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Chapter I. Analytic functions of several complex variables and analytic
varieties

1. Analytic functions of one complex variable

Let D be an open set in the complex plane C and f a complex valued
function on D.

Definition 1.1. We say that f is analytic at a point a in D if there is a power
series Y <o ¢n(z — a)", which converges at each point z in a neighborhood of a,

such that
1) =Y ealz - )"

in a neighborhood of a. We say that f is analytic in D if it is analytic at every
point of D.

Definition 1.2. We say that f is holomorphic at a point a in D if the limit
o flath) — f(@)

h—0 h

exists. We say that f is holomorphic in D if it is holomorphic at every point of D.

The above limit, if it exists, is denoted by %(a) and is called the derivative
of f at a. If f is holomorphic in D, then we may think of fg— as a function on D.

Let z = x ++/—1y with = and y the real and imaginary partrs, respectively.
We may think of f as a function of (z,y). We write f = u + /—1v with u and v
the real and imaginary partrs.

In general, we say that a function of real variables is (of class) C", if the par-
tial derivatives exist up to order r and are continuous. If all the partial derivatives
exist we say it is C°.

Theorem 1.3. The following are equivalent:

(1) f is analytic in D,

(2) f is holomorphic in D,

(3) f is Ct in (z,y) and satisfies the “Cauchy-Riemann equations” in D;

ou_ov  ou_ o
ox oy’ oy Oz’
Note that, if we introduce the orerators

0 1 /0 0 0 1 /0 0
=-i(my) = mmi(m )
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we may write the Cauchy-Riemann equation as

of
%—0.

If this is the case, we have %z{ = %i
We finish this section by recalling the Cauchy integral formula. Let f be an
analytic function in a neighborhood of a and 7 the boundary of a small disk about

a, oriented counterclockwise. Then we have

1 f(z)dz
vt/ z-a 1

2. Analytic functions of several complex variables

Let C* = {2 = (21,...,2n) | z; € C} be the product of n copies of C. For
an n-tuple v = (v1, ..., vp) of non-negative integers, we set 2 = 21" --- 2, |v| =
v+ +rv, and v =l

Let D be an open set in C™ and f a complex valued function on D.

Definition 2.1. We say that f is analytic at a point a in D if there is a power series

Yoz —a)" =3, L s0Cum.va (21 —@1)" -+ (20 — an)™, which converges
absolutely at each point z in a neighborhood of a, such that

fl2)=) ealz—a)

in a neighborhood of a. We say that f is analytic in D if it is analytic at every
point of D.

The following can be proved by a repeated use of the Cauchy integral for-
mula:

Theorem 2.2. The following conditions are equivalent :
(1) f is analytic in D.
(2) f is continuous and is analytic in each variable z; in D, fori=1,...,n.

It is known that we may remove the continuity condition in (2) above (Har-
togs’ theorem). From Theorems 1.3 and 2.2, we have :

Theorem 2.3. The following are equivalent :
(1) f is analytic in D.
(2) f is C' and satisfies the Cauchy-Riemann equation g ) grg D), Jor g =

1,...,n.



In the sequel, we call analytic function also a holomorphic function and use
the words “analytic” and “holomorphic” interchangeably.
Note that, if f is holomorphic, for arbitrary v, the partial derivative

0" f ol f

dzv z{* -+ Oz

exists and is holomorphic in D. If f(z) = > ¢,(z — a)” is a power series expansion
of f, then each coefficient ¢, is given by
19%f
CU - “IE azu (a)-

This series is called the Taylor series of f at a.

Let D be an open set in C™ and f : D — C™ a map. We say that f is
holomorphic if, when we write f componentwise as f = (f1,...,fm), each f; is
holomorphic. Let D and D’ be two open sets in C" and f : D — D’ a map. We say
that f is biholomorphic, if f is bijective and if both f and f~! are holomorphic.

It is not difficult to see that the composition of holomorphic maps is holo-
morphic.

For a holomorphic map f = (f1,..., fm) from an open set D in C" into
C™, we set
ofy ofr
_ 3 o
B, | "8 . T
a'(zlg.--qzn) aj:fwn E 6‘;‘:}7}
0z Oz,

and call it the Jacobian matrix of f with respect to z.

Definition 2.4. We say that a point a in D is a regular point of f, if the rank of
the Jacobian matrix (9(f1,..., fm)/9(#1,...,2a)) (@), evaluated at a, is maximal
possible, i.e., min(n, m). Otherwise we say that a is a critical (or singular) point of

f.

When n = m, the determinant of the Jacobian matrix is called the Jacobian
of f with respect to z. Thus, in this case, a is a regular point of f if and only if
det (O(f1,-.-, fn)/0(21,--.,2n)) (a) # 0. If we denote by u; and v; the real and the
imaginary parts of f;, we compute :

3(“11”13"%%1’151’1’1) — deta(fla""}fn) 2.

2.5 det
( ) ¢ ‘9(371:91:-—-11771,%) 3(21,...,2,,,)

The following two theorems show how a holomorphic map looks like in a
neighborhood of a regular point. Without loss of generality, we may only consider
maps f from a neighborhood of the origin 0 in C" into C™ with f(0) = 0.
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Theorem 2.6 (Inverse mapping theorem). Let f be a holomorphic map from
a neighborhood of 0 in C™ into C™ with f(0) = 0. If 0 is a regular point of f, then
there are open neighborhoods U and V' of 0 such that f is a bitholomorphic map from
U onto V.

This theorem follows from (2.5), the inverse mapping theorem in the real
case and the Cauchy-Riemann equation. From this theorem, we get the following
theorem as in the real variable case.

Theorem 2.7 (Implicit function theorem). Let f be a holomorphic map from
a neighborhood of the origin 0 in C™ into C™ with f(0) = 0. We assume that 0 is
a regqular point of f.

(I) Suppose n > m. Thus the rank of the Jacobian matriz is m and, by renumbering
the functions and the variables, if necessary, we may assume that

a(fl:' k afm)
HNz1y..sZm)

In this case, there exist neighborhoods U and V of 0 in C™ and a biholomorphic
map h from U onto V with h(0) = 0 such that

det (0) # 0.

