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SUFFICIENCY OF JETS WITH LINE SINGULARITIES
Hans BRODERSEN

§0. Introduction

In this paper we will study sufficiency of jets with line singularities. Let
2z (R"T10) — (R,0) be an r-jet identified with a polynomial of degree » with
r > 2. Let }(z) denote z's critical set and assume that >)(z) is a 1-dimensional
manifold L. After a change in coordinates, we may assume that I = R x {0} C
R x R". We say that z is jet with line singularities. Let El,{-;] be the set of C”
mappings whose critical set contains L. Let Rl be the set of homeomorphism
germs b : (R*1.0) — (R"1,0) leaving L invariant.

Definition. We say that a jet z € J"(n+1,1) is sufficient in 8[{:] if any two f, g

in E[‘;‘_] with j7 f(0) = §"g(0) = z are RE-equivalent

In this paper we will give a necessary and sufficient condition for a jet to be
sufficient in fﬁl
Before we state our main theorem, we will however put this theorem in relation
with now classical results about sufficiency of jets and determinacy of mappings.
Let z be a jet in J"(n,p), £(n.p) the set of C" germs f : (R",0) — (RP,0),
R an equivalence relation on &, (n,p) and E a subset of &, (n,p). We will say
that z is R-sufficient in £ if any two f,g € E with j7f(0) = 77¢(0} = 2 are R-
equivalent. The study of sufficiency of jets started with classical papers of Kuiper
[5], Kuo [6] and [7] and Bochnak and Lojasiewicz |1]. In these papers sufficiency of
r-jets in &,y(n, 1) = &, and &, 1) with respect to topological right-equivalence and
sufficiency of r-jets in &, y;(n, p) with respect to V-equivalence (two mappings f, g
are V-equivalent if f~1{0) and ¢~ '{0) are homeomorphic) are studied and necessary
and sufficient conditions for sufficiency are given(see [11] for a detailed survey of
these results). I all cases the necessary and sufficient conditon is formulated in terms
of a Lojasiewicz inequality which has to be satisfied. This Lojasiewicz inequality
implies that every realization of the jet is, in some sense, non-singular outside 0.
If we consider an unfolding (f;,1) of the given jet with all levels of the unfolding
&y (or 1)) realizations of this jet, the Lojasiewicz inequality will imply that we
can define vectorfields, which will have continous flows, trivializing the unfolding
(in the case of V-sufficiency the flow will trivialize the varities f; '(0)). On the
other hand if the Lojasiewicz inequality does not hold for the jet z, we can find
two realizations of z, one which have a singularities outside 0 and one which is
non-singular outside 0 and which are not topologically equivalent. What we here
mean by singular and non-singular depends on the toplogical equivalence relation
we consider. When we are considering topological right-equivalence among &), (or
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&+ 1)) function-germs, the germs which are non-singular outside 0 are germs which
are submersions outside 0, but in the case of V-equivalence we consider germs f
such that their varieties f~!(0) are non-singular outside 0. In [2] the author studies
sufficiency of jets in & (n,p) with respect to left-topological equivalence. Again
the necessary and sufficient condition is a Lojasiewicz inequality implying that
every &, realization of the given jet is one-to-one and also an immersion outside
0. In a forth-coming paper, [ 4], we will prove some sufficiency theorems with
respect to topological-left-right equivalence for a restricted class of jets from the
plane to the plane . Here sufficiency is characterized by Lojasiewicz inequalities
giving that realizations of the jets have no worse than fold singularities outside
0 and no critical double points. Looking for necessary and sufficient condition
characterizing sufficiency of jets with line-singularities, we are therefore seeking
Lojasiewicz inequalities which imply that all E[i]-rea.lizations of z have in some

