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1 Introduction and an example

Milnor’s fibration theorem is about the topology of the fibres of holomorphic

functions
�

n+1 f→ �
near their critical points. Let us illustrate this with an

example which was the motivation for outstanding results in this direction
in the early 60’s, including Milnor’s theorem.

Consider the Pham-Brieskorn polynomial

f(z0, ..., zn) = za0
0 + · · · + zan

n , ai > 1 .

It is clear that the origin 0 ∈ �
n+1 is the only critical point of f , so the fibres

Vt = f−t are all complex n-manifolds for t �= 0 and V = f−1(0) is a complex
hypersurface with an isolated singularity at 0.

We want to study the topology of V and of the V ′
t s. For this let d be

the least common multiple of the ai and define an action Γ of the non-zero
complex numbers

� ∗ on
�

n+1 by:

λ · (z0, · · · , zn) �→ (λd/a0z0, · · · , λd/anzn) .

Notice this action satisfies:

f(λ · (z0, · · · , zn)) = λd · f(z0, · · · , zn) .

Hence V is an invariant set of the action and one has the following properties:

1.1) Restricting the action to t ∈ � + we get a real analytic flow (or a vector
field) on

�
n+1 whose orbits are real lines (arcs) which converge to 0 when t

tends to 0, they escape to ∞ when t → ∞ being transversal to all spheres
around 0, and they leave V invariant (i.e. if an orbit meets V then it is fully
contained in V ).

1.2) Restricting the action to the unit circle {eiθ} we get an � 1-action on�
n+1 such that each sphere around 0 is invariant and for each (z0, ..., zn) �= V

we have
eidθf(z0, · · · , zn) = f(eiθ · (z0, ..., zn))

that is, if we set ζ = f(z0, · · · , zn), then multiplication by eiθ in
�

n+1 trans-
ports the fibre f−1(ζ) into the fibre over eidθ · ζ.

Each of these two properties has important implications. The first prop-
erty (1.1) implies:
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V ∩ � 2N−1
r

Figure 1: The conical structure

1.3) V intersects transversally every (2n + 1)-sphere � r around the origin;
hence the intersection Kr = V ∩ � r is a smooth manifold of real dimension
2n − 1 embedded as a codimension 2 submanifold of the sphere � r;

1.4) the flow determines a 1-parameter group of difeomorphisms that pre-
serve K, thus the diffeomorphism type of Kr is independent of the choice of
the sphere � r; and

1.5) the embedded topological type of V in
�

n+1 is determined by the pair
( � r, Kr), i.e. the pair (

�
n+1, V ) is homeomorphic to the (global) cone over

the pair ( � r, Kr).

3



The manifold K = Kr (for some r) is called the link of the singularity.
The manifolds that arise in this way have been studied by several authors
that have obtained remarkable results. We refer to Chapter 1 in [18] for an
overview of the topic, including a large bibliography.

On the other hand, the second property (1.2) above implies that for con-
stant |t| = δ > 0 the fibres f−1(t) are all diffeomorphic and we have a locally
trivial fibre bundle over the circle Cδ = {t ∈ � ∣∣ |t| = δ} :

f : f−1(Cδ) −→ Cδ . (1.6)

Figure 2: The Milnor fibration.

Furthermore, notice one can restrict the map f to the unit sphere � 2n+1

and define

φ :=
f

|f | : � 2n+1 \ K −→ � 1 . (1.7)

We see from the previous discussion that the � 1 action Γ on
�

n+1 pre-
serves the unit sphere and leaves the link K invariant; thus it also carries its
complement � 2n+1 \K into itself. Furthermore, (1.2) tells us that the orbits
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of this action are also transversal to the fibres of φ and carry fibres of φ into
fibres of φ, showing that (1.7) is also a locally trivial fibre bundle (actually
equivalent to that in (1.6)). Both of these are known as the Milnor fibration
of f , and we will indicate in the following section how they generalize to
other situations. But before doing so, let us have a brief look at the topology
of the fibres in the above fibrations. Since all fibres are diffeomorphic, it is
enough to look at the fibre over 1:

f−1(1) = V1 = {za0
0 + · · · + zan

n = 1} .