CF 0 (21,0 mg iy e vos i) = KLy smme Zati)

for (21,...,2,) in a neighborhood of 0.
(I1) Suppose n < m. Thus the rank of the Jacobian matriz is n and we may assume

that o )
1y+-1tm
det —-——~——--a(z1’ - (0) #0.

In this case, there exist neighborhoods U and V of 0 in C™ and a biholomorphic
map h from U onto V with h(0) = 0 such that

LD M2 o) = (Baes o5%py0; 5405 0)

for (z1,...,2n) in a neighborhood of 0.

(IIT) Suppose n > m. Thus the rank of the Jacobian matriz is m and we may

assume as in (1) that '
3(f1: ) fm)

3(2:1, LIRS zm)

In this case, there is a holomorphic map g from a neighborhood of 0 in C*~™ into
C™ with g(0) = 0 such that

det (0) # 0.

f(gl(zm-l-]a sy z'n.)a v }gm(zm+1$ sy z'n,)'s Zm4ly ey z‘n.) =0
4



for (Zm+1,...,2n) tn a neighborhood of 0.

Remark 2.8. In the case (I) above, f is a submersion in a neighborhood of 0, in the
case (II), f is an embedding in a neighborhood of 0 and in the case (III), we may
solve the equation

i T, -

for z1,..., z;, as functions g1, ..., gm Of (Zm+1,--.,2,) in a neighborhood of 0 and
the set f~1(0) is the graph of the map g = (g91,---,gm)-

The following theorem can be proved as in the one variable case.

Theorem 2.9 (Uniqueness of analytic continuation). Let D be an open con-
nected subset of C"™ and let f and g be holomorphic functions in D. If there is a
non-empty open set U in D such that f =g on U, then f =g on D.

The following can be proved using the corresponding result in the case of
one variable.

Theorem 2.10 (Maximum principle). Let D be a connected open set in C"
and let f be a holomorphic function in D. If there is a point a in D such that
|f(a)| = |f(2)| for all z in a neighborhood of a, then f is a constant function on D.

3. Germs of holomorphic functions

We list , for example, [GR] and [Mat| as references for this section. Let
H be the set of functions holomorphic in some neighborhood of 0. We define a
relation ~ in H as follows. For two elements f and g in H, f ~ g if there is a
neighborhood U of 0 such that the restrictions of f and g to U are identical. Then
it is easily checked that ~ is an equivalence relation in H. The equivalence class of
a functionf is called the germ of f at 0, which we also denote by f, if there is no
fear of confusion. We let O,, be the quotient set of H by this equivalence relation.
The set O,, has the structure of a commutative ring with respect to the operations
induced from the addition and the multiplication of functions. It has the unity
which is the equivalence class of the function constantly equal to 1.

If we denote by C{z1,...,2,} the set of power series which converge abso-
lutely in some neighborhood of 0, this set also has the structure of a ring. Since,
as in the one variable case, f ~ g if and only if f and g have the same power series
expansion, we may identify O, with C{z1,..., z,}.

In what follows we denote by R a commutative ring with unity 1. A zero
divisor in R is an element a in R such that there is an element b # 0 in R with
ab=0. A ring R # 0 is an integral domain if there are no non-zero zero divisors,
ie, if ab =0, for a, b € R, then a = 0 or b = 0. As a consequence of Theorem
2.9, the ring O, is an integral domain. Thus we may form the quotient field of O,,,
which we denote by M,,. Each element in M, can be expressed as f/g and two
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expressions f/g and f'/g’ stand for the same element if and only if f¢’ = f'g. We
call an element of M,, a germ of meromorphic function at 0 in C™.

We say that an element v in a ring R is a unit if there is an element v in R
such that uv = 1. it is not difficult to see that a germ « in O, is a unit if and only
if it is the germ of a function u with u(0) # 0.

We say that an ideal [ in a ring R is mazimal if I # R and if there are no
ideals J with I & J G R. This is equivalent to saying that the quotient R/I is a
field. Let m denote the set of non-units in O,. Then it is an ideal in O,,. Moreover,
we have the following proposition.

Proposition 3.1. The ideal m is the unique maximal ideal in O,.

A ring with a unique maximal ideal is called a local ring.

We analyze the structure of the ring O, by induction on n. First, for a
germ f in O, we write f = Z|v|>0 a,z¥. We say that the order of f is k, if a, =0
for all v with |v| < k and a,, # 0 for some v with |vp| = k. We define the order
of the germ 0 to be +00. We say that the order of f in z, is k, if the order of
f(0,...,0,2,), as a power series in z,, is k. In this case, if k is finite, we also say
that f is regular in z, (of order k). Then we have;

Lemma 3.2. If the order of [ is k, then we may find a suitable coordinate system
(C1y..-,Cn) of C™ such that the order of f in (, is k.

We consider the ring O, [z, ] of polynomials in z, with coefficients in O, _,

On-1lzn] = { f(2) = a0 + @120 + -+ akz,fi | a; € On—1 }.
Definition 3.3. A Weierstrass polynomial in z, of degree k is an element h of
On—1[2n] of the form

h=ag+a1z, + -+ a;c_lz;i_l + zﬁ,

where k is a positive integer and ag, a,...,ax—1 are non-units in O, _;.

Note that in the above, h(0,...,0,2,) = zF. Hence the order of h in z, is
k. In general, any germ f in O, is written as

f(z)=ao+aizn+ - +arzh + -

with a; € Op_1. The order of f in z, is k if and only if ag,ay,...,ar—1 are non-
units in O, _1 and ag is a unit in O, _. In this case, a;l(ao + a1z, + - +agzk) is
a Weierstrass polynomial in z, of degree k. The Weierstrass preparation theorem
stated below shows that such an f is essentially equal to a Weierstrass polynomial
of degree k.
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Theorem 3.4 (Weierstrass division theorem). Ifh is a Weierstrass polynomial
in z, of degree k, then for any germ f in O,, there exist uniquely determined
elements q in O, and v in Op_1[2,] with deg r < k such that

f=qh+n

Moreover, if f is in On_1[z,], so is ¢. Thus we also have a division theorem in the

Theorem 3.5 (Weierstrass preparation theorem). Let f be a germ in O,
which is reqular in z, of order k. Then there is a unique Weierstrass polynomial h
in zn of degree k such that f = uh with u a unit in O,.

