1,1)$ is sufficient in $\mathcal{E}_{[r]}^{L}$ if any two $f, g$ in $\mathcal{E}_{[r]}^{L}$ with $j^{r} f(0)=j^{r} g(0)=z$ are $\mathcal{R}_{0}^{L}$-equivalent

In this paper we will give a necessary and sufficient condition for a jet to be sufficient in $\mathcal{E}_{[r]}^{L}$.

Before we state our main theorem, we will however put this theorem in relation with now classical results about sufficiency of jets and determinacy of mappings. Let $z$ be a jet in $J^{r}(n, p), \mathcal{E}_{[r]}(n, p)$ the set of $C^{r}$ germs $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, $R$ an equivalence relation on $\mathcal{E}_{[r]}(n, p)$ and $E$ a subset of $\mathcal{E}_{[r]}(n, p)$. We will say that $z$ is $R$-sufficient in $E$ if any two $f, g \in E$ with $j^{r} f(0)=j^{r} g(0)=z$ are $R$ equivalent. The study of sufficiency of jets started with classical papers of Kuiper [5], Kuo [6] and [7] and Bochnak and Lojasiewicz [1]. In these papers sufficiency of $r$-jets in $\mathcal{E}_{[r]}(n, 1)=\mathcal{E}_{[r]}$ and $\mathcal{E}_{[r+1]}$ with respect to topological right-equivalence and sufficiency of $r$-jets in $\mathcal{E}_{[r+1]}(n, p)$ with respect to $\mathcal{V}$-equivalence (two mappings $f, g$ are $\mathcal{V}$-equivalent if $f^{-1}(0)$ and $g^{-1}(0)$ are homeomorphic) are studied and necessary and sufficient conditions for sufficiency are given(see [11] for a detailed survey of these results). I all cases the necessary and sufficient conditon is formulated in terms of a Łojasiewicz inequality which has to be satisfied. This Eojasiewicz inequality implies that every realization of the jet is, in some sense, non-singular outside 0 . If we consider an unfolding ( $f_{t}, t$ ) of the given jet with all levels of the unfolding $\mathcal{E}_{[r]}\left(\right.$ or $\left.\mathcal{E}_{[r+1]}\right)$ realizations of this jet, the Lojasiewicz inequality will imply that we can define vectorfields, which will have continous flows, trivializing the unfolding (in the case of $\mathcal{V}$-sufficiency the flow will trivialize the varities $f_{t}^{-1}(0)$ ). On the other hand if the Lojasiewicz inequality does not hold for the jet $z$, we can find two realizations of $z$, one which have a singularities outside 0 and one which is non-singular outside 0 and which are not topologically equivalent. What we here mean by singular and non-singular depends on the toplogical equivalence relation we consider. When we are considering topological right-equivalence among $\mathcal{E}_{[r]}$ (or
$\mathcal{E}_{[r+1]}$ ) function-germs, the germs which are non-singular outside 0 are germs which are submersions outside 0 , but in the case of $\mathcal{V}$-equivalence we consider germs $f$ such that their varieties $f^{-1}(0)$ are non-singular outside 0 . In [2] the author studies sufficiency of jets in $\mathcal{E}_{[r]}(n, p)$ with respect to left-topological equivalence. Again the necessary and sufficient condition is a Lojasiewicz inequality implying that every $\mathcal{E}_{[r]}$ realization of the given jet is one-to-one and also an immersion outside 0 . In a forth-coming paper, [ 4], we will prove some sufficiency theorems with respect to topological-left-right equivalence for a restricted class of jets from the plane to the plane. Here sufficiency is characterized by Lojasiewicz inequalities giving that realizations of the jets have no worse than fold singularities outside 0 and no critical double points. Looking for necessary and sufficient condition characterizing sufficiency of jets with line-singularities, we are therefore seeking Lojasiewicz inequalities which imply that all $\mathcal{E}_{[r]}^{L}$-realizations of $z$ have in some sense well-behavied singularities outside 0 relevant for $\mathcal{R}_{0}^{L}$-equivalence. Looking at the cases of sufficiency of jets with repect to topological right-equivalence, $\mathcal{V}$ equivalenc, left-equivalence and left-right-equivalence we have discussed above, we find that the non-singular behaviour or well-behaved singularities outside 0 we require of our realizations of germs are the same as those required of complex analytic-finite determined germs with respect to analytic right-equivalence, contactequivalence, left-equivalence or left-right-equivalence. Same non-singular or nice singular behavior are also required in the case of smooth infinite-determinacy of map-germs (see [11] Theorem 2.1 and 6.1 and [3] for further details). The cases of finite determinacy of complex analytic functions or smooth-infinitely determinacy of smooth functions with line singularities are studied in [8] and [9]. The equivalences in these cases are either complex analytic or smooth right-equivalence leaving the singular set $L$ invariant. The finite or infinite determined germs are here among those which are non-singular outside $L$ and the singularities along $L$ outside 0 are Morse-singularities in the direction transverse to $L$. In the case of sufficiency, we will therefore need Lojasiewicz inequalities which will give that every $\mathcal{E}_{[r \mid}^{L}$-realization of the jet is non-singular outside 0 and have only Morse-singularties along $L$ outside 0 in the direction transverse to $L$.