The first significant results regarding the topology of these fibrations were
obtained by F. Pham. To explain his results, let Ga denote the finite cyclic
group of ath roots of unity. Given the integers {a0, · · · , an}, denote by J =
J(a0,··· ,an) the join:

J = Ga0 ∗ Ga1 ∗ · · · ∗ Gan ⊂ � n+1 ,

which consists of all linear combinations

(t0 ω0, · · · , tn ωn)

with the ti real numbers ≥ 0 such that t0 + · · · + tn = 1 and ωj ∈ Gaj
. Note

that J can be identified with the subset P = P(a0,··· ,an) defined by:

P = {z ∈ V1 | z
aj

j ∈ � and z
aj

j ≥ 0 , for all j = 0, · · ·n} .

To see this notice that P can also be described by the conditions:

zj = uj|zj| , uj ∈ Gaj
, tj = |zj|aj , for all j = 0, · · · , n .

Hence P is contained in the manifold V1. The set P is known as the join of
Pham of the polynomial f . It is not hard to see that V1 has P as a deformation
retract and therefore its homotopy type is that of P. In fact, given a point
z ∈ V1, first deform each coordinate zj along a path in

�
chosen so that the

trajectory described by z
aj

j is the straight line to the nearest point on the
real axis, that we denote by ẑj. This carries z into a vector ẑ = (ẑ0, · · · , ẑn)
satisfying ẑ

aj

j ∈ � for each j, and it is clear that this deformation leaves V1

invariant. Now, whenever one has that ẑ
aj

j < 0, move ẑj along a straight
line to 0 ∈ �

. Hence the point ẑ = (ẑ0, · · · , ẑn) moves along a straight line
towards a point ž = (ž0, · · · , žn) ∈ V1 whose coordinates are all ≥ 0 and one
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has that each coordinate žj is necessarily of the form tj ωj for some tj ≥ 0
and some ωj ∈ Gaj

. Finally move ž along a straight line to the point in P
given by ž/(t0 + · · · + tn). This gives a deformation of V1 into P that leaves
this set invariant, so the join P is a deformation retract of V1. It is now an
exercise to show that P has the homotopy type of a wedge (or bouquet) of
spheres of real dimension n. Moreover, the number of spheres in this wedge
is (a0 − 1) · (a1 − 1) · · · (an − 1). Thus we have obtained:

1.8 Theorem (Pham). The variety

V(a0,··· ,an) := {z ∈ � n+1 | za0
0 + · · · + zan

n = 1 } ,

has the join J = Ga0 ∗Ga1 ∗· · ·∗Gan ⊂ �
n+1 as a deformation retract, where

Ga is the finite cyclic group of ath-roots of unity. Thus V1 has the homotopy
type of a bouquet

∨
� n of spheres of dimension n, the number of spheres in

this wedge being [(a0 − 1) · (a1 − 1) · · · (an − 1)].

2 The classical fibration theorem of Milnor

Consider now, more generally, a holomorphic function

(U ⊂ � n+1, 0)
f−→ (

�
, 0) ,

defined on an open neighbourhood U of the origin in
�

n+1 with a critical
value at 0 ∈ �

. Assume for simplicity that 0 ∈ �
n+1 is the only critical point

of f in U . Let V be the singular variety defined by f , i.e. V := {f−1(0)};
thus V ∗ = (V \ {0}) is a smooth complex manifold of dimension n. We
know (by work of Milnor and others) that one has in this general setting
similar properties to those of the Pham-Brieskorn singularities explained in
the previous section, the main difference being that in the general setting
one must restrict the discussion to a “sufficiently small” neighbourhood of
the singular point. Let us explain this briefly. First, one has that V is locally
a cone: there exists ε > 0 sufficiently small so that given the ball � ε in

�
n+1

centred at 0 of radius ε, one can construct a vector field (flow) similar to the
one in the previous section given by the � +-action: its orbits are transversal
to all the spheres in � ε centred at 0, and it leaves V ∩ � ε invariant. Hence
each sphere � ε′ in

�
n+1 centred at 0 of radius ε′ ≤ ε meets V transversally.