Next we discuss some important properties of the ring O, which follow
from the above theorems. First we recall some more terms from algebra. Let R
be an integral domain. An element a in R is irreducible if a is not a unit and if
the identity a = bc for elements b and ¢ in R implies that either b or ¢ is a unit.
Note that 0 is not irreducible. We say that R is a unique factorization domain, or
simply a UFD, if every element a in R which is not 0 or a unit can be expressed as
a product of irreducible elements in R and the expression is unique up to the order
and multiplications by units. It is known that if R is a UFD, so is the polynomial
ring R[X] in the variable X (Gauss’ Theorem).

Theorem 3.6. The ring O,, is a unique factorization domain.

Let R be a UFD. For elements a¢ and b in R, there is always the greatest
common divisor ged(a,b), which is unique up to multiplication by units. We say
that a and b are relatively prime if ged(a, b) is a unit. For a point z in C*, let O, ,
be the ring of germs of holomorphic functions at z, which is naturally isomorphic
with O,,. Using Theorem 3.5, we can also prove that if f and g are relatively prime
in Oy, then they are relatively prime in O,, ., for all z sufficiently close to 0.

We say that a ring R is a Noetherian ring if every ideal in R has a finite
number of generators, namely, if I is an ideal in R, there exist a finite number of
elements ai,...,a, in I such that every element a in I is written as a = E:=1 ;0
with z; € R. It is known that if R is Noetherian, so is R[X] (Hilbert basis theorem).

Theorem 3.7. The ring O, is a Noetherian ring.

The following is a consequence of the “Riemann extension theorem”, which
is proved using the Weierstrass preparation theorem.

Theorem 3.8. Let D be an open set in C" and f a function holomorphic and not
identically 0 in D. We set V ={z€ D | f(2) =0}. If D is connected, then D\'V
s also connected.
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4. Complex manifolds and analytic varieties

References for this section will be [GH] and [Ko]. The notion of complex

manifold is obtained by replacing C*° maps by holomorphic maps in the definition
of a C*° manifold;

Definition 4.1. Let M be a Hausdorff topological space with countable basis. We
say that M is a complex manifold if it admits an open covering U = {U, }aer with
the following properties :

(1) for each a, there is a homeomorphism ¢, from U, onto an open set D, in C",
for some n,

(2) for each pair (o, 3), the map @, 0p5~
Pa(Ua NUp).

The natural number n, which is uniquely determined on each connected
component of M, is called the (complex) dimension of the component. If all the
components have dimension n, we say the dimension of M is n.

Let U = {Ua}acr be an open covering as above. We call (Uy, ¢a) a (holo-
morphic) local coordinate system on M. For a point p in Uy, we call U, a coordinate
neighborhood of p and

! is biholomorphic from ¢g(Us NUg) onto

Pa(p) = (27 (P); -+, 22 (D))

the local coordinates of p (with respect to ¢,). Sometimes we identify U, with
D, by the homeomorphism ¢, -and identify p with the point (2{(p),...,2%(p)) in
D, € C". In this case we call (2f,...,2%) a coordinate system on U,. The collec-
tion {(Uq, ¥a)}acr Of pairs (Uy, po) as above is called a system of (holomorphic)
coordinate neighborhoods on M.

Examples 4.2. 1. A (non-empty) open subset in C™ is an n dimensional complex
manifold.

2. The complex projective space CP". We introduce a relation ~ in C***\ {0}
by setting, for ¢ = ({o,...,¢n) and ¢’ = (¢, ...,¢,) in C**1A\ {0}, ¢ ~ ¢’ if and
only if ¢’ = ¢ for some non-zero complex number ¢. Obviously, ~ is an equivalence
relation and the equivalence class of ((o, ..., (,) is denoted by [, - . ., (,). We may
give a complex structure on the quotient set M = (C"*1\ {0})/ ~ as follows. First,
we give the quotient topology on M. The space M is covered by n + 1 open sets.
U;, ©=0,1,...,n, defined by

Ué={[C0?--'!Cﬂ]€M|C'i#O}'
Then the map ; : U; — C" defined by

Pi{[L0snr 56n]) S G o osaGin [ Gt [y G G
8



is a homeomorphism. Moreover, it is not difficult to check that for each pair (%, 7),
the map ¢; o ;7! is a biholomorphic map from ¢;(U; N U;) onto ¢;(U; N U;).
Thus M becomes a (connected) complex manifold of dimension n, which we denote
by CP" and call the n dimensional complex projective space. We call [(p, ..., (]
homogeneous coordinates on CP™. Note that CP! is the Riemann sphere.

From the construction, the projective space CP™ ! is interpreted as the
set of complex lines through 0 (one dimensional subspaces) in C*. Likewise the
Grassmannian Gp(n) is defined to be the set of p dimensional subspaces of C™. It

admits also naturally the structure of a compact complex manifold of dimension
p(n —p) (cf. [GH] Ch.1, 5).

3. If M and M’ are complex manifolds of dimensions n and n’, respectively, the
product M x M’ has naturally the structure of a complex manifold of dimension
n+n'.

Ezercise 4.3. Let S?"*! = {(¢o,...,(n) € C"*1 | o2+ -+ + [¢n]? = 1} be the
2n + 1 dimensional unit sphere and 7 the restriction of the canonical surjection
Cn+1\ {0} — CP" to S?"*1. Show that = is surjective (thus CP" is compact) and
find the inverse image 7~ *(p) for each point p in CP".

A complex valued function f on an open set U in a complex manifold M is
said to be holomorphic if, for each local coordinate system (U,, ¢, ), the function
f o ;! is holomorphic on ¢, (U NU,). Also, a map f: M — M’ from a complex
manifold M into another M’ is said to be holomorphic if, for local coordinate
systems (Uy, pa) on M and (Vi, 1)) on M’, the map ) o f o ! is holomorphic
on o (Us N f~1(Vy)). A biholomorphic map is a bijective holomorphic map f such
that f~! is also holomorphic.

