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Introduction

These notes are intended to give a sketchy introduction to some fundamental notions of toric

geometry, i.e., geometry of toric varieties, with applications to singularity theory in mind. Toric

varieties and their singularities provide a particularly interesting and rich class of examples: On
the one hand, though it is a restricted class, these varieties illustrate many concepts of great
importance for the general study of algebraic varieties and their singularities. Quoting from

the introduction to FULTON's notes, "tone varieties have provided a remarkably fertile testing
ground for general theories". On the other hand, they admit a surprisingly simple description in
terms ofobjects coming from elementary convex and combinatorial geometry, namely, "rational"
convex polyhedral cones (and compatible collections thereof) in a real vector space, with its real

dimension equal to the dimension of the variety.
The attribute "tone" refers to the algebraic torus of algebraic group theory. In the complex

setting that we are dealing with exclusively, the complex algebraic n-torus is an n-fold product

(C*)Th, endowedboth with its group structure and its structure as an affine algebraic variety. (The
reader should note that this is not the usual torus of topologists, though the complex algebraic
n-torus contains the real compact n-torus (81)m as an equivariant deformation retract.) A tone

variety is a normal algebraic variety containing a torus as an open dense subset such that the

group structure extends to a natural torus action on the variety. It turns out that many familiar

algebraic varieties actually are toric. Basic singularities like the two- and the three-dimensional

quadric cones N(xy - z2) c C3 and N(xy - zw) C C4 are toric, too. Toric methods allow
to construct and study many more singular varieties with interesting properties, and they also

provide an accessible way of "resolving" these singularities.
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In our miuicourse, we focus on basic parts of the theory that are indispensable if one wants
to apply toric methods as a tool for singularity theory. The picture thus obtained is by no

means complete: Many interesting applications to singularity theory, let alone to other parts of
mathematics, have to be left out.

The reader should be familiar with elementary concepts of algebraic geometry: Affine com-

plex algebraic varieties and their morphisms are in one-to-one (arrow-reversing) correspondence
to finitely generated reduced C-algebras and their homomorphisms, since the elements of the

algebra yield the regular functions on the variety, and the points of the variety correspond to

the maximal ideals of the algebra. Subvarieties correspond to ideals; they are the closed sets of
the Zariski topology. Affine varieties can be glued along isomorphic (Zariski) open subsets. If
the resulting space satisfies a natural separation property, it is called an algebraic variety. All

varieties to be considered here are of finite type, i.e., they can be covered by finitely many open
affine subspaces.

We will exclusively deal with normal varieties, i.e., the "coordinate algebras" corresponding
to their affine open subsets are normal domains. (We recall that an integral domain is called
normal if it is integrally closed in its field of fractions.)

Besides of these fundamental notions of algebraic geometry, the reader should be familiar

with the basic language of group actions (orbits, invariant subsets, isotropy subgroups, fixed

points).

1 Algebraic tori
An "algebraic n-torus" T := T is by definition the n-fold direct product (C*)' of the
multiplicative group C* of non-zero complex numbers. It is both an algebraic variety and
a group, even an "algebraic group", i.e. the group operations

Tx T	 , T,(t,t')	 u'
and

T , T, t

are morphisms of complex algebraic varieties. A homomorphism between algebraic tori
is both a group homomorphism and a morphism of algebraic varieties. A homomorphism
x: T -* C is called a character of the torus T, the set of all characters forms a free
abelian group X(T) Hom(T, C*) of rank n, in fact

M := , X(T), = (1,...,Rm) f: t= (t1,. ..,t) t' :=ft' . ..

is an isomorphism. So a character x is nothing but a Laurent polynomial in the coordinates
t1,. . . ,t, and the torus T, being an affine algebraic variety, has as its coordinate ring the
Laurent algebra

C.
xEX(T)
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A homomorphism o: C -+ T7, is called a one parameter subgroup, and

N := Z	 , Hom(C*, Ta), v = (v1, . . . ,v)	 ,: S 1-4 (su1, . . . ,

is again an isomorphism. We shall use the letter M in order to denote ZTh if we identify
E M = Z with the character xc, and then even write x instead of i; if we deal with

one parameter subgroups, we write N = Z and usually replace ii with a. We could have
defined M := X(T) and N := Hom(C*, T) - the only difference between the left and the
right hand side is the fact that the group operation is written as addition and not as
multiplication. That is important, since in the following we shall consider both

MR:=M®zRR and Nn:=N®zRR'

and use their "vector space geometry".
There is a natural pairing

Mx N

where Kx is defined by the requirement

(x a oz) (S) s' V C

for the homomorphism x a :	 C*. We use the same notation for the extended
pairing

MR x NR -+ R,
which agrees with the standard inner product on	 M

	

NR.
The following complete reducibility property of algebraic tori is basic in the sequel:

Consider an algebraic action

TxVV, (t,v)t.v

of the torus T on a finite dimensional (complex) vector space V by linear automorphisms,
i.e. the map V -+ V, v F-* t v, is a linear automorphism of the vector space V for every
t E T. For example, given a character x E X(T), the definition t v := X(t)v provides
such an action. Then any linear action of a torus T is a direct sum of such actions via
characters: Given an action of T on V, we associate to every character x E X(T) its
"eigenspace"

V :={v E V;t"v =(t)v, Vt E T}.
Then

V= ED vx,
XEX(IF)

where V {O} for at most finitely many x E X(T), i.e. V is a finite direct sum of
nontrivial eigenspaces.
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2 Definition and examples of tone varieties
Definition 2.1. A (T-)toric variety consists of a normal algebraic variety X together
with an effective algebraic action

Tx X	 , X, (t, x)	 x

and a distinguished point x0 E X with trivial isotropy group, such that the orbit T x0 C X
is open and dense in X. A morphism : X -* Y of T-toric varieties (or for short a
"toric morphism") is an equivariant morphism (i.e. respecting the T-actions), mapping
the distinguished point of X to the distinguished point of Y.

Example 2.2. 1. Take X T with T acting on itself by group multiplication and
: e	 1) E T.

2.	 Take X:=C' DT with t.x:=(tixi,...,tx) and x,, :=(1, .... 1)eC.

3.	 Take X : JP with t" [x] : [x0, t1x1, . . -, txj and distinguished point [1,. . ., 1].

4.	 Every nonempty open T-invariant subset U C X of a tone variety is itself a toric

variety.

Remark 2.3. Using the open embedding T -f X, t H-+ t" x0, we regard T as open
subset of X and write T C X, with e e T as distinguished point. Then a toric morphism
X -f Y restricts to the identity from T C X to T C Y; in particular, there is at

most one toric morphism from X to Y.

The investigation of toric varieties is based on

Theorem 2.4 (Sumihiro). Every point a e X admits an affine open T-invariant neigh-
bourhood U C X.

Thus, in order to investigate toric varieties, it suffices to consider finitely many affine
toric varieties X D T and to study how they can be patched together to a toric variety X.

3 Affine toric varieties and cones
Remember that an affine variety is completely determined by its ring 0(X) of regular
functions, and since T C X is dense in X, the restriction of functions provides an injective
algebra homomorphism 0(X) -+ 0(T). So we have to hunt for subalgebras A C 0(T) of
the form

A = O(X)IT C 0(T)

with an affine toric variety X D T. Now the action of T on X induces an action

T x 0(X) 0(X), (t, f) ft, ft (x) := f(t x).
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Of course 0(X) is not a finite dimensional vector space (except for the trivial case X

{x0}), but the T-action is "locally finite", i.e., for every regular function f 0(X), the
functions ft, t e T, generate a finite dimensional (T-invariant) subspace on which T acts

linearly. In order to see that consider the pull back of functions

0(X) -f 0(T >< X) = 0(T) ® 0(X)

corresponding to the action T>< X -+ X. The image of f 0(X) then is a finite sum

E 0(T),h E 0(X),

in particular ft	 g(t)h, and thus all "translates" ft, t T of f belong to the vector

space generated by the finitely many h E 0(X). As a consequence,

O(X) = ED 0(X),,
XEX(T)

the decomposition into eigenspaces. For X T that decomposition looks as follows

0(T) =

	

C.
xEXCIF)

So for the T-invariant subalgebra 0(X) C 0(T) we have the following alternative: Either

0(X) {O} or 0(X) C, so

0(X) = ED cx
with

	

XES

S = S() :=	 X(T)	 M; 0(X)

	

O}.

Since 0(X) is an algebra, the set S() C X(T) is a subsemigroup of the (multiplicative)
group X(T) of all characters of the torus T, i.e., 1 E S() and y, x' E S() = xx' E S().
Furthermore, since 0(X), by assumption, is integrally closed in 0(T) C Q(0(X)), we
see that S() C X(T)is "saturated", i.e. if x' E S() for some k E N>1, then also x E S(s):
The polynomial yk - E 0(X) [Y] is an integral equation for x" Finally, 0(X) being a

finitely generated C-algebra, S() C X(T) is finitely generated as a semigroup.
In order to understand the structure of the semigroup S C X(T) better, the "additive

point of view", i.e., considering S C M C MR R, turns out to be more convenient.
Then it satisfies

OES;x,x'ES

	

x+X'ES

as well as

kx E S with some k E N>0 = x E S
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SNxi+...+NX

with finitely many generators xi,.. . , Xr e 5, since 0(X) is a finitely generated C-algebra.
Such a set can be interpreted "geometrically": The set

:= R>0 S C MR

of all finite linear combinations of vectors in S with non-negative real coefficients is a

"polyhedral cone"

(1)

	

TR>OXi+...+RˆOXr

satisfying
S=flM.

Furthermore, 'r is not contained in any hyperplane, since otherwise the quotient field

Q (0(X)) would have transcendence degree n - 1.