sense well-behavied singularities outside 0 relevant for R}-equivalence. Looking
at the cases of sufficiency of jets with repect to topological right-equivalence, V-
equivalenc, left-equivalence and left-right-equivalence we have discussed above, we
find that the non-singular behaviour or well-behaved singularities outside 0 we
require of our realizations of germs are the same as those required of complex
analytic-finite determined germs with respect to analytic right-equivalence, contact-
equivalence, left-equivalence or left-right-equivalence. Same non-singular or nice
singular behavior are also required in the case of smooth infinite-determinacy of
map-germs (see [11] Theorem 2.1 and 6.1 and [3] for further details). The cases of
finite determinacy of complex analytic funetions or smooth-infinitely determinacy of
smooth functions with line singularities are studied in [8] and [9]. The equivalences
in these cases are either complex analytic or smooth right-equivalence leaving the
singular set L invariant. The finite or infinite determined germs are here among
those which are non-singular outside [ and the singularities along L outside 0 are
Morse-singularities in the direction transverse to L . In the case of sufficiency, we
will therefore need Lojasiewicz inequalities which will give that every é?ﬁ']—l'ealizat.i{)ll
of the jet is non-singular outside 0 and have only Morse-singularties along L outside
0 in the direction transverse to L.

We will now formulate the Lojasiewicz inequalities relevant for sufficiency of jets
with line singularities. Let us identify a jet z € J"(n | 1,1) with a polynomial
P R R, Assume B(P) = L. Let f € E.'lf;] with j7 f(0) = z. Let us denote the
coordinates in R*"! = R x R" by (2, 4) = (.41, ..., yn ). Since L the becomes the
x-axis, andﬁ the part-i?}l dt}zrivalives of f vanish along L all the partial derivatives of
i {k—1 -
the form % and (?I(Th g—y{ must vanish along L when 0 < & < r. Especially, we
atp o k-1 ap x5 _
cet, p (D)= d—r':(()) = 0 and mc}_‘% D)= md—i(ﬂ} = 0, and from this
it is easy to see that P must have the form P(z,y) = .  wiy;FP;(x,y) where P,
1<ij<n

is a polynomial of degree » — 2 and F;; = Pj;. Let Symj('.-i-.) denote the symmetric
n x n matrices, and let A(n) C Sym(n) denote the subset of singular matrices.
Let D;P(:r) € Sym(n) denote n x n matrix (P;;(x,0)). (Note that allthough the
Pyi(x,y)’s are not uniquely determined the matrix D;fP[;c) is determined by P
beeing the Hessian matrix of P in the y-direction.) The following theorem gives
necessary and sufficient conditions for a jet to be sufficient in E[E].
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Theorem. The following two conditions are equivalent

(1) z is sufficient S[{“j],

(2) There exists a constant C > 0 and a neighborhood U of 0 such that

. OP no AP ; r—2
(@) 15 )l Il + (X I5-@ Dyl 2 ClylPle ™ for (v.y) € U,

dy,

i=1 i

and
(i) d-ist(f)_gp(x},fx(n)} 2C|z||"2 forze UNL.

The rest of the article is organized as folows: In section 1 we will prove the
necessity of the inequalities of (2) and in section 2 we will prove that the inequalities
are sufficient conditions. In section 3 we will give some examples of sufficient jets
with line singularities.

§1. Proof of (1)=(2).
Assume (2]} fails. We will construct different representations of z which cannot be
RE-equivalent. First assume that (i) fails. Then there exists a sequence (x,,,, Y, ) —
0 with 4, # 0 such that

r—2
'ymu == 0(||3hu||2||(3"-:y}|| ]

apr . ", 8P
|%{5rm:y?rr-}H“mnhym)H + (Z |a___!ﬁ(xm?ym‘}|)

i=1

We may assume that |[(m 1, ¥m 1)l < 51(@m, ym)||. We may also assume that
[¢4m1] = |Ymi| for all m and i. For each m consider the linear function h,,; defined
by

1 apP "\ i OP 1 aP
hpi(2,y) = - XJI (Tos Y ) — Z zy:nl d_yz (2 Ym )+ yTl B (Zpns Ym ) (Z — T ),

i=2 m

and for ¢ = 2, ..n the constant functions

( 1
h"m.'é.(x: y} = T"_-(:r'm.:ym}_"'
Dy, Ym1
Let ry = w and D, the disc D((m, Ym ). rm). It is easy to see that for
. My
all i and m we have |y, (x, ¥)| = o(||(z, 9)||" %) when (z,y) € Dy, | Lz, y) =