We will now formulate the Lojasiewicz inequalities relevant for sufficiency of jets with line singularities. Let us identify a jet $z \in J^{r}(n+1,1)$ with a polynomial $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$. Assume $\Sigma(P)=L$. Let $f \in \mathcal{E}_{|r|}^{L}$ with $j^{r} f(0)=z$. Let us denote the coordinates in $\mathbf{R}^{n+1}=\mathbf{R} \times \mathbf{R}^{n}$ by $(x, y)=\left(x, y_{1}, \ldots, y_{n}\right)$. Since $L$ the becomes the $x$-axis, and the partial derivatives of $f$ vanish along $L$ all the partial derivatives of the form $\frac{\partial^{k} f}{\partial x^{k}}$ and $\frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial f}{\partial y_{i}}$ must vanish along $L$ when $0<k \leq r$. Especially, we get $\frac{\partial^{k} P}{\partial x^{k}}(0)=\frac{\partial^{k} f}{\partial x^{k}}(0)=0$ and $\frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial P}{\partial y_{i}}(0)=\frac{\partial^{(k-1)}}{\partial x^{(k-1)}} \frac{\partial f}{\partial y_{i}}(0)=0$, and from this it is easy to see that $P$ must have the form $P(x, y)=\sum_{1 \leq i, j \leq n} y_{i} y_{j} P_{i j}(x, y)$ where $P_{i j}$ is a polynomial of degree $r-2$ and $P_{i j}=P_{j i}$. Let $\operatorname{Sym}(n)$ denote the symmetric $n \times n$ matrices, and let $\Lambda(n) \subset \operatorname{Sym}(n)$ denote the subset of singular matrices. Let $D_{y}^{2} P(x) \in \operatorname{Sym}(n)$ denote $n \times n$ matrix $\left(P_{i j}(x, 0)\right)$. (Note that allthough the $P_{i j}(x, y)$ 's are not uniquely determined the matrix $D_{y}^{2} P(x)$ is determined by $P$ beeing the Hessian matrix of $P$ in the $y$-direction.) The following theorem gives necessary and sufficient conditions for a jet to be sufficient in $\mathcal{E}_{[r]}^{L}$.

Theorem. The following two conditions are equivalent
(1) $z$ is sufficient $\mathcal{E}_{[r]}^{L}$.
(2) There exists a constant $C>0$ and a neighborhood $U$ of 0 such that
(i) $\left\lvert\, \frac{\partial P}{\partial x}(x, y)\| \|(x, y)\left\|+\left(\sum_{i=1}^{n}\left|\frac{\partial P}{\partial y_{i}}(x, y)\right|\right)\right\| y\|\geq C\| y\left\|^{2}\right\|(x, y)\right. \|^{r-2}$ for $(x, y) \in U$, and
(ii) $\operatorname{dist}\left(D_{y}^{2} P(x), \Lambda(n)\right) \geq C\|x\|^{r-2}$ for $x \in U \cap L$.

The rest of the article is organized as folows: In section 1 we will prove the necessity of the inequalities of (2) and in section 2 we will prove that the inequalities are sufficient conditions. In section 3 we will give some examples of sufficient jets with line singularities.

## §1. Proof of $(1) \Rightarrow(2)$.

Assume (2) fails. We will construct different representations of $z$ which cannot be $\mathcal{R}_{0}^{L}$-equivalent. First assume that (i) fails. Then there exists a sequence $\left(x_{m}, y_{m}\right) \rightarrow$ 0 with $y_{m} \neq 0$ such that

$$
\left|\frac{\partial P}{\partial x}\left(x_{m}, y_{m}\right)\right|\left\|\left(x_{m}, y_{m}\right)\right\|+\left(\sum_{i=1}^{n}\left|\frac{\partial P}{\partial y_{i}}\left(x_{m}, y_{m}\right)\right|\right)\left\|y_{m}\right\|=o\left(\left\|y_{m}\right\|^{2}\|(x, y)\|^{r-2}\right)
$$

We may assume that $\left\|\left(x_{m+1}, y_{m+1}\right)\right\| \leq \frac{1}{2}\left\|\left(x_{m}, y_{m}\right)\right\|$. We may also assume that $\left|y_{m 1}\right| \geq\left|y_{m i}\right|$ for all $m$ and $i$. For each $m$ consider the linear function $h_{m 1}$ defined by
$h_{m 1}(x, y)=\frac{1}{2 y_{m 1}} \frac{\partial P}{\partial y_{1}}\left(x_{m}, y_{m}\right)-\sum_{i=2}^{n} \frac{y_{m i}}{2 y_{m 1}^{2}} \frac{\partial P}{\partial y_{i}}\left(x_{m}, y_{m}\right)+\frac{1}{y_{m 1}^{2}} \frac{\partial P}{\partial x}\left(x_{m}, y_{m}\right)\left(x-x_{m}\right)$,
and for $i=2, . . n$ the constant functions

$$
h_{m i}(x, y)=\frac{\partial P}{\partial y_{i}}\left(x_{m}, y_{m}\right) \frac{1}{y_{m 1}} .
$$