Conversely, given a cone of the form (1) with x,. . . , Xr E M and not contained in

any hyperplane, the semigroup S := fl M is finitely generated (although not necessarily
by Xi, . . ,Xr), and the maximal spectrum

XT := Sp(C[r fl MJ)

of the semigroup algebra

C[flM]:=	 C

	

C 0(T),
XETflM

defines a toric variety, with the T-action corresponding to the T-action On C[rflM] C 0(T)
and the distinguished point x0 being the image of 1 e T Sp(0(T)) with respect to the

morphism T -* X induced by the inclusion C[ fl M] C 0(T).

Definition 3.1. Let L Z7' be a "lattice" and V := L := L ® R. A Subset C V is
called a polyhedral cone if there are finitely many vectors v1, . . . , Vr E V such that

y = R>0v1 +... + R>0v

or, equivalently, if it is the finite intersection of closed linear half spaces. It is called an
L-cone (or lattice cone or L-rational cone) if we can choose v1, . . . , yr E L. A cone is
called strongly convex if it does not contain a line. We define dim := dim span(),
where span(r) := 'r + (-r) is the linear subspace spanned by T.
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So we have seen that affine toric varieties X D T are in one-to-one-correspondence to
polyhedral M-cones T C Ma of dimension n. Obviously an inclusion of such cones r C r'
induces a morphism X' -X in the opposite direction.

For various purposes, it is important to have a "covariant" description. This can be
achieved by passing from r C Ma to its "dual" cone

:= {v E NR; (Y,V) ˆ O} C Na

where (r, v) > 0 means that (w, v) > 0 holds for all w e 'r. - The analogous definition
applies to cones in NR, providing cones in Ma. The reader should note that dualization
of cones does not necessarily preserve the dimension.

Proposition 3.2. The dualizatiori of cones

defines an order reversing bijection between ri-dimensional polyhedral M-cones in Ma and
strongly convex polyhedral N-cones in NR. Furthermore

= T.

Now define for a strongly convex polyhedral N-cone a C Na the toric variety

:= X = Sp(C[o fl M]).

The elements E fl M are characterized by the fact that E 0(T) extends to a regular
function on X. There is a dual interpretation for the elements a E a fl N: We have
a E a fl N if a: C' -* T C X extends to a map C -* Xa. This is seen as follows:
Choose semigroup generators Xi e 6- fl M, i = 1, . . . , r; they define a closed embedding
x -+ cr (which is even "equivariant", i.e. respects the T-operations, if we let act t Ton
the i-th component of a vector in cr by multiplication with yj (t)). Then a one parameter
subgroup a extends to C if that is true for all

Xi 0 Q : C*	 ,v C C C, s

iff(X,a)ˆ0fori=1,...,riff6-,a)ˆ0iffaE95- =a.
In order to understand affine open T-invariant subspaces of X we need:

Definition 3.3. Let a C NR be a strongly convex polyhedral cone. A face 'r of a is an
intersection 'r = ker(y) fl a, where ço e Nf M a linear form such that > 0. In that
case we write - a. - A face of codimension one is called a facet.

We remark that a face of a strongly convex polyhedral N-cone a C NR is again
a strongly convex polyhedral N-cone, and that one always can choose the linear form

X E M C Ma. Furthermore, any inclusion r C a of (strongly convex polyhedral)
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N-cones induces an equivariant morphism X -+ X restricting to the identity from
T c X to T c X. If r = ker() - a is even a face of a, then that morphism is an open
embedding, an isomorphism onto the principal open subset (X,-) := {x e Xe-; x(x) ˆ O}.
(Remember here that x extends to a regular function on Xa because of '(x a) ˆ 0.)
Because of that we shall from now on regard X- as an open subset of X,-.

Theorem 3.4. Let a C N be a strongly convex polyhedral N-cone. Then there is an
bijection between the set of faces of a and the T-orbits in Xa,

a - r H- O := T (lima(s)),

where c e lies in the "relative interior" , i.e., in the interior of as topological subspace
of span(r). The orbits O- C X are locally closed subsets of dimension

dimO = n - dim 'r.

Moreover the correspondence is "order reversing", i.e., 'y -< r iffO C O.
In particular O = T for the zero cone o := {0}, and if dim a = n, then O = {x7}

consists of the unique fixed point of X.

Example 3.5. Assume that a R>oai + ... + R>oa with a basis a, . . . , a7 of the
free abelian group (lattice) N. Denote Xi, . . . , Xn the corresponding dual basis of M, i.e.,
(x3, a) = . Then Xg C with the action

tz= (XI (t)zi,...,n(t)zn)

and the distinguished point (1,..., 1). The faces of a are the cones aA :=
with subsets A C {1,. . . , m}. The corresponding orbit is

OA-{(zl,...,zfl),z-0

	

iA}.