€X
of|[{(z,%)||"*) and all other partial derivatives of h,; vanish for each i and m. A
standard construction gives us that for each m there exist smooth functions p,,
such that 0 < p,,, < 1, p,, vanishes outside ), and p,, = 1 on the smaller disq
D((ms Ym ), ,—l,rm) and such that there exists constants 'y, independent of m such
alel, o . ]
that ﬁ < == for each multiindex . Let us redefine each f,,,; by putting
T,y Tm
[=.4]
honi 7= pmhmi. Now the sum 3" hy,; defines a smooth map h; on R"+! — {0} such
m=1
t".) al h.»j_ —2—|al .
that o) o(||(z,y)||"~271°1) for each multiindex a. It easy to see that these
Nz, y



4 HANS BRODERSEN

inequalities allow us to extend this function to a ¢ =2 function at the origin with
n
all derivatives vanishing at 0, and that the function h(z,y) = > yiy;h; becomes

a C7 function with all derivatives vanishing at 0. A straight fi)rir\-'a.rd calculation
now shows that f(x,y) = P{x,y) — h{x, y) have critical points along the sequence
(@m, ym) and also along L. It is an easy exercise to see that we can perturb h further
such that we actually can assume that f has Morse singularities along (. ¥, ) and
such that f still has eritical points also along the z-axis (this can actually be done
by adding a suitable smooth function which is flat at 0).

Let ¢ = f(@m,ym). Since {en} is a sequence converging to 0, we may either
assume that all the ¢, ’s are distinct and # 0 or each of them are equal 0, so
we can consider their union as a O-dimensional manifold. We wish to construct a

representative of P, g, such that g resticted to R"*! — L has the sequence (cy,)
T

as regular values. To this end, consider the map F(x,y,a) = Pla,y) + > ai-y;_"“.
i=

Here (z,y) € R*™! — L and a = (ay,...,a,) € R". For (z,%) € R"*! — L we

must have y; + 0 for some i. Hence :—(:s, y) = -y;_"“ + 0. This shows that F' is

day
a submersion and therefore is transverse to the manifold Uec,,. By an application

of Sard’s Theorem there exsits a reidual set in R™ such that each map F, also is
transverse to this mainifold on R™**! — L when « is in this set. So, put g = F,
for such a. Now g is another representative of P so if f and g are R}-equivalent,
the set g~ '(en) — L and f~!(em) — L much be homeomorphic and the germ of
f at (2, ¥m) must be C%-right equivalent with the germ of g at some point in
g9 '{em) — L. This is however impossible since the first germ is a Morse singularity
and the other germ is non-singular,

Assume that (ii) fails. Then there exists a sequence (x,,) such that
d-isi(DSP(a:m),A(n)) = o(||xm||”?). We may assume that each x,, is in the same
component of L—{0}. Since P is a polynomial, we must either have DSP(I} € A(n)
for all = in a neighborhood of 0, or that DEP(;J:) & A(n) when = # 0. In the first
case we will show that we can find a polynomial representative f of P such 0 is
isolated in (Dgf )7LA(n). Again, since P is a polynomial the rank of DEP(:::) must
be constant for = # 0 say, k < n. Let I = {iy,..,ir} be a subsets of {1,..n} of
cardinality k let A be an n x n symmetric matrix and A(TI) be the k x k submatrix
of A we get by removing the lines and columns corresponding to the the index set
{1,..,n} — 1. It is an exercise in linear algebra to see that if A is symmetric of
rank k, there exists [ such that A(7) is non-singular. Using this and the fact that
P is algebraic we may assume that the upperleft £ x & submatrix of J[JSP(:I:) is
non-singular for = # 0. Let D{z) denote the corresponding k x & minor. Let

Qlzy) =" > 3
i=k+1
A straightforward calculation of determinants shows that
det D2(P + Q)(z) = ="M =D ().