Let $r_{m}=\frac{\Perp\left(x_{m}, y_{m}\right) \|}{4}$ and $D_{m}$ the disc $D\left(\left(x_{m}, y_{m}\right), r_{m}\right)$. It is easy to see that for all $i$ and $m$ we have $\left|h_{m i}(x, y)\right|=o\left(\|(x, y)\|^{r-2}\right)$ when $(x, y) \in D_{m},\left|\frac{\partial h_{m 1}}{\partial x}\right|(x, y)=$ $o\left(\|(x, y)\|^{r-3}\right)$ and all other partial derivatives of $h_{m i}$ vanish for each $i$ and $m$. A standard construction gives us that for each $m$ there exist smooth functions $p_{m}$ such that $0 \leq p_{m} \leq 1, p_{m}$ vanishes outside $D_{m}$ and $p_{m} \equiv 1$ on the smaller disq $D\left(\left(x_{m}, y_{m}\right), \frac{1}{2} r_{m}\right)$ and such that there exists constants $C_{k}$ independent of $m$ such that $\frac{\partial^{|\alpha|} p_{m}}{\partial(x, y)^{\alpha}} \leq \frac{C_{|\alpha|}}{r_{m}^{|\alpha|}}$ for each multiindex $\alpha$. Let us redefine each $h_{m i}$ by putting $h_{m i}:=p_{m} h_{m i}$. Now the sum $\sum_{m=1}^{\infty} h_{m i}$ defines a smooth map $h_{i}$ on $\mathbf{R}^{n+1}-\{0\}$ such that $\frac{\partial^{|\alpha|} h_{i}}{\partial(x, y)^{\alpha}}=o\left(\|(x, y)\|^{r-2-|\alpha|}\right)$ for each multiindex $\alpha$. It easy to see that these
inequalities allow us to extend this function to a $C^{r-2}$ function at the origin with all derivatives vanishing at 0 , and that the function $h(x, y)=\sum_{i=1}^{n} y_{1} y_{i} h_{i}$ becomes a $C^{r}$ function with all derivatives vanishing at 0 . A straight forward calculation now shows that $f(x, y)=P(x, y)-h(x, y)$ have critical points along the sequence $\left(x_{m}, y_{m}\right)$ and also along $L$. It is an easy exercise to see that we can perturb $h$ further such that we actually can assume that $f$ has Morse singularities along ( $x_{m}, y_{m}$ ) and such that $f$ still has critical points also along the $x$-axis (this can actually be done by adding a suitable smooth function which is flat at 0 ).
Let $c_{m}=f\left(x_{m}, y_{m}\right)$. Since $\left\{c_{m}\right\}$ is a sequence converging to 0 , we may either assume that all the $c_{m}$ 's are distinct and $\neq 0$ or each of them are equal 0 , so we can consider their union as a 0 -dimensional manifold. We wish to construct a representative of $P, g$, such that $g$ resticted to $\mathbf{R}^{n+1}-L$ has the sequence $\left(c_{m}\right)$ as regular values. To this end, consider the map $F(x, y, a)=P(x, y)+\sum_{i=1}^{n} a_{i} y_{i}^{r+1}$. Here $(x, y) \in \mathbf{R}^{n+1}-L$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{R}^{n}$. For $(x, y) \in \mathbf{R}^{n+1}-L$ we must have $y_{i} \neq 0$ for some $i$. Hence $\frac{\partial F}{\partial a_{i}}(x, y)=y_{i}^{r+1} \neq 0$. This shows that $F$ is a submersion and therefore is transverse to the manifold $\cup c_{m}$. By an application of Sard's Theorem there exsits a reidual set in $\mathbf{R}^{n}$ such that each map $F_{a}$ also is transverse to this mainifold on $\mathbf{R}^{n+1}-L$ when $a$ is in this set. So, put $g=F_{a}$ for such $a$. Now $g$ is another representative of $P$ so if $f$ and $g$ are $\mathcal{R}_{0}^{L}$-equivalent, the set $g^{-1}\left(c_{m}\right)-L$ and $f^{-1}\left(c_{m}\right)-L$ much be homeomorphic and the germ of $f$ at $\left(x_{m}, y_{m}\right)$ must be $C^{0}$-right equivalent with the germ of $g$ at some point in $g^{-1}\left(c_{m}\right)-L$. This is however impossible since the first germ is a Morse singularity and the other germ is non-singular.