Proof of Theorem 3.. We use induction on dima. For dim or = 0, we have a o := {0}
with X0 = T. In general, we apply the following

Proposition 3.6. Let a C NR be an r-dintensional strongly convex polyhedral N-cone.
Then there are decompositions

(2) TTxT.

with tori Ta	 (C*) ', T,' -= (C*)'-' and

(3) XaZaXT 01

with a T,-tone variety Za and T acting on itself by translation.
01
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Proof (of the proposition). The intersection Na := span(a) fl N C N is a saturated sub-
group of rank dima (a being N-rational), i.e. ha E Na = a E Na holds for a E N and
Ic e N>o. Then N/Na has no torsion and thus is free; in particular there is a complemen-
tary subgroup N C N such that N Na N. There is a corresponding decomposition
T = Ta x T4: Take a basis (ai,.. . , a) such that a1,, . . , a generate Na, and . . , a
the complementary submodule N. Since a : T -* T, t -* (ai (t),. . . , a, (t)) is an iso-
morphism, we can choose Ta	 a_l((C*)T x (1,. . . , 1)) and T4

	

1) x (C*)Th_T).

Then Na C N resp. N C N is the lattice of one-parameter groups of Ta C T resp.
T4 C T. Now choose Za as the T,-tone variety associated to the cone a C (Na)a. C

Let us continue with the proof of Theorem 3.4: As a consequence of the above result,
there is a one-to-one correspondence between (T-) orbits in Xa and T,-orbits 0 C Za via
0 -* 0 x T4. It thus suffices to consider the case dima it. The theorem then is true by
induction hypothesis for the Xr C Na with a proper face - a. It remains to show that

F:=Xa\UXr
r-<a

consists of one point, the unique fixed point of the T-action and limit of all one-parameter
subgroups a E . Take non-trivial generators Xi, . . . , Xr of the semigroup a n M and
consider the associated closed embedding Xa CT. Since the principal open sets (Xa)xi
are of the form Xv-, the set F is contained in the set of all zeros of the Xi, and since the
Xi generate O(Xa), the set F contains at most one point. Choose a E . Then we have
(Xi, a) > 0 for i = 1,. . . , r, whence it follows that 0 = lim$Ho a(s) E Na. Obviously there
are no fixed points in any Xr C Na for a proper face r a.

	

C

Orbit closures. Let us consider an orbit closure Y : 0r Na - C with some
equivariant embedding Na + CT. From 3.4 applied to N. Z. x Ti', we see that T is
the isotropy subgroup of any point in U- {z} >< Ta-', where Zr is the unique fixed point
of the T7--action on Z. So there is a natural action of the factor torus T/TT To-' on the
T-orbit 0 and on its closure Y. We have also a distinguished point Yo E Y: Take any
one parameter subgroup a E 4 and set yo := limo a(s). In fact, yo e O c C is the
unique point in U- that only has components 1 or 0. Denote

{v E Ma; (v, T) 0}

Then we have a vector space decomposition

0(X,) O(Xa)TT

with the subalgebra
O(Xa)TT =		CX

xEMfl&flr-'-
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of all regular function invariant under the action of the subtorus TT -+ T and the ideal

I(J)=

	

cx.
XE(&flM)\T'

Hence
	C .

XEMfláflT--

Now the characters in M n o n - are exactly those in M n a which come from a linear
form on N/NT, resp. a character of T/TT belonging to 5' for := a/ := 7r(a) with the

quotient map a: N -+ (N/N). So, finally

(4)	 Xa +'

	

=

4 The fixed point
The common subject of the courses of these three weeks at the ICTP is the geometry
of singularities. In the context of affine toric varieties Xg with an n-dimensional cone
a C NR, the fixed point Xa E Xa is a good candidate for a singularity.

First of all let us characterize the case when it is a regular point:

Proposition 4.1. Let a C N be an n-dimensional strongly convex N-cone. Then the

following statements are equivalent:

1. The affine variety X is smooth.

2. The unique fixed point of is a regular point.

3. The cone ó is of the form ö R>0)1 +

	

+R>üXn with a basis	 .	 , Xn of the

(free) lattice M.

. The cone a is of the form a = R>0 a, ++ R>oa with a basis a1,. . . , &7 of the

(free) lattice N.

5. X. C with an action

t z = (i(t)z1, . . . , x(t)z)

where Xi, . . , Xn constitute a basis of the lattice M.

Proof. "1) ==z> 2)": Obvious.

"2) == 3)": The maximal ideal m c O(X) of all regular functions vanishing at the

unique fixed point x0 E Xa satisfies

m =




ES
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with S:= ( fl M) \ {O}, while
m2 = G) CX,

XES+S

so the Zariski tangent space of X at x0 takes the form

TXOX(. = (rn/rn2)* , where rn/rn2 -ED CX

ES\(S+S)

11

with the set S\(S+S) of all "indecomposable" elements in S. Since x is a regular point,
that vector space has dimension n dim X,; so 5 \ (S + S) n. But S is generated as

a semigroup by S \ (S + 5) (prove that!), and M = S - S (For every sufficiently "long"
vector x E M fl 09 we have x + e E S with the standard basis vectors e E M = Zn).