The intersection Kε = V ∩ � ε is a smooth manifold of real dimension 2n− 1

6



embedded as a submanifold of the (2n + 1)-sphere � ε. The diffeomorphism
type of the manifold Kε and the isotopy class of the pair ( � ε, Kε) does not
depend on the choice of the sphere � ε; the pair ( � ε, Kε) is homeomorphic to
the cone over the pair ( � ε, Kε), where ( � ε is the ball bounded by � ε, so that
the topology of V near 0, and its embedding in

�
n+1, are determined by the

pair ( � ε, Kε). The manifold K = Kε is called the link of the singularity and
the pair ( � ε, Kε) is called an algebraic knot (notation introduced by Lê Dũng
Tráng in 1971, [6])

One may thus consider the obvious map:

φ =
f

|f | : ( � ε \ Kε) → � 1 .

2.1 Theorem (Milnor, 1968). This is a (locally trivial) C∞ fibred bundle.

Milnor gave two proofs of this theorem; we already had glimpses of both
of them in the previous section; each proof brings out different insights and
lends itself to different generalizations. Let us sketch the key-points in each
of them.

1st Proof: This is along the lines of the above proof of (1.7). The idea is
simple: first show that the map φ has no critical points at all, so the fibres
of φ are all smooth, codimension-1 submanifolds of ( � ε \Kε); then construct
a tangent vector field on ( � ε \Kε) which is transversal to the fibres of φ and
the corresponding flow moves at constant speed with respect to the argument
of the complex number φ(z), so it carries fibres of φ into fibres of φ. This
proves one has a product structure around each fibre of φ. For this, to begin,

Milnor shows that the critical points of ( � ε\Kε)
φ→ � 1 are exactly the points

z = (z0, . . . , zn) where the vector
(
i grad(log(f))

)
is a real multiple of z. For

this, setting f/|f | = eiθ(z), notice that φ assigns to each z ∈ �
n the argument

of the complex number f(z), i.e.

φ(z) =
f

|f |(z) := eiθ(z) ,

and therefore the argument of this map satisfies:

θ(z) = Re (−i log f(z)) .
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An easy computation then shows that given any curve z = p(t) in
�

n\f−1(0),
the chain rule implies:

dθ(p(t))/dt = Re 〈dp

dt
(t), i grad log f(z)〉 , (2.1.1)

where 〈·, ·〉 denotes the usual hermitian product in
�

n. Hence given a vector
v(z) in

�
n based at z, the directional derivative of θ(z) in the direction of

v(z) is:
Re 〈v(z), i grad log f(z)〉 .

Since the real part of the hermitian product is the usual inner product in � 2n,
it follows that if v(z) is tangent to the sphere � 2n−1

ε then the corresponding
directional derivative vanishes whenever

(
i grad(log(f))

)
is orthogonal to the

sphere, i.e. when it is a real multiple of z; conversely, if this inner product
vanishes for all vectors tangent to the sphere then z is a critical point of φ.

Once we know how to characterize the critical points of φ and how the
argument of the complex number φ(z) varies as z moves along paths in � ε\K,
Milnor makes a sharp use of his Curve Selection Lemma (see [9]) to conclude
that φ has no critical points at all. This part is a little technical and we refer
to Milnor’s book (Chapter 4) for details. It follows that all fibres of φ are
smooth submanifolds of the sphere � ε of real codimension 1. In order to show
that φ is actually the projection map of a C∞ fibre bundle one must prove
that one has a local product structure around each fibre. This is achieved in
[9] by making a sharper use of (2.1.1) to construct a vector field w on � ε \K
satisfying:

i) the real part of the hermitian product 〈w(z), i grad log f(z)〉 is identically
equal to 1; recall that by equation (2.1.1) this is the directional derivative of
the argument of φ in the direction of w(z).

ii) the absolute value of the corresponding imaginary part is less than 1:

|Re 〈w(z), grad log f(z)〉| < 1 .