From above it follows that we can find a polynomial representative f of P such that
0 is isolated in (Dg‘f)' 'A(n). From continuity it is clear that the index of Dg‘f(x}
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is constant on each component of L — {0}. It is an easy exercise in linear algebra
to show that if A € A(n), then A is infinetely close to two non-singular matrices
with different indices. Since we have assumed that (ii) fails, we can therefore find a
sequence (z,,,0} € L — {0} such that z,, — 0, and a sequence A,,, € Sym(n) such
that || A,.|| = o(||z, " ?) and such that DgP(:r.m} + A,,, is non-singular symmetric
matrix chosen such that the indices of these matrices are different for m and m +1
(so the index is not a constant function of m for m large). Using an argument
similar to one we used above, we can extend the map (r,,,0) — A,, to a smooth

map A : R — {0} — Sym(n) such that l—— = o||(z, w)|I" 21}, and we

3(:1‘ 3 'y,la
can extend it further to a C" =2 map on R™! with all derivatives vanishing at 0.
Write Az, y) = (Aiy(z, ) and define h{z,y) = > %y@yj Az, y). It is easy to see
i
that h becomes a C7 function with all derivat-i\-'esJva,nishing at 0. Put g = P+ h.
Then Dig(ay,) = D2P(p)+Am. Assume f and g are Rf-equivalent, then for each
m there exists a point z,, in L such that the germ of f at z,, is right-equivalent
with the germ of g at z,, and the equivalence will leave L invariant. Since the
2, 's belong to the same component of L — {0} and the equivalences of the germs
at @y, and z, come from the same equivalence in ’R,,%'T the z,,’s must also all
belong to a common component of L — {0}. So for each m we have a germ of a
homeomorphism H,, of form H, (z,y) = (hun(z,y), kn(z,y)) with k,,(2z,0) = 0,
Hyp(20,0) = (20,0} and flhy, (2, y), kn (2, 9)) = g(z,y). Let us distinguish the
germs of the coordinate function in L at x,, and z,, by denoting them by x and =
respectively. For each a and z let g, and f, denote the map germs y — g(z,y) and
y — f(z,y) respectively. Hence we get deformations @ — g, and z — f, of g, and
I, respectively. Both these deformations consist of germs which are singular at 0,
and since g, = gm and f. = f, both are Morse function the deformations are
trivial, and can be trivialized by one-parameter families of smooth diffeomorphisms
of germs (R™,0) — (R™,0) and these diffeomorphisms depend smoothly of the
parameter. Redefining H,, by composing with these families in a suitable manner,
we may suppose that the germs of g(x, y) and f(z,y) at x,,, and z,,, are independent
of x and 2 respectively, so f(z,y) = fm(y) and g(z,y) = g (y), and we still have
foH,, = g. We will now show that this is impossible. To this end we will need a
lemma,

Lemma. Consider the two non-degenerate quadratic function () and R on L x R"
defined by Q{x,y1,...,yn) = —yf —egg® yfﬂ + 4 y;: and R{x gy, ....yn) =
—yf — e — yf B yf+ 1+t y> where 0 < v < 1 < n. Then Q and R are not
'Rf;—* -equivalent.

Proof. The case n = 1 is obvious. Assume n > 1. If the germs are R}-equivalent,
the set-germs Q@ !(a) and R~ !{a) must be homeomorphic for any value a. 1f r = 0,
then Q@ '(a) = @ and R '(a) # @ for a < 0. So these sets are not homeomor-
phic. The case | = n is similar. If 0 < v < [ < n, it is easy to see that for
a <0, Q a) and R~ '(a) is homotopically equivalent with 877! and 8! respec-
tively. Since these spheres have different homology, @ '{a) and R~ '{a) cannot be
homeomorphic. This proves the lemma.