Hence the elements in S \ (S + 5) generate M as a group and thus form a basis, since
there are only n of them.

"3) == 4)": By dualization.

"4) : 5)": Cf. Ex. 3.5.

"5) z= 1)": Obvious.

Nearest to the above situation are "simplicial cones":

Definition 4.2. An r-dimensional strongly convex L-cone a C L, is called simplicial if

with r rays (one dimensional cones) Q-i,"" . , -< a. It is called regular if, in addition,

pi = R>0a with at,..., E L occuring as part of a basis (a,,...,o) of the lattice L.

We now proceed to describe the structure of the affine tone variety Xc. corresponding
to a full-dimensional simplicial cone a. It turns out that Xc. is a quotient variety C/G
for a finite subgroup G C T that we describe first: We write a g +... + g C with
the extremal rays gj = R>0a with one parameter subgroups aj e N. Now consider the

group homomorphism

q: T -+ T, t 1-4 ai(ti)a2(t2) . ... .

It induces an injective homomorphism

dq: N -+ N, e -* cj

since the a, are linearly independent, but dq need not be surjective! In fact its cokernel

N/dq(N) is a finite group isomorphic to ker(q) C T: In order to see that, we consider
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exp: Nc	 ,' T, (z1, . . . , z)	 (e
2z1

	

, e2		)

which induces an isomorphism
N/NT

and satisfies exp o(dq ® IC) = q o exp. So we find with respect to that isomorphism

G:= ker(q) dq'(N)/N N/dq(N).

Now the homomorphism q: T -+ T extends to a morphism

since we have C = X- with & := R>0e1 +... + R>0e C N and dq(&) = a. (Note that
the extended morphism q does not respect the T-operations, but instead is q-equivariant,
i.e. we have q(t z) = q(t) q(z) for t e T, z Ca).

The group C = ker(q) C T C GLTI(C) is a group of diagonal matrices acting on
Ctm in the standard way. In fact the extended morphism q: C -* Xa gives rise to an

isomorphism

(5)

	

X=Ctm/G.

This holds for the underlying topological spaces (with respect to both, the Zariski topolo-
gies or the strong topologies on C and Xa) and also in the sense of algebraic varieties: The

regular functions on X are exactly the G-invariant regular functions (i.e., polynomials)
on C, i.e.,

O(X) O(Cn)G.

For the proof we note that Ctm/G := Sp(O(Ctm)G) is the quotient just described (for a
finite group C). Then we have a factorization of the finite (check that!) map q through
that quotient

q: Ctm -f CTh/G -* X,

so the second map is finite too, and birational, since it is an isomorphism on the dense

open subset T C X and hence, Xa being normal, an isomorphism.
If, in addition, we assume that the "ray generators" o E N are primitive, i.e., not a

multiple k@1 with some k E N>1, /3 e N, then the branch locus of the map q: C -* Xa
is at most (n - 2)-dimensional and the group C is determined by the variety X, itself.

To see that, note first that a E N is primitive if a: C -+ T is injective. Since

dq(e) cj, this implies that GflT is trivial for T := ej(C*) and all i = 1,. . . , n, in other
words: If a matrix in C has the eigenvalue 1 with a multiplicity > n - 1, it is already
the identity (In that case C C GLU(C) is called a "small" subgroup of CL(C)). So the
set Z	 C of points where the group G does not act freely is a union of coordinate
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subspaces such that dim Z n - 2. The finite map q: C -* Xa is unramified over

Xc,- \ q(Z). We now show that S(X,-) = q(Z): The inclusion "C" is clear, while "a"
follows from the fact that the set of points where a morphism between smooth varieties
is not étale (i.e., a local analytic isomorphism) has codimension 1. Eventually we note
that C" \ Z -+ Xc,- \ S(X) is the universal covering of the regular locus of Xa the

complement of the "small" subvariety Z (of codimension at least two) in C" is simply
connected. So, finally, we obtain:

G Ti(X \ S (X)).

Example 4.3. 1. Let n = 2. Consider a = R>0e + R>o(kei + £e2) C N with £> 0
and gcd(k,t) = 1. Then q : T -+ T satisfies q(ti,t2) = (tit', t) and C is the cyclic2 2
group of order £ generated by (r1', 'ij) with ij :=

If k -1 and £ 2, the semigroup oflM is generated by e, e+e, e+2e. Denote
X, '-* C the corresponding closed embedding. Since 2(e+e) = e+(e+2e), we
find Xa C Y := N(C3; z - ziz3). Finally both, X,,- and Y, are irreducible surfaces,
so X,. = Y, a quadric cone.

2.	 Let n = 3. Consider the cone a C N which is the sum of the four rays R>oe, i =

1, 2,3 and R>o(ei + e2 - e3). Then the dual cone 6 C Ma is generated by the rays
R>0e, R>0e and R>o(e		 1 2 1			 3 2		 3+ es), R>o(e + es). The vectors e, e, e + e, e + e even

generate ó fl M, since & =T1 U T2 with the regular cones T1 and 'r2 generated by the
bases e*, e*, e* * e*, e*, * I *bases e1, e2, e1 -i-- e resp. e1, e2, e2 -i- e3.