Consider now the integral curves of this vector field, i.e. the solutions p(t)
of the differential equation dz/dt = w(t). Set eiθ(z) = φ(z) as before. Since
the directional derivative of θ(z) in the direction w(t) is identically equal to
1 we have:

θ(p(t)) = t + constant .
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Therefore the path p(t) projects to a path which winds around the unit circle
in the positive direction with unit velocity. In other words, these paths are
transversal to the fibres of φ and for each t they carry a point z ∈ φ−1(eito)
into a point in φ−1(eito+t). If there is a real number to > 0 so that all these
paths are defined for, at least, a time to then, being solutions of the above
differential equation, they will carry each fibre of φ diffeomorphically into all
the nearby fibres, proving that one has a local product structure and φ is
the projection of a locally trivial fibre bundle. Milnor proves this by showing
that condition (ii) above implies that all these paths are actually defined for
all t ∈ � , so we arrive to Theorem 2.1. �

2nd Proof: This is along the lines of (1.6) above and this was the original
approach followed by Milnor in [8] to prove (2.1) when f has an isolated
critical point at 0 ∈ �

n+1; however theorem (2.1) holds also if 0 ∈ �
n+1

is a non-isolated critical point, as proved in [9] and sketched above. This
second method for proving (2.1) consists of showing that given a map-germ

(
�

n+1, 0)
f→ (

�
, 0) one has the following Milnor-Lê fibration theorem.

2.2 Theorem. Let � e be a sufficiently small sphere in
�

n+1 centred at 0
and choose δo > 0 small enough with respect to ε so that all the fibres f−1(t)
with |t| ≤ δ meet � ε transversally. For each δ > 0, δ ≤ δo, let Cδ

∼= � 1 be
the circle in

�
of radius δ and centred at 0, and set N(ε, δ) = f−1( � δ)∩ � ε.

(N(ε, δ) is usually called a Milnor tube for f) Then:

f |N(ε,δ) : N(ε, δ) −→ Cδ
∼= � 1 ,

is a fibre bundle, C∞-equivalent to the bundle in (2.1).

In his book Milnor proved in the general that the fibres of the map φ
in (2.1) are diffeomorphic to the fibres in 2.2, but he only proved that 2.2
is a fibre bundle when f has an isolated critical point. The general case
was proved by Lê Dũng Tráng using the fact that in this situation (when
the target is 1-dimensional) the maps satisfy the af -condition of Thom. For
simplicity, here we restrict to the isolated singularity case.

Given ε > 0 as above, then the fact that

f : N(ε, δ) \ f−1(0) → Cδ ,

is a fibre bundle is essentially a consequence of Ehresmann’s fibration lemma;
this follows by Thom’s transversality together with the fact that, since 0 ∈ �
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is an isolated critical point, the map f in (2.2) is a surjection and we can lift
a vector field on the circle to a vector field on the tube N(ε, δ), transversal to
the fibres of f . That this fibration is equivalent to the one in (2.1) is proved
by showing that there exists a vector field on � ε \ f−1(0) whose solutions
move away from the origin being transversal to all the spheres around 0,
transversal to all the tubes f−1(C ′

δ) , d′ ≤ do, and preserving for all times
the argument of the complex number f(z). This allows us to “inflate” the
Milnor tube f−1(∂ � δ) ∩ � ε to become the complement of a neighbourhood
of the link K in the sphere � ε, taking the fibres of the fibration (2.2) into
the fibres of the map φ in Theorem 2.1.

Notice (2.2) implies that the fibres of Milnor’s fibration are diffeomorphic
to complex Stein manifolds of dimension n in

�
n+1, hence the theorem of

Andreotti-Frankel implies they have the homotopy type of a CW-complex
of middle-dimension n. When f has an isolated critical point at 0 Milnor
proves more: the fibres of φ have the homotopy type of a bouquet ∧ � n of
n-spheres. The number of spheres in this wedge is by definition the Milnor
number of f , an important invariant of f .

For instance the Milnor fibre of the Morse singularity z2
o + z2

1 + · · · z2
n is

diffeomorphic to the total space of the tangent bundle of the unit sphere � n,
so it has Milnor number 1.