Assume that (ii) fails. Then there exists a sequence $\left(x_{m}\right)$ such that $\operatorname{dist}\left(D_{y}^{2} P\left(x_{m}\right), \Lambda(n)\right)=o\left(\left\|x_{m}\right\|^{r-2}\right)$. We may assume that each $x_{m}$ is in the same component of $L-\{0\}$. Since $P$ is a polynomial, we must either have $D_{y}^{2} P(x) \in \Lambda(n)$ for all $x$ in a neighborhood of 0 , or that $D_{y}^{2} P(x) \notin \Lambda(n)$ when $x \neq 0$. In the first case we will show that we can find a polynomial representative $f$ of $P$ such 0 is isolated in $\left(D_{y}^{2} f\right)^{-1} \Lambda(n)$. Again, since $P$ is a polynomial the rank of $D_{y}^{2} P(x)$ must be constant for $x \neq 0$ say, $k<n$. Let $I=\left\{i_{1}, . ., i_{k}\right\}$ be a subsets of $\{1, \ldots n\}$ of cardinality $k$ let $A$ be an $n \times n$ symmetric matrix and $A(I)$ be the $k \times k$ submatrix of $A$ we get by removing the lines and columns corresponding to the the index set $\{1, \ldots, n\}-I$. It is an exercise in linear algebra to see that if $A$ is symmetric of rank $k$, there exists $I$ such that $A(I)$ is non-singular. Using this and the fact that $P$ is algebraic we may assume that the upperleft $k \times k$ submatrix of $D_{y}^{2} P(x)$ is non-singular for $x \neq 0$. Let $D(x)$ denote the corresponding $k \times k$ minor. Let

$$
Q(x, y)=x^{r-1}\left(\sum_{i=k+1}^{n} y_{i}^{2}\right) .
$$

A straightforward calculation of determinants shows that

$$
\operatorname{det} D_{y}^{2}(P+Q)(x)=x^{(n-k)(r-1)} D(x)
$$

From above it follows that we can find a polynomial representative $f$ of $P$ such that 0 is isolated in $\left(D_{y}^{2} f\right)^{-1} \Lambda(n)$. From continuity it is clear that the index of $D_{y}^{2} f(x)$
is constant on each component of $L-\{0\}$. It is an easy exercise in linear algebra to show that if $A \in \Lambda(n)$, then $A$ is infinetely close to two non-singular matrices with different indices. Since we have assumed that (ii) fails, we can therefore find a sequence $\left(x_{m}, 0\right) \in L-\{0\}$ such that $x_{m} \rightarrow 0$, and a sequence $A_{m} \in \operatorname{Sym}(n)$ such that $\left\|A_{m}\right\|=o\left(\left\|x_{n}\right\|^{r-2}\right)$ and such that $D_{y}^{2} P\left(x_{m}\right)+A_{m}$ is non-singular symmetric matrix chosen such that the indices of these matrices are different for $m$ and $m+1$ (so the index is not a constant function of $m$ for $m$ large). Using an argument similar to one we used above, we can extend the map $\left(x_{m}, 0\right) \rightarrow A_{m}$ to a smooth $\operatorname{map} A: \mathbf{R}^{n+1}-\{0\} \rightarrow \operatorname{Sym}(n)$ such that $\frac{\partial^{|\alpha|} A}{\partial(x, y)^{\alpha}}=o\left(\|(x, y)\|^{r-2-|\alpha|}\right)$, and we can extend it further to a $C^{r-2}$ map on $\mathbf{R}^{n+1}$ with all derivatives vanishing at 0 . Write $A(x, y)=\left(A_{i j}(x, y)\right)$ and define $h(x, y)=\sum_{i, j} \frac{1}{2} y_{i} y_{j} A_{i j}(x, y)$. It is easy to see that $h$ becomes a $C^{r}$ function with all derivatives vanishing at 0 . Put $g=P+h$. Then $D_{y}^{2} g\left(x_{m}\right)=D_{y}^{2} P\left(x_{m}\right)+A_{m}$. Assume $f$ and $g$ are $\mathcal{R}_{0}^{L}$-equivalent, then for each $m$ there exists a point $z_{m}$ in $L$ such that the germ of $f$ at $z_{m}$ is right-equivalent with the germ of $g$ at $x_{m}$ and the equivalence will leave $L$ invariant. Since the $x_{m}$ 's belong to the same component of $L-\{0\}$ and the equivalences of the germs at $x_{m}$ and $z_{m}$ come from the same equivalence in $\mathcal{R}_{0}^{L}$, the $z_{m}$ 's must also all belong to a common component of $L-\{0\}$. So for each $m$ we have a germ of a homeomorphism $H_{m}$ of form $H_{m}(x, y)=\left(h_{m}(x, y), k_{m}(x, y)\right)$ with $k_{m}(x, 0)=0$, $H_{m}\left(x_{m}, 0\right)=\left(z_{m}, 0\right)$ and $f\left(h_{m}(x, y), k_{m}(x, y)\right)=g(x, y)$. Let us distinguish the germs of the coordinate function in $L$ at $x_{m}$ and $z_{m}$ by denoting them by $x$ and $z$ respectively. For each $x$ and $z$ let $g_{x}$ and $f_{z}$ denote the map germs $y \rightarrow g(x, y)$ and $y \rightarrow f(z, y)$ respectively. Hence we get deformations $x \rightarrow g_{x}$ and $z \rightarrow f_{z}$ of $g_{x_{m}}$ and $f_{z_{m}}$ respectively. Both these deformations consist of germs which are singular at 0 , and since $g_{x_{m}}=g_{m}$ and $f_{z_{m}}=f_{m}$ both are Morse function the deformations are trivial, and can be trivialized by one-parameter families of smooth diffeomorphisms of germs $\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ and these diffeomorphisms depend smoothly of the parameter. Redefining $H_{m}$ by composing with these families in a suitable manner, we may suppose that the germs of $g(x, y)$ and $f(z, y)$ at $x_{m}$ and $z_{m}$ are independent of $x$ and $z$ respectively, so $f(z, y)=f_{m}(y)$ and $g(x, y)=g_{m}(y)$, and we still have $f \circ H_{m}=g$. We will now show that this is impossible. To this end we will need a lemma.
Lemma. Consider the two non-degenerate quadratic function $Q$ and $R$ on $L \times \mathbf{R}^{n}$ defined by $Q\left(x, y_{1}, \ldots, y_{n}\right)=-y_{1}^{2}-\cdots-y_{r}^{2}+y_{r+1}^{2}+\cdots+y_{n}^{2}$ and $R\left(x, y_{1}, \ldots, y_{n}\right)=$ $-y_{1}^{2}-\cdots-y_{l}^{2}+y_{l+1}^{2}+\cdots+y_{n}^{2}$ where $0 \leq r<l \leq n$. Then $Q$ and $R$ are not $\mathcal{R}_{0}^{L}$-equivalent.
Proof. The case $n=1$ is obvious. Assume $n>1$. If the germs are $\mathcal{R}_{0}^{L}$-equivalent, the set-germs $Q^{-1}(a)$ and $R^{-1}(a)$ must be homeomorphic for any value $a$. If $r=0$, then $Q^{-1}(a)=\varnothing$ and $R^{-1}(a) \neq \varnothing$ for $a<0$. So these sets are not homeomorphic. The case $l=n$ is similar. If $0<r<l<n$, it is easy to see that for $a<0, Q^{-1}(a)$ and $R^{-1}(a)$ is homotopically equivalent with $\mathbf{S}^{r-1}$ and $\mathbf{S}^{l-1}$ respectively. Since these spheres have different homology, $Q^{-1}(a)$ and $R^{-1}(a)$ cannot be homeomorphic. This proves the lemma.
Let us complete the proof of $(1) \Rightarrow(2)$. Since the indices of $g_{m}(y)$ and $g_{m+1}(y)$ are different and the indices of all $f_{m}(y)$ 's are the same
(because the $z_{m}$ 's belong to the same component of $L-\{0\}$ ), we may assume that
the indices of $g(x, y)=g_{m}(y)$ and $f(z, y)=f_{m}(y)$ are different. We may therefore apply Morse-Lemma and suppose that $f_{m}$ and $g_{m}$ have the form of $Q$ and $R$ in the Lemma above (since they have different indices). It follows directly from the conclusion of this lemma that there exists no map $H_{m}$ such that $f \circ H_{m}=g$.