We consider the corresponding closed embedding Xc,- C4. Since e*1+(e*2+e*3)
(e*1 + e*3) + e*2, we obtain Xa C Y := N(C4; z1z4 - z2z3). Since Y is irreducible
and dim Xa = 3 dim Y, we find Xa = Y, the "Segre cone".

5 General toric varieties

As a consequence of Sumihiro's theorem (2.4), every toric variety X can be covered by
open affine toric subvarieties. We consider the following set of strongly convex polyhedral
N-cones:

A := -A (X) := {a C NR; X C X},

where X,,- c X means that there is a toric morphism Xa -+ X which is an open
embedding (it is unique then!). Clearly T -< a E A == T E A. Furthermore if , a E A,
then X,- fl X. C X is a T-invariant open affine subspace of X, hence X,- fl XT = X with
a cone 'y E A. In fact, X being separated, we have O(X) = O(Xa) . O(X-) and thus

(nM)+(nM)=(nM)resp. ó+f=-resp. aflT='yEA. Furthermore, from
the description of the one-to-one correspondence between faces of a cone a and orbits in

X,,- (see Theorem 3.4 and also Remark 5.4 below) and the fact that different orbits are
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disjoint, it follows that any two cones can only intersect in a common face. That leads to
the following

Definition 5.1. A fan in N is a non-empty set A of strongly convex polyhedral N-cones

satisfying

1. T a E A 4 T E A

2. 9,7 E A =z aflr -< or, 7- (a common face); in particular, or flr e A.

Proposition 5.2. Every fan A in NR determines a tone variety

XA := U X/
crE

where two points x' E X, x" E XT are identified if there is a point x" E X, "y a fl r,
which is mapped to x' resp. x" by the open embedding X7 -+ X resp. X -+ XT.
The Zariski topology is obtained from the quotient map p: U- Xc. -+ X.A as quotient
topology; a function on U C X is defined to be regular if its pull back is regular on

p1(U).

Example 5.3. Let N e1 := -(CJ +... + C') and

A:={aA:=R>Qe; A{1,...,n+1}}.
iCA

Then X P.

Proof of 5.3. Let N	 Hom(C*, Ta), additively written. Furthermore let a :	 R>0f1 +
+ R>of+1 with the standard basis vectors fi,..., f,,+, of N,,+, and

T	 a}

the boundary fan of a, and let A the fan in (N)R as described above.
The hoinomorphisni

q T1 , T, t (t1, . . . , t1) (t1t1,.. . , t1t1)

induces the map
dq: (Nfl+1)R , (N), f e

and thus maps cones in aa onto the cones in A. Hence q extends to a morphism

(Cl)* X		X.

Now ker(q) = D := {(s,.. . , s); s e C*}, and thus the map q is D-invariant and factorizes
over P = (Cl)*/D. In order to see that P X, consider a cone TA := >ieARˆofi E

Oa. Then

q'(X)-v

	

xDX-		 -	
TA

-
'-'TA

is the projection onto the first factor. That proves our claim.	 11
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Remark 5.4.	 1. As in the affine case, we can associate to any cone a E A an orbit

Ga via
A a	 Ga := T (lima(s)),	8-40

where a E	 , and again Theorem 3.4 and formula (4) hold. In fact, the orbit
Ga	 X is the unique closed orbit of the open subvariety Xa C XA, and the

T/Tcy-toric variety Oa -+ satisfies

Xg

with the fan A/a := {r/a; 'r A, a -< 'r} in (N/Na)jr.

2.	 A toric variety X is complete if the support A := Ua. a of A is the entire

space NR.

3.	 Let A, A be fans in N. Then there is a toric morphism X -+ X if every cone
a E A is contained in some cone T E A.

4.	 Assume that in the above situation, every cone in A is contained in some cone of
A. Then the morphism X -* X is proper* if Al = Al. In that case A is also
called a subdivision or refinement of A.

Multiplicities and divisors. The characters x E X(T) are regular functions on T C XA
and thus, rational functions on X, i.e., elements of the function field C(X). We recall
that quite generally, in order to study the zeros and poles of a rational function f E C(Z)
on a normal variety Z, one associates to every 1-codimensional irreducible subvariety
Y -+ Z a "multiplicity" vy(f) e Z (vanishing order). Since, for given f C(Z), there
are only finitely many such subvarieties with vy(f) 0, the pertinent information may
be encoded in the "divisor" (f) of f, a formal linear combination of the following kind:
A divisor D on Z is a finite formal sum

D= 1: ny-Y

where the sum runs over all 1-codimensional irreducible subvarieties Y -+ Z and the
coefficients fly are integers, such that fly 0 for only finitely many Y.