3 Generalizations

Several natural generalizations of this theorem have been considered by var-
ious authors. We mention here some of them.

i) The target is not
�

but
�

m, i.e. one considers holomorphic functions�
n −→ �

m. The case n ≤ m is interesting for several reasons but for our
viewpoint here the relevant case is n > m. In 1971 H. Hamm [3] considered
complete intersection germs

f : (
� n+k, 0) → (

� k, 0) ,

and proved a fibration theorem in this context. Notice that in this case, since
the critical points of f are the points where the rank of the jacobian matrix
drops down, if k > 1 and 0 ∈ �

k is a critical value, then the critical values of
f are necessarily an analytic subset ∆ ⊂ �

k of dimension > 0 containing 0;
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the set ∆ is called the discriminant of f . Hence one can not possibly expect
to have a fibration over a small punctured disc � δ around 0 ∈ �

k as one does
when k = 1. However, if 0 ∈ �

n+k is an isolated singularity of V = f−1(0),
then Hamm proved that one has a fibration over � δ \∆ analogous to that in
(2.2), and the fibres have the homotopy type of a bouquet ∧ � n of n-spheres,
just as in the case of hypersurface singularities.

We remark however that (as noticed by Lê Dũng Tráng) this theorem
is false in general if the critical points of f are non-isolated in V (see Lê’s
example in [18]).

ii) Given f̃ : (
�

N , 0) → (
�

, 0) holomorphic and an analytic singular variety
X ⊂ �

N , one may consider the restriction f of f̃ to X. The concept of
critical points of f on X makes perfect sense once we equip X with a Whitney
stratification (Goreski-MacPherson, Lê and others). It is proved in [5] that
one has in this case a fibration theorem as in (2.2); these are called Milnor-Lê
fibrations and they have given rise to a vast literature.

iii) Consider real analytic germs f : (U ⊂ � n+k, 0) → ( � k, 0). This situation
was first considered by Milnor himself in his book [9] and several authors have
worked on this topic afterwards. This is explained in the following section.

A specially interesting case is when the real analytic map f is of the form
hḡ with h and g holomorphic, or a sum of functions of this type. These
situations are also discussed below.

4 On real analytic germs with a Milnor fibra-

tion

Our basic references for this section are [15, 17] (see also [13] and chapters
VI to VIII in [18] for more on the subject).

For real analytic germs, Milnor’s fibration theorem in [8, 9] states:

4.1 Theorem. Let ( � n+k, 0)
f→ ( � k, 0) be the germ of a real analytic map

with an isolated critical point at the origin. Then for every sufficiently small
sphere � ε = ∂ � ε around 0 ∈ � n+k one has that the complement � ε \ K of
the link K = f−1(0) ∩ � ε fibres over the sphere � k−1.

The proof of this result is by noticing first that for δ > 0 sufficiently small
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the tube f−1( � 1
δ) ∩ � ε fibres over the circle � 1

δ ⊂ �
of radius δ (just as in

(2.2) above), and then constructing a vector field that ”inflates” this tube
taking it into the complement of (a regular neighbourhood of) the link in the
sphere; see [9] or [18] for details.

When the map f is from
�

n+1 into
�

and is holomorphic, Milnor shows
that one actually has a much richer structure, as indicated before:

i) first, one does not actually need to have an isolated critical point of f to
have such a fibration: here the critical value is automatically isolated and this
is enough in this case to have a fibration. For real analytic germs, isolated
critical value is not enough in general (see [13]).

ii) for holomorphic germs the projection map φ : � ε\K → � 1 can be taken to
be the obvious map φ = f/|f |; as Milnor shows in his book, this statement is
false in general when f is not holomorphic, even if one does have a fibration;

iii) the fibres F of φ are parallelizable manifolds with the homotopy type of
a CW-complex of dimension n, and the link K is (n − 2)-connected.

The geometry of these fibrations associated to holomorphic singularity
germs has given rise to a rich literature, as for instance the theory of fibred
knots and links, open book decompositions, the results of Lawson and others
about codimension 1 foliations, etc. This is not the case for the real analytic
germs. There are various reasons for this, in particular because it is difficult
to find examples of real analytic singularities with an isolated critical point,
and it is even harder to study their underlying geometry, such as the topology
of the link and of the fibres, the monodromy, etc.

Several natural -related- problems arise, as for instance: i) find examples
of real analytic germs with isolated singularities and describe their underlying
geometry; ii) relax the conditions in Milnor’s fibration theorems in order to
include larger families.

These questions have been addressed by several authors in various ways;
we begin by discussing here briefly some general facts about real analytic
germs with a Milnor fibration as above, and giving examples of such singu-
larities. For simplicity we restrict the discussion to real analytic functions
f : ( � n, 0) → ( � 2, 0), n > 2.