## §2. Proof of (2) $\Rightarrow$ (1).

Assume (2). Let $h:\left(\mathbf{R}^{n+1}, 0\right) \rightarrow(\mathbf{R}, 0)$ be a germ of a $C^{r}$ mapping with $L \subset \Sigma(h)$ and $j^{r} h(0)=0$. It is obviously sufficient to prove that $P$ and $P+h$ are $\mathcal{R}_{0}^{L}$ equivalent. Let $F(x, y, t)=(P(x, y)+t h(x, y), t)$. Put $f(x, y, t)=f_{t}(x, y)=$ $P(x, y)+t h(x, y)$. Using Morse-Lemma, we find that $h$ can be written in the form $h(x, y)=\sum_{1 \leq i, j \leq n} y_{i} y_{j} h_{i j}(x, y)$ where $h_{i j}$ are $C^{r-2}$ functions with $r-2$ jet equal 0 at 0 . From this it is clear that

$$
\left|\frac{\partial h}{\partial x}(x, y)\right|\|(x, y)\|=o\left(\|y\|^{2}\|(x, y)\|^{r-2}\right)
$$

and that

$$
\left(\sum_{i=1}^{n}\left|\frac{\partial h}{\partial y_{i}}(x, y)\right|\right)\|y\|=o\left(\|y\|^{2}\|(x, y)\|^{r-2}\right) .
$$