The divisor (f) of a rational function f is defined as follows:

(f):=	 vy(f).Y
Y-z

Returning to the toric case, a character x E X(T) C C(XA) has neither zeros nor poles on
T C X, and since X\T = U=1 10,2, with the rays (1-dimensional cones) g,. . . , of A,

*In the strong topology of complex varieties, "proper" means that the inverse image of a compact
subset is again compact.
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non-trivial multiplicities can only occur along the orbit closures O. Let

	

R>oa, i
1,. . . , k with primitive vectors (injective one parameter subgroups) aj E N. Then

For a proof consider a ray g R>oa with primitive a E N. Then a : C -+ T, is an

isomorphism, write now, as in 3.6, XQ = >< T C x T0 with O = 0 x To =: 0. For

f E C(XQ) then vo(f) is the multiplicity of the function s F-+ f(s, t) at s = 0 for almost
all t E T. But X(s,t) =

In general, a "toric" divisor on XA has the form

D	
k

The toric divisor obtained by assigning to each orbit closure O the coefficient nj = 1
is naturally distinguished. Without getting into any details, we just mention that its

negative

K =

is the canonical divisor that plays a very important role for studies that are outside of
the scope of the present minicourse.

6 Resolution of toric singularities
In general, smooth (i.e., non-singular) varieties are much better understood and usually
enjoy much nicer formal properties than singular ones. In studying singular varieties,
it is thus a natural attempt to "resolve" the singularities of such a variety X, i.e., to
find a non-singular "model" X together with a proper morphism X - X that is an

isomorphism on the complement of the singularities. Slightly more generally, allowing
some regular points also to be "resolved", we may look for a proper morphism X - X
from a smooth variety that is an isomorphism between open dense subsets. The general
resolution of singularities is rather involved. For complex varieties, it has been achieved

by a celebrated result of HIRONAKA.
Resolution of singularities in the case of toric varieties is much more accessible: We

recall that a general toric variety X is smooth if and only if the fan A = A(X) is

regular, i.e., it consists only of regular cones (see Prop. 4.1). Furthermore, we recall from
Remark 5.4 that a subdivision A' of a (general) fan A corresponds to a (torus-equivariant)
proper morphism -+ X that induces an isomorphism on the common open invariant

subvariety X11 for A" := A fl A'. Hence, finding a regular subdivision provides an

equivariant resolution of singularities.
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Theorem 6.1 (Equivariant resolution of toric singularities). For every tone vari-

ety, there is a regular subdivision of the defining fan and thus, an equivaniant resolution

of singularities.

We first discuss the proof in the case of toric surfaces since it can be dealt with most

explicitely: It is the lowest dimension where singularities can occur; these singularities
are necessarily isolated, and since a two-dimensional fan is necessarily simplicial, the

singularities are of the nice "quotient" type discussed in §4. At the end of the section, we
sketch the main ideas for the proof in the general case.

Theorem 6.2 (Equivariant resolution of toric surface singularities). For every
tone surface, there is a unique minimal regular subdivision of the defining fan and thus,
a canonical equivariant resolution of singularities.

To obtain this canonical subdivision, it clearly suffices to prove the statements for
cones.

Lemma 6.3. For every affine toric surface, there is a unique minimal regular subdivision

of the defining cone and thus, a canonical equivariant resolution of the singularity.

Before starting the proof, we first associate to a simplicial cone a of arbitrary dimension
d m an integer ma e N>1 called its multiplicity that measures its "non-regularity".

Definition and Remark 6.4 (Multiplicity of a simplicial cone). To each d-dimen-
sional simplicial cone a := gj spanned by the rays 03 = R>oa with primitive
generators cj E N, one assigns its multiplicity ma as follows: Let Na := N fl (a - a)
be the saturated sublattice cut out by the linear hull of a, and put F := Zuj, the
sublattice spanned by the primitive generators of the rays. Then

ma := [Na : La] E N>1.

(For an n-dimensional simplicial cone a, this multiplicity coincides with the order of the

group G studied in §4.) For later use, we note the equivalence

ma = 1	 a is regular.

We now prove Lemma 6.3.

Proof. Let a = cone(ai, a2) := R>0a1 + R>0a2 be a two-dimensional cone spanned by
primitive lattice vectors aj E N.

The proof proceeds by induction on ma. For ma = 1, we are in the smooth case, so
there is nothing to prove. For ma > 1, there is a lattice basis e1, e2 of N Z2 with

a2 = e2	 and	 a1 = ,\e1 - ice2 with 1ic <).=m,.
Subdividing the cone a by the ray R>0e1 yields the regular cone a' cone(ei, e2) and the

complementary cone a" := cone(ai, ej) with multiplicity ma" ic < ).