Let us complete the proof of (1)=-(2}. Since the indices of ¢,,(y) and g1 1(y) are
different and the indices of all f,,,(y)’s are the same
(because the z,,’s belong to the same component of L —{0}), we may assume that
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the indices of g(x,y) = gm(y) and f(z,y) = f(y) are different. We may therefore
apply Morse-Lemma and suppose that f,, and g, have the form of @ and R in
the Lemma above (since they have different indices). It follows directly from the
conelusion of this lemma that there exists no map H,, such that fo H,, = g.

§2. Proof of (2)= (1).

Assume (2). Let h: (R*™ 0) — (R,0) be a germ of a €™ mapping with L < %(h)
and j7h(0) = 0. It is obviously sufficient to prove that P and P + h are R}-
equivalent. Let F(x, ¢, t) = (Pla,y) | th{z,y),t). Put flz,y.t) = filz,y) =
P(z,y) | th(x,y). Using Morse-Lemma, we find that % can be written in the form
he,y) = > wyiyihigle,y) where hy; are C"? functions with r — 2 jet equal 0

1<ij<n
at 0. From this it is clear that

ah K 2 r—2
|5 (@ ), »)l| = oyl = )] ~)

and that
’ ah ( 2 r—2
(gla,—%u,ymuyn — ol ).

From this and the inequality in (i) it follows that

afe

il ; G
12 @)l + (3 |§{f{ﬂf?y}|)||’y|| > (/2P )l
i=1 Lok

for t € [0, 1] and (z, %) in a perhaps smaller neighbourhood contained in U.
Consider the vector field X (z,7,¢t) on R""! x R defined by

X(Ia y:f]' — "Vf”z
(0,0,1) when y =20

vV when y #£0

Let us consider R" ! x R as a stratified space with {0} x R, (L —{0}) x R and
(R"1 — ) xR as strata. We wish to see that X (z,y,1) is a rugose stratified vector
field in the sense of Verdier (see [10 |). We have

af "L
Gl )l + (3 g Dl o)
i=1

da i

0 fi “~ df
> 15 @l + (U 152 @ Dl

=1

2 (C/2) Iyl I

It follows that
IVf (g, )l = (C/20n+ D)yl (20l
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Since also |h(z, )| = ol ||ly]|*|l (:r.,y]|lr_2], we get that

¥y = L o).

IvrI? IV f (g0l
This proves that X restricted to the strata [0} x R and (R""! — L) x R satisfies
Verdier'rugosity condition. That X restricted to the strata {0} x R and (L —
{0}) x R satisfies Verdier'rugosity condition is obvious. Let us now consider the
strata (L — {0}) x R and (R*"! — L) x R. Given (z0,0,%5) € (L — {0}) x R, we
need to prove that there exists a neighbourhood V" around (g, 0, ¢5) and a constant
' = 0, such that for every pair (x,0.) and (2', ', #') in this neighbourhood we have
||"Y($? U! t) - X(I’? y‘? t!)” S C"(T 0: t:' - (m;’ y: tl’) ||

We will need the following Lemma

Vel =

Lemma. Let gl(n) be the space of n x n matrices equipped with the usual FEucledean
norm (by identifying gl{n) with R”z), Let A € Sym(n). Then dist{ A, A(n)) = |A|
where X is an eigenvalue of A with minimal absolute value.

Proof. This is left to the reader.

For each (z, 4;, t) let D? s (ft)(z.y) be the linear operator on R™ with matrix repre-

sentation ( i/ (z,y ) We find that Dy(fﬂ)(.l, 0) = D“P( . From (ii) in the

1()@’3
Theorem and the lemma above it follows that || D} P(x)e|| = Cllz]|" ?[jo] for any
vector v € R™. Since h is of the form Y y‘ythj(fr_y) where the r — 2 jet of
1<i,7<n
each hy; at 0 is 0, it is easy to see that we must have |[(D3P(2) — D2(f;)(x,0))v| <