From this and the inequality in (i) it follows that

$$
\left|\frac{\partial f_{t}}{\partial x}(x, y)\right|\|(x, y)\|+\left(\sum_{i=1}^{n}\left|\frac{\partial f_{t}}{\partial y_{i}}(x, y)\right|\right)\|y\| \geq(C / 2)\|y\|^{2}\|(x, y)\|^{r-2}
$$

for $t \in[0,1]$ and $(x, y)$ in a perhaps smaller neighbourhood contained in $U$.
Consider the vector field $X(x, y, t)$ on $\mathbf{R}^{n+1} \times \mathbf{R}$ defined by

$$
X(x, y, t)=\left\{\begin{array}{l}
(0,0,1)-\frac{(0,0,1) \cdot \nabla f}{\|\nabla f\|^{2}} \nabla f \quad \text { when } \quad y \neq 0 \\
(0,0,1) \quad \text { when } \quad y=0
\end{array}\right.
$$

Let us consider $\mathbf{R}^{n+1} \times \mathbf{R}$ as a stratified space with $\{0\} \times \mathbf{R},(L-\{0\}) \times \mathbf{R}$ and $\left(\mathbf{R}^{n+1}-L\right) \times \mathbf{R}$ as strata. We wish to see that $X(x, y, t)$ is a rugose stratified vector field in the sense of Verdier (see [10 ]). We have

$$
\begin{aligned}
& \left|\frac{\partial f_{t}}{\partial x}(x, y)\right|\|(x, y)\|+\left(\sum_{i=1}^{n}\left|\frac{\partial f_{t}}{\partial y_{i}}(x, y)\right|\right)\|(x, y)\| \\
& \geq\left|\frac{\partial f_{t}}{\partial x}(x, y)\right|\|(x, y)\|+\left(\sum_{i=1}^{n}\left|\frac{\partial f_{t}}{\partial y_{i}}(x, y)\right|\right)\|y\| \\
& \geq(C / 2)\|y\|^{2}\|(x, y)\|^{r-2}
\end{aligned}
$$

It follows that

$$
\|\nabla f(x, y, t)\| \geq(C / 2(n+1))\|y\|^{2}\|(x, y)\|^{r-3}
$$

Since also $|h(x, y)|=o\left(\|y\|^{2}\|(x, y)\|^{r-2}\right)$, we get that

$$
\left\|\frac{(0,0,1) \cdot \nabla f}{\|\nabla f\|^{2}} \nabla f\right\|=\frac{|h(x, y)|}{\|\nabla f(x, y, t)\|}=o(\|(x, y)\|)
$$

This proves that $X$ restricted to the strata $\{0\} \times \mathbf{R}$ and $\left(\mathbf{R}^{n+1}-L\right) \times \mathbf{R}$ satisfies Verdier'rugosity condition. That $X$ restricted to the strata $\{0\} \times \mathbf{R}$ and ( $L-$ $\{0\}) \times \mathbf{R}$ satisfies Verdier'rugosity condition is obvious. Let us now consider the strata $(L-\{0\}) \times \mathbf{R}$ and $\left(\mathbf{R}^{n+1}-L\right) \times \mathbf{R}$. Given $\left(x_{0}, 0, t_{0}\right) \in(L-\{0\}) \times \mathbf{R}$, we need to prove that there exists a neighbourhood $V$ around ( $x_{0}, 0, t_{0}$ ) and a constant $C>0$, such that for every pair $(x, 0, t)$ and $\left(x^{\prime}, y^{\prime}, t^{\prime}\right)$ in this neighbourhood we have

$$
\left\|X(x, 0, t)-X\left(x^{\prime}, y^{\prime}, t^{\prime}\right)\right\| \leq C\left\|(x, 0, t)-\left(x^{\prime}, y^{\prime}, t^{\prime}\right)\right\| .
$$

We will need the following Lemma
Lemma. Let $\mathrm{gl}(n)$ be the space of $n \times n$ matrices equipped with the usual Eucledean norm (by identifying $\operatorname{gl}(n)$ with $\mathbf{R}^{n^{2}}$ ). Let $A \in \operatorname{Sym}(n)$. Then $\operatorname{dist}(A, \Lambda(n))=|\lambda|$ where $\lambda$ is an eigenvalue of $A$ with minimal absolute value.
Proof. This is left to the reader.
For each $(x, y, t)$ let $D_{y}^{2}\left(f_{t}\right)(x, y)$ be the linear operator on $\mathbf{R}^{n}$ with matrix representation $\left(\frac{\partial^{2} f_{t}}{\partial y_{i} \partial y_{j}}(x, y)\right)$. We find that $D_{y}^{2}\left(f_{0}\right)(x, 0)=D_{y}^{2} P(x)$. From (ii) in the Theorem and the lemma above it follows that $\left\|D_{y}^{2} P(x) v\right\| \geq C\|x\|^{r-2}\|v\|$ for any vector $v \in \mathbf{R}^{n}$. Since $h$ is of the form $\sum_{1 \leq i, j \leq n} y_{i} y_{j} h_{i j}(x, y)$, where the $r-2$ jet of each $h_{i j}$ at 0 is 0 , it is easy to see that we must have $\left\|\left(D_{y}^{2} P(x)-D_{y}^{2}\left(f_{t}\right)(x, 0)\right) v\right\| \leq$ $(C / 2)\|x\|^{r-2}\|v\|$ for all $t \in[0,1]$ in a neighbourhood of 0 and any vector $v \in \mathbf{R}^{n}$. From continuity it follows that given $\left(x_{0}, 0, t_{0}\right)$ we can find a neighborhood $V$ around $\left(x_{0}, 0, t_{0}\right)$ such that $\left\|D_{y}^{2}\left(f_{t}\right)(x, 0)-D_{y}^{2}\left(f_{t}\right)(x, y)\right\|<(C / 4)\|x\|^{r-2}$ for all $(x, y, t)$ in this neighbourhood where this time, in abuse of notation, $\|\ldots\|$ denotes the operator norm. Let $\nabla_{y} f_{t}(x, y)=\left(\frac{\partial f_{t}}{\partial y_{1}}(x, y), \ldots, \frac{\partial f_{t}}{\partial y_{n}}(x, y)\right)$. We have $\nabla_{y} f_{t}(x, y)=\int_{0}^{1} D_{y}^{2}\left(f_{t}\right)(x, t y) y d t$. From above, we get that for $(x, y, t) \in V$, we have