If M is a complex manifold of dimension n, since we may identify C™ with
R?" and a holomorphic map is of class C>°, M has the structure of a C*® manifold
of real dimension 2n. If (z,...,2,) is a coordinate system on a neighborhood U
of a point p in M, then writing 2; = z; + v/—1y; with z; and y; the real and the
imaginary parts of z;, we see that (z1,¥1,...,Zn, yn) is & C*® coordinate system on
U. Let Tg,, M denote the tangent space of M at p as a C°° manifold. We may
think of the vectors

0 1 0 o o 1 o d
azi_i(ﬂ“v"lé}};) and a_zf'z‘(é?ﬁv“layi)

as being in the complexification Tg,, M = Tk,, M @r C of Tg,, M. It is not difficult
to see that, if we denote by T,M and T,M the subspaces of the C-vector space
T%,p M spanned, respectively, by 8/0z21,...,0/0z, and 8/0z, . ..,8/0z,, then they
do not depend on the choice of the coordinates (21,..., z,). Thus we have:
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Proposition 4.4. For a complex manifold M we have a decomposition

Tsp M = T,M & T,M.

We call T, M and T, M, respectively, the holomorphic and antiholomorphic
parts of Tg,, M.

There is an important class of subsets in a complex manifold, namely, ana-
lytic varieties.

Definition 4.5. Let D be an open subset of a complex manifold M and V a subset
of D. We say that V is an (analytic) variety in D if, for any point p in D, there
exist a neighborhood U of p and a finite number of holomorphic functions fi,..., fr
on U such that

VvnU={geU| filg)=--=fr(qg)=0}.

We call (fy,..., fr) a system of local defining functions of V and f; =--- = f, =0
local equations for V' near p.

A variety in D is sometimes called a subvariety of D. Note that a variety in
D is a closed subset of D. If V is a closed subset of D, it is a variety in D if (and only
if) each point po in V admits a neighborhood U with the properties in Definition
4.5. A non-empty variety which is locally defined by a single (not identically zero)
holomorphic function is called a hypersurface (cf. Theorem 5.11 below).

The first part of the following is obvious from the uniqueness of analytic
continuation and the second part follows from Theorem 3.8.

Theorem 4.6. Let V be a variety in a connected open set D. If it is a proper
subset of D, it does not have interior points. Moreover, D\ V is connected.

Definition 4.7. Let V be a variety. A point p in V is called a regular point of V if
there is a system of local defining functions (fi,..., fr) of V in a neighborhood of
p such that p is a regular point of the map f = (f1,..., fr). We say p is a singular
point of V if it is not a regular point.

Note that if p is a regular point of V', by the inverse mapping theorem, we
may assume without loss of generality that » < n in the above.

Ezercises 4.8. In what follows, let p be a regular point of a variety V.
(1) Show that, if (fi1,..., fr) is a system as in 4.7, then there is a neighborhood U
of p such that V NU has the structure of a complex manifold of dimension n —r so
that the inclusion map ¢: V NU — U is holomorphic.
(2) Show that, in this situation, the differential ¢, : T,V — T,U = T, M is injective.
Thus we may identify T,V with a subspace of T,M. We call the quotient space
T,M/T,V the (holomorphic) normal space of V in M at p.

10



(3) Let (21, ..., 2n) be a coordinate system in a neighborhood of p in M. We identify
TpM with C* = {((1,...,¢n)} by taking (8/0z1,...,0/0z,) as its basis. Show that,
in C*, T,V is given by

CBR L .
B;;(p)-gjw(], = Lyenng 15

For a variety V, we denote by Reg(V') and Sing(V'), respectively, the sets
of regular and singular points of V. By 4.8, Reg(V) is a complex manifold. It is
shown that Sing(V') is again an analytic variety (cf. Ch.Ill, Proposition 5.3 and
Remark 5.4). Hence Sing(V') is a closed set in V and Reg(V') is an open set in V.
An analytic set V in D is said to be a (closed) submanifold of D if V' = Reg(V). In
this case, it is a locally closed submanifold of M.

Examples 4.9. 1. Let M be C? with coordinates (21, 22). We set f(z1,22) = 2129
and V = { (21, 22) | f(21,22) =0}. Thus V consists of two “complex lines” (z; and
zy “axes”) intersecting in C? at one point (the origin 0). By definition we see that
V'\ {0} C Reg(V), while by looking at the neighborhood structure of 0, we see that
0 is a singular point of V' (cf. Exercise 4.10, (1) below). This can be also checked
by studying the behavior of the tangent spaces of the regular part. See also Ch.III,
Proposition 5.3. Thus Reg(V)} = V \ {0}, which has two connected components
each being a one dimensional complex manifold biholomorphic to C* = C \ {0}.

2. Again let M be C2. We set f(z1,22) = 25 — 22 and let V be the variety defined
by f. By definition we see that V' \ {0} C Reg(V), while 0 is a singular point of
V (cf. Exercise 4.10, (2)). Thus Reg(V) = V \ {0}, which has one component
biholomorphic to C*. Note that V is homeomorphic to C.

3. Let M be C? with coordinates (21, 22, 23). We set f(21, 22, 23) = 2125 — 2% and let
V be the variety defined by f. Then Reg(V') is a two dimensional complex manifold
and Sing(V) is the z;-axis. The set V is called the Whitney umbrella.

4. Let M be C3. We set f(z1,22,23) = 25 — 2222 — 23 and let V be the variety
defined by f. Then Reg(V) is a two dimensional complex manifold and Sing(V) is
the z3-axis.

Exercises 4.10. (1) Let S® = { (21, 22) | |21]* + |22|* = 1} be the three dimensional
unit sphere in C2 = R%. Show that, in Example 4.9, 1, the intersection K = V' NS>
consists of two circles which are unknotted but link with each other.

(2) Show that, in Example 4.9, 2, K = V' N S? is the “torus knot of type (2, 3)”.

(3) In Example 4.9, 2, find an explicit (holomorphic) homeomorphism from C onto
V.
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(4) Let V be the variety in C* = {(z1, 22, 23, 24)} defined by the three equations :
z124 — 2923 = 0, zg — 2123 =0 and z§ — 2924 = 0.

Find Reg(V') and Sing(V). What is the dimension of each connected component of
Reg(V) ?