(C/2)||2||"~2||e|| for all t € [0,1] in a neighbourhood ofO and any vcct01 v e R™
From continuity it follows that given (x4,0,f;) we can find a neighborhood V
around (xg,0,t0) such that || D7 (f:)(x,0) — Da(fi)(z,9)|| < (C/4)|=|"* for all

(@,9,t) in this neighbourhood where this timc in abuse of notation, ||...| de-

notes the operator norm. Let V, fi(z,y) = ( ('r (T [ dfi (x,y)). We have
n

IV fo nyr a, ty)ydt. From a.bove, we get that for (z,y,¢) € V, we

have

il
IVF(@.u. ) = [Vyfilz,9)l|l = IIf0 Dy (fe)(, ty)ydt|| > || DyP(x)y| -

1 1
[ (D2P(x) — D2(fi)(x,0))yl|dt — f (D2 (fe) (., ty) — Di(fi)(z,0))ylldt >

Cllzl"llwll = (C/2)l=" 21yl = (/D" >yl = (/D" >(lyll.
. P2
Since |h(z, y)| = o(|lyl*[| (=, w)[I" ), we get that

1o L) = W — o,
VA V£l

Verdier’s rugosity condition for the strata (L —{0}) x R and (R*"! — L) x R follows
directly from this. So since X is rugose, we can integrate this vectorfield and obtain
a continous flow. Since the vectorfield is tangent to every level-surface of f with
t-component of form 1+ o||(x,y)||) and other components equal o(||(x,4)||) the
flow will obviously trivialize the family f; and it will also fix the L-axis, proving
that fo = P and f; = P+ h are R}-equivalent.
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£3. Examples.

We will now give examples of sufficient jets with line singularities. These examples
are all given in [9 |, where it is shown that regarded as smooth functions they are
infinitely determined among functions with line singularities. We will show that
they are sufficient in é'[‘[": regarded as r-jets.

1) Pla,y) = zy*. We have |—||| z,y)| = ¥*|[{z,y)||, so (i) of (2) holds with

r = 3. Furthermore D.P(x) = 'r) hence dist(D2P(x),A(1)) = || and (ii) of (2)
also holds with » = 3. So P is sufficient.

2} Plz,y) = 22y +y", r > 3. Let us first consider the case » = 3. Assume |z} = |yl
Then |z| > L = 2|zly’|| (=, 9]l = 35v°

and (i) holds since P is a 4-jet. Assume > |z|. Then |y| = %H(.Eq)" We have

P ; : oP ;
I‘ﬁ—yl = [22%y + 3y”| = §¥°, and we get 551 2 5759 1(x,y)|l, so (i) holds also

r—2

: ; dapP )
in this case. Let v > 3. Then e 22%y + ry" 1. Assume that 222 < Syl
oy

ar
Then |z| < |yl, so |y| = %H(.r,g)” Futhermore Ia[ > Ely|" %, and therefore
f)P

> Lyl = Cy?||(z,y)||" 2 for a suitable constant C. So (i) holds since P

apP
is an r-jet. Assume that 2z% > Zly|"=?. We have |0—| = 2zly?. If |z| > |y|, we

apP
will then get |,—||| z,y)| = %y l(z, v)||°, and (1} hnldq since P is an r > 4-jet.
T gr—2 3 e P £
It Jyl 2 fal, o] 2 I 2 Ol 0)] 7 Lyl 2 2087 (2 )5
Now since r > 4, 5 < r — 2 and (i) holds. For all r we have D? y ) = (2?) and
di st(D P(z),A(1)) = 2?, and (ii) also holds. It follows that P is sufficient for all
r>3.

3) P(z,y) = (v} + v3)(2? + v} + ¥3). We have

apP d
|5 (@ )l )l + ZI—(r Dllyll =
2[||lyl|* || ¢, )| +2{|y1i+ lw=2])( iz
. 2 0
so (i) holds since P is a 4-jet. Furtermore we have DjP(:r:} — [ 0 ,,.‘2} . and it is

easy to see that d'rlst(D:jP{.-::}, A1) = 22, so (i) holds and P is sufficient.
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