$$
\begin{aligned}
& \|\nabla f(x, y, t)\| \geq\left\|\nabla_{y} f_{t}(x, y)\right\|=\left\|\int_{0}^{1} D_{y}^{2}\left(f_{t}\right)(x, t y) y d t\right\| \geq\left\|D_{y}^{2} P(x) y\right\|- \\
& \int_{0}^{1}\left\|\left(D_{y}^{2} P(x)-D_{y}^{2}\left(f_{t}\right)(x, 0)\right) y\right\| d t-\int_{0}^{1}\left\|\left(D_{y}^{2}\left(f_{t}\right)(x, t y)-D_{y}^{2}\left(f_{t}\right)(x, 0)\right) y\right\| d t \geq \\
& C\|x\|^{r-2}\|y\|-(C / 2)\|x\|^{r-2}\|y\|-(C / 4)\|x\|^{r-2}\|y\|=(C / 4)\|x\|^{r-2}\|y\|
\end{aligned}
$$

Since $|h(x, y)|=o\left(\|y\|^{2}\|(x, y)\|^{r-2}\right)$, we get that

$$
\left\|\frac{(0,0,1) \cdot \nabla f}{\|\nabla f\|^{2}} \nabla f\right\|=\frac{|h(x, y)|}{\|\nabla f(x, y, t)\|}=o(\|y\|)
$$

Verdier's rugosity condition for the strata $(L-\{0\}) \times \mathbf{R}$ and $\left(\mathbf{R}^{n+1}-L\right) \times \mathbf{R}$ follows directly from this. So since $X$ is rugose, we can integrate this vectorfield and obtain a continous flow. Since the vectorfield is tangent to every level-surface of $f$ with $t$-component of form $1+o(\|(x, y)\|)$ and other components equal $o(\|(x, y)\|)$ the flow will obviously trivialize the family $f_{t}$ and it will also fix the $L$-axis, proving that $f_{0}=P$ and $f_{1}=P+h$ are $\mathcal{R}_{0}^{L}$-equivalent.

## §3. Examples.

We will now give examples of sufficient jets with line singularities. These examples are all given in [9], where it is shown that regarded as smooth functions they are infinitely determined among functions with line singularities. We will show that they are sufficient in $\mathcal{E}_{[r]}^{L}$ regarded as $r$-jets.