4.2 Definition. We say that the map f satisfies the Milnor condition at 0
if the derivative Df(x) has rank 2 at every point x ∈ U − 0, where U is an
open neighbourhood of 0 ∈ � n, i.e. if f is a local submersion at every point
in a punctured neighbourhood of 0 ∈ � n.
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One has the above theorem (4.1) of Milnor for functions satisfying 4.2. For
instance, every complex valued holomorphic function with an isolated critical
point in its domain satisfies these conditions, and so does if we compose such
function with a real analytic diffeomorphism of the source

�
n+1 or of the

target
�

, but these are somehow “fake” examples of real analytic functions.
The interesting point here is to find examples which are honestly real analytic.
As Milnor pointed out in his book, the hypothesis of Df having maximal
rank everywhere near 0 is too strong and it is difficult to find such examples
since the generic case is to have real curves in � 2 converging to (0, 0), whose
inverse image contains points where the Jacobian matrix has rank less than 2.
Milnor actually asked whether there exist “non-trivial” examples satisfying
the condition of 4.2. This question was answered positively by Looijenga
[7] for n even and by Church and Lamotke [2] for n odd, using Looijenga’s
technique. However, no explicit examples of such singularities are given
in those articles. The first explicit non-trivial example of a real analytic
singularity satisfying the Milnor condition at 0, other than those of Milnor,
was given by A’Campo [1]. This is given by the map

�
m+2 → �

defined by

(u, v, z1, ..., zm) �−→ uv(ū + v̄) + z2
1 + ... + z2

m , (4.3)

which is not holomorphic due to the presence of complex conjugation.
In [17, 15] there are given infinite families of singularities satisfying Mil-

nor’s condition, which are somehow in the same vein as (4.3). Before ex-
plaining these examples, let us look at a more subtle question for which we
introduce the following notation from [15]:

4.4 Definition. Let f = (f1, f2) : ( � n, 0) → ( � 2, 0) be analytic and satisfy
the Milnor condition at 0. Let K be the link; f satisfies the strong Milnor
condition at 0 if for every sufficiently small sphere � ε around 0, the map

f

|f | : � ε − K → � 1

is the projection of a fibre bundle.

As shown by Milnor himself in [8, p. 99], there exist examples satis-
fying the condition 4.2 but not the stronger condition 4.4. So the question
is: given a real analytic map-germ f satisfying the Milnor condition (4.1),
when does it satisfy the strong Milnor condition? This question was first
studied by Jacquemard in [4] where he gave two conditions that were suffi-
cient to guarantee that a map f that satisfies condition (4.2) satisfies also
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the strong Milnor condition. The first condition (A) is geometric: that the
angle between the gradient vector fields of its components (f1, f2) = f be
bounded; the second condition (B) is algebraic: that the integral closures
of the jacobian ideals of f1 and f2 in the ring of local analytic map-germs
coincide. The second condition (B) was relaxed in [15] and later Araujo dos
Santos and Ruas [14] improved these results giving a condition in terms of
Bekkas’s c-regularity for a map-germ to satisify the strong Milnor condition.
They also proved that if a map-germ satisfies Jacquemard’s conditions (A)
and (B) (or the weaker condition in [15]) then it satisfies c-regularity, but
not conversely. As an application they proved that for quasi-homogeneous
germs, conditions 4.2 and 4.4 are equivalent.

The first explicit families of examples of real singularities satisfying the
Milnor conditions were given in [17] (see also [15, 18]). These singularities
satisfy (4.4) and they are quasi-homogeneous; in fact the results in [15, 18]
for these singularities were the starting point for the interesting work in [14].
These are defined in � 2n ∼= �

n by:

f(z) = za1
1 z̄σ1 + · · · + zan

n z̄σn , ai > 1 , (4.5)

where (σ1, · · · , σn) is any permutation of (1, · · · , n). Notice these are remi-
niscent of the Pham-Brieskorn singularities f(z) = za1

1 + · · ·+ zan
n and they

are called in [18] twisted Pham-Brieskorn singularities.
The proof that these singularities define Milnor fibrations

φ =
f

|f | : � 2n−1 \ K −→ � 1 ,

is similar to that of (1.7): first prove that φ has no critical points at all,
so that all its fibres are smooth, codimension 1, submanifolds of � 2n−1 \ K,
and then use the weights a1, · · · , an and the permutation (σ1, · · · , σn) to
construct an explicit � 1 action on � 2n−1 that leaves the link K invariant and
transports fibres of φ into fibres of φ.