Consider the n dimensional complex projective space CP" with homoge-
neous coordinates [(p,...,(,] and let, for each j = 1,...,7, P;(Co,...,(,) be a
homogeneous polynomial in ({o, ..., {,) of degree d;. Then the set

V= { [Coy o0 ilud ECP" | Billopossiln) =0; 7= Lnuny® )}

is a well-defined subset of CP" and is, moreover, a variety in CP". In fact, in
each open set U; = {(; # 0}, V is defined by the holomorphic functions f; =

Pj(Cg,...,Cn)/ij, j = 1,...,7. Such a variety is called a (projective) algebraic
variety. It is known that every variety in CP" is algebraic (Chow’s theorem). In
particular, the “hyperplane” defined by (y = 0 is an n — 1 dimensional submanifold
of CP" which may be identified with CP"~!., Thus we may express CP" as a
disjoint union CP™ = C™ LCP" ™!, which leads to a cellular decomposition of CP"
:CP" =CruUC* ! U-..UCY. Using this we may compute the homology of CP" ;

Z, torp= 0,2, ..., 20,
4.11 H,(CP™,Z) =
( ) » ) { 0, otherwise.
Ezercise 4.12. For complex numbers o, 3 and 7, let V, g be the variety in CP?
defined by

V8,7 = { [€0,C1, 2] € CP? | GoC3 — (¢1 — ao)(G1 — BC0) (G — 7o) =0}

(1) Show that, if o, # and 7 are mutually distinct, V, g, has no singular points.
(2) Show that, if v # 0, Vo0, has only one singular point at p = [1,0, 0], which is
equivalent to the one in Example 4.9, 1.

(3) Show that V; 0,0 has only one singular point at p = [1,0, 0], which is equivalent
to the one in Example 4.9, 2.

5. Germs of varieties

In this section, we consider the germs of varieties and the relation between
these germs and the ideals in O,,. See, e.g, [Har| for the corresponding theory in
Algebraic Geometry.

We first introduce a relation ~ in the set of subsets of C". Let A and B be
two subsets of C". We define A ~ B if there is a neighborhood U of 0 such that
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ANU = BNU. It is easily checked that this is an equivalence relation. We call
the equivalence class of A the germ of A at 0 and we denote it also by A unless it
is necessary to distinguish the two. Usual operations of sets induce those of germs.
Thus for two germs A and B at 0, AN B, AU B and A\ B are well-defined. The
relation A C B is also well-defined.

Let f1,..., fr be germs in O,,. We choose a neighborhood U of 0 such that
these germs are represented by holomorphic functions on U, which we also denote
by fi,..., fr. We set

V(fiy..., fr)=thegerm at 0O of {2z € U | fi(2) =--- = fr(2) =0}

and call it the germ of the variety defined by fi,..., fr. More generally, let I be
an ideal in O,. By the Noetherian property of O, (Theorem 3.7), there exist a
finite number of germs fi,..., fr such that I = (fi,..., f-) (the ideal generated by
fiseeos fr). Weset V(I)=V(f1,...,fr) and call it the germ of the variety defined
by I. It is easily checked that it does not depend on the choice of generators of I.
Thus each ideal in O,, defines a germ of variety at 0. Conversely suppose we are
given a germ V of variety at 0. We choose a neighborhood U of 0 such that the
germ is represented by a variety in U, which we also denote by V. We set

I(V)={fe€eO,| f(z) =0for all zin V and near 0 }.
It is easily checked that this isla.n ideal in @,,. For an ideal I in O,,, we set
VI = {fe0,] f* € I for some positive integer k }

and call it the radical of I. This is again an ideal in O,, and it contains I.

Ezercise 5.1. For k =1,...,n, we consider the “coordinate functions” z1,..., 2, as
germs in O,. Show that

I(V(z1,-- 5 26) = (21,5 28)-

There are various relations between germs of varieties and ideals, most of
which follow rather straightforward from definition. The most important and deep
fact will be the following theorem. We refer to [GR], for example, for the proof.

Theorem 5.2 (Hilbert Nullstellensatz). For any ideal I in Oy,

(V1)) =VT.

Ezercise 5.8. Show that, for an ideal I (# O,) in O,, the complex vector space
O,,/I is finite dimensional if and only if V(I) = {0}.
13



In general, let R be a commutative ring with identity. For an ideal I in R,
its radical /T is defined similarly as for the ones in O,,. An ideal p in R is said to
be prime if R/p is an integral domain, i.e., p # R and ab € p impliesa € por b € p.
If p is prime, then /p = p.

Definition 5.4. Let V be a germ of variety at 0. We say that V is irreducible if
V#Dandif V=V, UV, implies Vi =V or Vo = V.

Theorem 5.5. A germ of variety V is irreducible if and only if the ideal I(V) is
prime.

Corollary 5.6. For a germ f, which is not 0 or a unit, in O,, the following are
equivalent :

(i) V(f) is irreducible.

i) I(V(f)) (= V() is a prime ideal.

(iii) There is an irreducible element p in O, such that f = p™ for some positive
mteger m.

The following is a consequence of the “primary decomposition theorem”:

Theorem 5.7. Any (non-empty) germ V of variety can be written as
V=Wu..-uV,,

where V1,...,V,. are germs of varieties such that each V; is irreducible and that
Vi & V;, if i # j. Moreover, V1,...,V, are uniquely determined by V up to order.

The proof of the following is not difficult.

Theorem 5.8. Let f be a germ, which is not 0 or a unit, in O,. If f = p|"* ---p™r
is the irreducible decomposition of f, then

V() =V(p)U---UV(pr)

is the irreducible decomposition of V(f).

Let f be a germ in O,,, which is not 0 or a unit. We say that f is reduced
if the irreducible decomposition of f has no multiple factors, i.e., in the irreducible
decomposition f = pi"*---p*r, we have m; = 1 for all i. We represent f by a
holomorphic function f in a neighborhood of 0. Then, it can be proved that, if f is
reduced at 0, the germ f, in O ; is reduced for all z sufficiently close to 0. Note
that, on the other hand, even if f is irreducible at 0, f, may not be irreducible. For
example, consider the “Whitney umbrella” (Example 4.9, 3).