18

	

G.Barthel, K.-H.Fieseler, L.Kaup

By induction hypothesis, this cone a" admits a unique minimal regular subdivision.
To show uniqueness and minimality of the "total" subdivision of a thus obtained, it
essentially suffices to see that removing the ray R>0e1 spoils regularity of the "final" cone
that contains e2. By hypothesis, the slope of the ray through a1 satisfies the inequality
-1 < -ic/A < 0, so cone(ei, e2) is the largest regular subcone that contains e2.
Exercise 6.5. 1. Given two primitive lattice vectors v1,v2 E Z2 with det(vi,v2) = m > 1, prove

that there exists a (positively oriented) lattice basis (e1, e2) and an integer q with 1 ˆ q < m,
gcd(m,q) = 1 such that v1 = me, - qe2 and v2 = e2.

2.	 In the proof of the lemma, show that the first subdivision yields a resolution of the singularity if
and only if i = 1.

3.	 Show that the maximal number of necessary subdivisions equals m -1, and characterize the case
when this occurs.

The basic idea of the proof of the general Tone Resolution Theorem 6.1 is to proceed
in two subdivision steps: In the first step, the fan is made simplicial without introducing
new rays. In the second step, the simplicial fan thus obtained is made regular. Both steps
rely on the following process called "stellar subdivision".

Remark and Definition 6.6 (Stellar subdivision). Let a be a cone and let be a
ray contained in a. (Note that need not be a face of a.) Then the set of all cones

s(a) : {, + ;		a, fl Q	 o}

is a fan subdividing a. It is called the stellar subdivision of a with respect to .
If A is a fan containing the ray in its support, then its stellar subdivision with respect

to g is the fan
s0(A) := s(a)

aE

where s(a) := (a), the fan consisting of a and all its faces, for çt a.

For the "simplicialization" step, we apply stellar subdivision with respect to rays of
the fan.

Lemma 6.7 ("Simplicialization"). Every fan admits a simplicial subdivision without
additional rays.

Outline of the proof. We call a ray g E A in a fan A free if in every cone a E A containing
as an edge, all the other rays lie in a single "complementary" facet r E 0a, i.e., we have

a Q + . Clearly E A is free if s(A) A, so in particular, becomes a free ray in
8,2 (A). If another ray ' A is already free, then it remains free when regarded as ray of

s6(A). Furthermore, A is simplicial if all its rays are free.
Now successively applying stellar subdivision with respect to the rays 91, . . , Qk of the

fan A yields a sequence A0 = A, A1,. . . , Ak of successive subdivisions, where A+1 is
obtained from A by stellar subdivision with respect to gj. Using the properties stated
above, it is clear that in the final fan Ak, all rays are free, so the final fan is a simplicial
subdivision of A.	 11
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Whereas the minimal regular subdivision in the surface case is unique, the result of
the simplicial subdivision depends on the chosen order of the rays, even if the resulting
simplicial fans are regular.

Exercise 6.8. For the three-dimensional toric singularity considered in example 4.3, part 2, show that
there are exactly two different simplicial subdivisions without additional rays and that the resulting fans
are regular.

Lemma 6.9 ("Regularization"). Every simplicial fan admits a regular subdivision.

Outline of the proof. We only sketch key ideas. One works through the "skeleta" of in-

creasing dimension, making these regular by introducing new rays and subdividing the
fan using these new rays so that it remains simplicial and that it gets "more regular"
at each step. This is measured by the "total" multiplicity m := max,-EA mc,-: In the
case = 1, the fan is regular. For = m > 1, one takes a non-regular cone a of
smallest dimension d and of maximal multiplicity among all d-dimensional cones, and

applies the following procedure: One chooses a new ray -y V L\ that passes through the
relative interior of a. Applying the stellar subdivision process with respect to yields a
new simplicial fan. One shows that the new ray may be chosen in such a way that the
new d-dimensional cones obtained in the process have lower multiplicity, and that the
total multiplicity does not increase. By induction, this yields the proof.

Exercise 6.10. Consider the three-dimensional singular simplicial cone a spanned by v1 = e1, v2 = e2,
and v3 =	 j ej.

1. Prove that its boundary fan is regular.

2.	 Prove that the new ray	 w spanned by w	 V3 - e3 passes through the relative interior
of a and that the stellar subdivision with respect to it yields cones of smaller multiplicity.

7 References

Standard references for toric varieties are the books Combinatorial Convexity and Algebraic
Geometry by Günter EWALD (Springer GTM 168, 1996), Introduction to Toric Varieties by
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Algebraic Geometry by Tadao ODA (Springer Ergebnisse 15, 1988).

Furthermore, we have used the notes Vorlesungen über torische Varietdten by one of us
(Ludger KAUP, Konstanzer Schriften in Mathematik und Informatik 130, 2001, web address:
http: //www. inf . uni-konstanz . de/Schriften).

Searching the web unveils quite a few lecture notes on toric varieties. In particular, we have
profited from the notes written by David Cox (http://www.antherst.edu/dacox/) for the
"Tone Summer School" at the Institut Fourier in Grenoble, 2000 (see http: II
www-fourier . uj f-grenoble. fr/Thonavero/articles/ecoledete/ecoledete . html)
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