The obvious problem now is to study the topology of these singularities,
and this is essentially an open problem when n > 2. The simplest case is
when the permutation (σ1, · · · , σn) is the identity, so that the singularities
are of the form:

f(z) = za1
1 z̄1 + · · · + zan

n z̄n , ai > 1 .
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This case was studied and answered in [15] by proving that these singular-
ities are topologically (not analytically) equivalent to the Pham-Brieskorn
singularities:

za1−1
1 + · · · + zan−1

n ,

whose topology is well understood.
For n = 2 the remaining case is when f is of the form:

f(z1, z2) = zp
1 z̄2 + zq

2 z̄1 , p, q > 1 .

This case was studied and answered in [12]. The results in that article,
together with [10], imply that the link K = f−1(0)∩ � 3 of these singularities
is isotopic to the link of the complex singularity defined by

ĥ(z1, z2) = z1 z2 (zp+1
1 + zq+1

2 ) , (4.6)

but their corresponding Milnor fibrations are not equivalent. Actually one
has that the real analytic singularity

h(z1, z2) = z̄1 z̄2 (zp+1
1 + zq+1

2 ) , (4.7)

also satisfies condition (4.4) and its Milnor fibration is equivalent to that of
f , by [10, 12]. The components of K corresponding to the axes z1z2 = 0 get
different orientations in (4.6) and (4.7), in a sense that can be made precise,
and this implies (by [10]) that the corresponding Milnor fibrations:

�
3 \ K

h
|h|−→ �

1 and �
3 \ K

bh

|bh|−→ �
1 ,

are not equivalent: the fibres have different Euler characteristic and the
monodromy maps have different period (see [12]).

5 Singularities fḡ and Milnor fibrations for

meromorphic germs

We notice that the singularities (4.6), as well as A’Campo’s example (4.3)
for m = 0, are all of the form fḡ with f, g being holomorphic functions in
two complex variables. This type of singularities also appeared already in
Lee Rudolph’s work [16]. This motivated the study in [11, 13] of singularities
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in
�

N of the form fḡ. Notice that the zero-set of fḡ is {f = 0} ∪ {g = 0},
so for N > 2 the link K = {fḡ = 0} ∩ � 2n−1

ε is necessarily a singular
variety and fḡ must have non-isolated critical points. Yet, the following
theorem is proved in [13]. This says that the full fibration theorem of Milnor
for complex singularities (in the case of non-isolated critical point) remains
valid for singularities fḡ, including the statements about the topology of the
fibres.

5.1 Theorem. Let f, g : (U ⊂ �
n+1, 0) → (

�
, 0) be holomorphic maps on

an open neighbourhood U of the origin in
�

n+1 such that the real analytic
map

fg : (U, 0) → ( � 2, 0)

has an isolated critical value at 0 ∈ � 2. Let K = (fg)−1(0) ∩ � 2n+1
ε be the

link of fg. Then the map:

φ :=
fg

|fg| : � 2n+1
ε \ K −→ � 1 ⊂ �

is the projection of a
� ∞ (locally trivial) fibre bundle, whose fibres Fθ are par-

allelizable manifolds, diffeomorphic to the complex manifolds (f/g)−1(t)∩
◦

� ε,
where t ∈ �

is a regular value of the meromorphic function f/g, with |t|
small, and

◦
� ε is the interior of the disc in

�
N whose boundary is � ε. Hence

each fibre has the homotopy type of a CW-complex of dimension n.

The proof of this result essentially follows step by step Milnor’s proof
(with some extra work sometimes). A key step for proving this result is
the observation that away from the link K the map φ = fg

|fg| equals the

meromorphic map φ̂ = f/g
|f/g| . Thus Theorem 5.1 can be regarded as a theorem

for meromorphic germs, with essentially the same proof (see [13] for details).
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