Ezxercise 5.9. Show that f is reduced if and only if I(V(f)) = (f)-
14



We define the dimension of a variety on the basis of the following theorem.
For the proof we refer to [GR].

Theorem 5.10. Let V be an irreducible germ of variety. We may find a represen-
tative V of V such that Reg(V') is connected and dense in V.

For a germ of variety V at 0, we define its dimension (at 0), denoted by
dimV, as follows. If V is irreducible, then we define dim V' to be the dimension of
the complex manifold Reg(V). In general, if V = V3 U ... UV, is the irreducible
decomposition of V', we set dim V' = max;<i<, dim V;. We also define the codimen-
sion (denoted by codim V) by codim V = n — dimV. Note that in this case we
have the corresponding decomposition Reg(V) = C; U ---U C; of Reg(V) into its
connected components C;. Each C; is a complex manifold whose closure coincides
with V;. However, in general, C; does not coincide with Reg(V;). We say that V is
pure dimensional if all the components V; have the same dimension.

The “if” part of the following theorem follows from Theorem 5.8. For the
“only if” part, we refer to [GR].

Theorem 5.11. A germ V of variety is pure n — 1 dimensional if and only if there
is a germ f in Op, not 0 or a unit, such that I(V') = (f).

Let D be an open set in a complex manifold M. A variety V in D is said to
be (globally) irreducible if it cannot be expressed as the union of two varieties V;
and V5 in D with Vi, V5 % V. This notion should be distinguished from the “local”
irreducibility (Definition 5.4). For example the variety Vj o of Exercise 4.12, (2)
is globally irreducible, but locally not irreducible at p. Note that every variety is
written as a union of irreducible varieties. Note also that V is irreducible if and only
if the regular part Reg(V) is connected. Hence, for an irreducible variety V and a
point p in V, the dimension of V at p remains constant. We call it the dimension of
V. In general, we say that V is pure dimensional, if all the irreducible components
of V have the same dimension.
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Chapter II. Differential forms and Cech-de Rham cohomology
1. Vector bundles

In what follows, we denote by K either R or C and M, (K) the sets of r x r
matrices with entries in K. It is naturally identified with K. Also we set

GL(r,K) = { A € M,(K) | det A # 0}.

It has the structure of a real or complex Lie group. Namely, it is a group with
respect to the multiplication of matrices and, moreover, it is a C* or a complex
manifold according as K is R or C, since it is an open set of M,.(K), and the group
operation is C*° or holomorphic.

Definition 1.1. Let M be a C* manifold. A (C*) vector bundle of rank r over
M is a topological space E together with a continuous map =« : E — M such that
there exists an open covering U = {Uy,},; of M with the following properties :
(1) for each a, there is a homeomorphism

VYo 1 T N Uy) = Uy x KT

with w o 1, = 7, where w denotes the projection U, x K" — U,,
(2) for each pair («, 8), there is a C*° map

r*? . U, NUz — GL(r, K)

with
Yao¥s' (0,¢) = 0,h¥()() for  (p,¢) €EUaNUs xK".

We say that F is a real or complex vector bundle according as K is R or C.

Thus if 7 : E — M is a vector bundle of rank r over a C°° manifold M
of dimension m, then E has the structure of a C'® manifold of dimension m + r
or m + 2r, according as K = R or C, so that = is a C* surjective submersion
(surmersion) and each fiber E, = m!(p), p € M, has the structure of a vector
space of dimension r over K. We call ¢, a trivialization of E on U,. We also call
ho? the transition matrix of E on U, N Ug and the collection {h**} the system of
transition matrices of E. For each point p in U, N Ug N U,,, we have the identity

(1.2) R (p)h?7 (p) = h* (p).

Thus, in particular, h*%*(p) = I (the identity matrix) and h?%(p) = (h*#(p))~1. We
may think of the system {(Us,, %o, h*’)} as defining a vector bundle structure on
E.
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If we are given an open covering {U,} of M and a collection {h*"} of C®
maps
h*? : U, NUg — GL(r,K)

satisfying (1.2) for p in U, NUg N U, we may construct a vector bundle as follows.
For (pa, (o) in Uy x K" and (pg, () in Ug x K", we define (pqa, (o) ~ (ps, s) if and
only if
{%zm%m
¢ = h*P(p)¢P.

Then it is easy to see that this is an equivalence relation in the disjoint union
L], (Ua x K"). Let E be the quotient space. Then, since

(Ua xK")/ ~=Uqy x K,

E has a vector bundle structure with {h*?} as a system of transition matrices.

Let E and F be two vector bundles on M. A C* map ¢ : E — F is said
to be a vector bundle homomorphism if it commutes with the projections and if
the induced map ¢, : E, — F, on each fiber is K-linear. We say that ¢ is an
isomorphism if it is a C*° diffeomorphism. In this case ¢ induces a K-isomorphism
on each fiber. We also say that E and F are isomorphic (or E is isomorphic to F),
and write F ~ F| if there is an isomorphism of F onto F. A vector bundle is called
trivial if it is isomorphic to the product M x K".

Exercise 1.5. Let E and F be two vector bundles on M with systems of transition
matrices {h*°} and {g®”}, respectively, on an open covering {U,}. Show that E
and F' are isomorphic if and only if there exists a C*° map h* : U, — GL(r,K),
for each «, such that

1P (p) = h*(p) ™' g°" ()1 (p),
for p in U, N Up.

We say that a sequence of vector bundle homomorphisms

is exact if, for each p in M, the induced sequence B, —% F, Lo, Gy is exact, i.e.,
Ker 9, = Im .