1) $P(x, y)=x y^{2}$. We have $\left|\frac{\partial P}{\partial x}\right|\|(x, y)\|=y^{2}\|(x, y)\|$, so (i) of (2) holds with $r=3$. Furthermore $D_{y}^{2} P(x)=(x)$ hence $\operatorname{dist}\left(D_{y}^{2} P(x), \Lambda(1)\right)=|x|$ and (ii) of (2) also holds with $r=3$. So $P$ is sufficient.
2) $P(x, y)=x^{2} y^{2}+y^{r}, r \geq 3$. Let us first consider the case $r=3$. Assume $|x| \geq|y|$. Then $|x| \geq \frac{1}{\sqrt{2}}\|(x, y)\|$, and we get $\left|\frac{\partial P}{\partial x}\right|\|(x, y)\|=2|x| y^{2}\|(x, y]\| \geq \frac{2}{\sqrt{2}} y^{2}\|(x, y)\|^{2}$, and (i) holds since $P$ is a 4 -jet. Assume $|y| \geq|x|$. Then $|y| \geq \frac{1}{\sqrt{2}}\|(x, y)\|$. We have $\left|\frac{\partial P}{\partial y}\right|=\left|2 x^{2} y+3 y^{2}\right| \geq \frac{3}{2} y^{2}$, and we get $\left|\frac{\partial P}{\partial y}\right||y| \geq \frac{3}{2 \sqrt{2}} y^{2}\|(x, y)\|$, so (i) holds also in this case. Let $r>3$. Then $\frac{\partial P}{\partial y}=2 x^{2} y+r y^{r-1}$. Assume that $2 x^{2} \leq \frac{r}{2}|y|^{r-2}$. Then $|x| \leq|y|$, so $|y| \geq \frac{1}{\sqrt{2}}\|(x, y)\|$. Futhermore $\left|\frac{\partial P}{\partial y}\right| \geq \frac{r}{2}|y|^{r-1}$, and therefore $\left|\frac{\partial P}{\partial y}\left\|\left.y\left|\geq \frac{r}{2}\right| y\right|^{r} \geq C y^{2}\right\|(x, y) \|^{r-2}\right.$ for a suitable constant $C$. So (i) holds since $P$ is an $r$-jet. Assume that $2 x^{2} \geq \frac{r}{2}|y|^{r-2}$. We have $\left|\frac{\partial P}{\partial x}\right|=2|x| y^{2}$. If $|x| \geq|y|$, we will then get $\left|\frac{\partial P}{\partial x}\right|\|(x, y)\| \geq \frac{2}{\sqrt{2}} y^{2}\|(x, y)\|^{2}$, and (i) holds since $P$ is an $r \geq 4$-jet. If $|y| \geq|x|,|x| \geq \frac{\sqrt{r}}{2}|y|^{\frac{r-2}{2}} \geq C\|(x, y)\|^{\frac{r-2}{2}}$. So $\left\lvert\, \frac{\partial P}{\partial x}\|(x, y)\| \geq 2 C y^{2}\|(x, y)\|^{\frac{r}{2}}\right.$. Now since $r \geq 4, \frac{r}{2} \leq r-2$ and (i) holds. For all $r$ we have $D_{y}^{2} P(x)=\left(x^{2}\right)$ and $\operatorname{dist}\left(D_{y}^{2} P(x), \Lambda(1)\right)=x^{2}$, and (ii) also holds. It follows that $P$ is sufficient for all $r \geq 3$.
3) $P(x, y)=\left(y_{1}^{2}+y_{2}^{2}\right)\left(x^{2}+y_{1}^{2}+y_{2}^{2}\right)$. We have

$$
\begin{aligned}
& \left\lvert\, \frac{\partial P}{\partial x}(x, y)\|(x, y)\|+\left(\sum_{i=1}^{n}\left|\frac{\partial P}{\partial y_{i}}(x, y)\right|\right)\|y\|=\right. \\
& 2|x|\|y\|^{2}\|(x, y)\|+2\left(\left|y_{1}\right|+\left|y_{2}\right|\right)\left(x^{2}+2\|y\|^{2}\right)\|y\| \geq 2\|y\|^{2}\|(x, y)\|^{2}
\end{aligned}
$$

so (i) holds since $P$ is a 4-jet. Furtermore we have $D_{y}^{2} P(x)=\left[\begin{array}{cc}x^{2} & 0 \\ 0 & x^{2}\end{array}\right]$, and it is easy to see that $\operatorname{dist}\left(D_{y}^{2} P(x), \Lambda(1)\right)=x^{2}$, so (ii) holds and $P$ is sufficient.

## References

[1] Bochnak, J., Lojasiewicz, S., A converse of the Kuiper-Kuo Theorem LNM 192, 254-261, Springer 1971
[2] Brodersen, H., Sufficiency of jets with respct to $\mathcal{L}$-equivalence.Real and algebraic singularities. Pitman Reseach Notes in Mathematics Series 381, Longman 1998, 7883.
[3] Brodersen, H., On finite and infinite $C^{k}-\mathcal{A}$ determinacyProc. London Math. Soc. 75 (1997),369-435.
[4] Brodersen, H., Skutlaberg, O,, Sufficiency of a class of jets from the plane to the plane. In preparation.
[5] Kuiper, N. H, C ${ }^{1}$-equivalence of functions near isolated critical points Proc. Symp. in Infinite Dimensional Topology (Baton Rouge 1967), Annals of Math. Studies 1967, (Princeton, 1968) 199-218
[6] Kuo, T.C., On $C^{0}$-sufficiency of jets of potential functions, Topology 8 (1969), 167-171
[7] Kuo, T.C., Characterizations of $\mathcal{V}$-sufficiency of jets, Topology 11 (1972), 115131
[8] Siersma, D. Isolated line singularities, Proc. Symp. Pure Math. 40 (1983), 485-496
[9] Sun, B., Wilson L.C. Isolated Determinacy of smooth germs with real isolated line singularities, Proc. of the American Math. Soc. 129 (2001), 2789-2797 Proc. Symp. Pure Math. 40 (1983), 485-496
[10] Verdier, J. L. Stratifications de Whitney et Thorme de Bertini-Sard, Inventiones Math. 36 (1976), 295-312 medskipBull. London. Math. Soc. 13. (1981), 481-593
[11] Wall, C. T. C. Finite determinacy of smooth map-germs, Bull. London. Math. Soc. 13. (1981), 481-593

Departement of Matematics
University of Oslo
P. O. Box 1053 Blindern N-0316 Oslo Norway

E-mail adress:
broderse@math.uio.no