Let 7 : E — M be a vector bundle of rank 7. A subset E’ of E is said to
be a subbundle of E, if there is a system {(Ua, ¥, h%°)} as in Definition 1.1 such
that each 1, maps 7’ ‘I(Ua) onto U, x K", where 7’ denotes the restriction of
to B’ and K" is identified with the subspace of K" consisting of (column) vectors
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=t ((4,...,() (the transposed of (¢1,...,¢,)) with (41 = -+ = ( = 0. In this
case, each h®? is of the form

49 hfaﬁ *
(1.4 Gt LA

where h'*? and h"*# are C*° maps from U, N Ug into GL(r',K) and GL(r",K),
" = —1', respectively. Note that each of the systems {h’*’} and {h"/*"} satisfies
(1.2). Thus E’ has the structure of a vector bundle of rank 7' with {K**} as a
system of transition matrices. The vector bundle of rank " defined by the system
{h"*P} is called the quotient bundle of E by E’ and is denoted by E/E’. Note
that there is a surjective vector bundle homomorphism ¢ : E — E/E’ so that the
sequence
0—-E SESE/E -0

is exact, where ¢ denotes the inclusion.
In general, if we may choose a system {h®?} of transition matrices of a
vector bundle E so that each h®P is of the form (1.4), then E admits a subbundle

with {h’*"} as a system of transition matrices.

Ezercise 1.5. Let ¢ : E — F be a homomorphism of vector bundles. Show that, if
the rank of the restriction ¢, of ¢ to each fiber E,, p € M, is constant, then the
kernel Ker ¢ = | |, s Ker ¢ an and the image Im ¢ = L, ar Im ¢, of ¢ are subbundles
of F and F, respectively. Show also that the quotient bundle E/ Ker ¢ is isomorphic
to Im ¢. The quotient F'/Im ¢ is called the cokernel of ¢ and is denoted by Coker ¢.

If f: M' — M is a C° map of C* manifolds and if 7 : E — M is a vector
bundle over M, we define the pull-back f*E of E by f by

f'E={(p,e) e M' x E| f(p) = m(e) }.

It is a vector bundle over M’ with projection the restriction of the projection onto
the first factor. Note that (f*E), = Ej@). In particular, if V' is a submanifold
of M with inclusion map ¢ and if F is a vector bundle on M, the pull-back *E is
called the restriction of E to V and is denoted by E|y.

A complex vector bundle over a complex manifold M is said to be holo—
morphic if E admits a system of transition matrices {h*#} such that each h®? is
holomorphic. Note that in this case, E has the structure of a complex manifold so
that the projection E — M is a holomorphic submersion.

Let m : E — M be a vector bundle of rank r and U an open set in M.
A (C™) section of E on U is a C*° map s : U — FE such that 7 os = 1y, the
identity map of U. A vector bundle E always admits the “zero section”, i.e., the
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map M — E which assigns to each point p in M the zero of the vector space F,.
The set of C* sections of E on U is denoted by C*°(U, E). This has a natural
structure of vector space by the operations defined by (s1 + $2)(p) = s1(p) + s2(p)
and (cs)(p) = cs(p) for s1,s2 and s in C®°(U,E), cin Kand pin U. If E is a
holomorphic vector bundle over a complex manifold M, a section over U is said to
be holomorphic if it is a holomorphic map from U into E. The set of holomorphic
sections of E over U is denoted by I'(U, ). This has the structure of a complex
vector space.

A section s on U can be described as follows. We fix a system of transition
matrices {h*?} of E on an open covering {U,}. Using the C* diffeomorphism
Vo : T HUy) = Uy x KT, we may write

Ya(s(p)) = (p,s%(p)) for p e UNUa,

where 5% is a C*° map from U N U, into K". For each point p in U N U, N Up, we
have

(1.6) s%(p) = h**(p)s” (p).

Conversely suppose we have a system {s*} of C°> maps satisfying (1.6). Then by
setting s(p) = ¥ (p, s%(p)) for p in U N U,, we have a section s over U.

For k = 1,...,r, a k-frame of E on an open set U in M is a collection
s = (81,...,5k) of k sections s; of E on U linearly independent at each point in U.
An r-frame is simply called a frame. Note that a frame of F on U determines a
trivialization of E over U.

Example 1.7. Let M be a C* manifold of dimension m. We may give naturally a
vector bundle structure on the (disjoint) union Te M = [ |, Ti,p M of the tangent
spaces of M. First, define 7 : Ty M — M by assigning to each tangent vector its
base point. Then let {U,} be a covering of M by coordinate neighborhoods U,
with coordinates (z¢,...,z%,). By taking (9/0z¢,...,0/0x%,) as a basis of Tg,, M
for each p in U,, we have a bijection 1, : 771 (Us) — U, x R™. Since we have the

relation .
a oz¢ 0 .
H:E 5@) 3 .?:]-s-":ma

oz; = Oz oz

for p in U, NUpg, we see that waogbgl(p, €) = (p, t*3(p)€) for (p, &) € (UyNUg) xR™,
where
taﬁ — 3(9':(11? i’ 113%) )
3(3‘?,...@%)
Hence we see that Tg M admits the structure of a real vector bundle of rank m with

{t*8} as a system of transition matrices. We call it the (real) tangent bundle of
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M. A (C*) vector field v on an open set U is a (C*) section of Tg M. Thus it is
expressed as, on each U N U,,

2 0
Y = Zf':l(:ca) 8:‘:@1
i=1 t

where the f&’s are (C*) functions on U,NU. In UNU,NUpg, we have f¢ = il L
fe=t(fe,..., f2). Note that (0/9x%,...,0/0z%,) is a frame of TR M on U,.

If V is a submanifold of dimension ¢ of M, then we may cover V with
coordinate neighborhoods U, on M with coordinates (z¢,...,z%,) such that

VNUs ={p€Us|2f1(p) = =ap(p) =0}

Then the restriction 8|y of t*# to V N U, N Uy is of the form

tn"aﬁ *
taﬁlv e ( 0 f}”aﬁ) 1

where #/*? and t/*” denote the Jacobian matrices d(¢¢, . .., z¢)/d(zf, ..., ;) and

Oy oy x?n)/a(mﬁ{_], ..., x2), respectively, both restricted to V. Since the re-
striction of (z¢,...,z§) to V form a coordinate system on V N U,, we see that
Tr M|y admits TV as a subbundle. We call the quotient bundle the normal bundle
of V in M and denote it by Ng,v.

It is known that there exist a neighborhood U of V' in M, a neighborhood
W of (the image of) the zero section Z in Np,y and a diffeomorphism 1 of U onto
W such that ¥(V) = Z ([GP] p.76). Such a neighborhood U is called a tubular
neighborhood. Usually we take an open disk bundle (or Ng,y itself) as W so that
V is deformation retract of U with a C* retraction p: U — V.

Example 1.8. Let M be a complex manifold of dimension n and {U, } a covering of
M by coordinate neighborhoods U, with complex coordinates (2§,...,25). Then,
as in Example 1.6, the union TM = | ] .5, T, M of the holomorphic parts of the
complexified tangent spaces of M admits the structure of a complex vector bundle
of rank n with {72},

wil . OB w2l

a(>,....2)

as a system of transition matrices. Since, for each pair (o, 3), 78 is a holomorphic

map from Uy N Upg into GL(n,C), TM is a holomorphic bundle. We call it the

holomorphic tangent bundle of M. Note that, as a real bundle, TM is isomorphic
20



to Tk M (see Proposition 2.2 of the following section). A holomorphic section v of
TM is called a holomorphic vector field. On U,, we may write as

- 0
V= 5

where the f*’s are holomorphic functions on U,.

If V is a complex submanifold of M, then as in 1.6, TM|y admits TV as
a subbundle. We call the quotient the holomorphic normal bundle of V in M and
denote it by Ny so that we have the exact sequence

0~ TV — TM]|y — Ny — 0.

For each point p in V, we have the situation considered in Ch. I, Exercise 4.8 (2).
Note that, again by Proposition 2.2, Ny is is isomorphic to Ng,y as a real bundle.

Example 1.9. Let M be a complex manifold of dimension n and V a hypersurface
(possibly with singularity) in M. We cover M by open sets U, so that in each
U,, V is defined by a “reduced cquation” f< = 0, i.e., the germ of f® at each
point in V N U, is reduced (see Ch.I, section 5). Note that if VN U, = 0, then we
may take a non-zero constant as f®. Then, for each pair (a, 3), f*% = f/f is
a non-vanishing holomorphic function on U, N Ug and the system {f a8} defines a
complex vector bundle of rank-one (a line bundle) on M. We call this bundle the
line bundle defined by V and denote it by L(V). Note that L(V) is a holomorphic
bundle and admits a natural holomorphic section whose zero set is exactly V, i.e.,
the section determined by the collection {f*}.

In particular, the line bundle on the projective space CP" defined by the
“hyperplane” CP" ' is called the hyperplane bundle and denoted by H,. If we
use the notation of Ch.I, Example 4.2, 2, the bundle H,, is defined by the system
transition functions {h%} with k% = (;/(; on the covering {U;}.

Ezercise 1.10. Show that, if V' is a non-singular hypersurface of M, then there is a
natural isomorphism L(V)|y =~ Ny.

If we are given some vector bundles, we may construct new ones by algebraic
operations. Thus we let E and F' be vector bundles on M. We may construct the
direct sum F @ F, the homomorphism Hom(E, F) and the tensor product £ ® F.
Note that there is a natural isomorphism

Hom(E,F) ~ E* @ F.

We also have the k-th exterior power /\k E. For a complex vector bundle
E, we have the complex conjugate E and for a real vector bundle E, the complexi-
fication E¢ = F @ C.
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The complex vector space C” is naturally considered as a real vector space
of dimension 2r and this defines a natural homomorphism

GL(r,C) — GL(2r,R).

Thus if E is a complex vector bundle of rank r, it has the structure of a real vector
bundle of rank 2r.
2. Vector fields and differential forms

We denote by T'M the holomorphic tangent bundle of a complex manifold
M as in section 1. The following two propositions are consequences of the Cauchy-
Riemann equation.

Proposition 2.1. If M is a complex manifold, there is a natural isomorphism

TEM ~TM & TM.

Proposition 2.2. We have TM ~ TpM as real bundles.

The following shows how a complex vector field (a section of TM) and a
real vector field (a section of Tg M) correspond in the above isomorphism, when
they are expressed using local coordinates :

£ 0 o 0 = 0
;fi(z)éz s ;us(ﬁhy)afmé W ;Ui(xay)'a_%:

where f; = u; + v/ —1v; with u; and v; real valued functions.

Example 2.3. In C = {z} the complex vector field 2,2 corresponds to the real
vector field z2 + yg% and 222 to (z2 - y*) 2 + 2$y5%.

Let M be a C*° manifold of dimension m. We call a C* section w of the
bundle AP(T§M)* on an open set U in M a (complex valued) differential p-form of
class C*° (simply, a C* p-form) on U. We denote by AP(U) the set of C*° p-forms
on U, which has naturally the structure of a C-vector space. The set A%(U) is
thought of as the set of C*° functions on U. We have the exterior product

AP(U) x AI(U) — APY(U),  (w,0) — w A6

It is bilinear in w and 6 and satisfies w A @ = (—1)P90 A w.
We also have the exterior derivative

d=dP: AP(U) — APTY(U),
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which is a C-linear map satisfying dP™! o d? = 0 and
(2.4) dwA8) =dwAb+(—1)PwAdb

for w € AP(U) and 6 € A1(U).

For a complex vector bundle £ on M and an open set U in M, we set
AP(U,E) = C=®(U, N"(T§M)* Q E). An element ¢ in AP(U, E), called a differential
p-form with coefficients in E, is expressed locally as a finite sum ) w; ® s; with w;
p-forms and s; sections of E. The exterior product induces a bilinear map

AP(U) x AY(U,E) — APY(U, E).

Now let M be a complex manifold. Recall that the holomorphic cotangent
bundle is the vector bundle T* M dual to the holomorphic tangent bundle TM. By
Proposition 2.1, we have a natural isomorphism

(2.5) (TSM)* ~T*M T M.

Hence we have an isomorphism

/\ (TeM)* ~ P /\T M®/\T M.

ptg=r

We call a section of AP T*M @ A\? T"M a differential form of type (p,q) (simply,
a (p, g)-form). Thus a differential r-form is expressed as a sum of (p, g)-forms with
p+ q = r. Suppose that a point z in M is in a coordinate neighborhood U, with
coordinates (23,...,22). We write 2& = & 4+ /=1y® and identify T*M and T, M
with subspaces of (TR, M)* by the isomorphism (2.5). Then, if we set

dzy =dzy + v/ —-1dyy and dz{ = dzy — vV—-1dy?,

a straightforward computation shows that dz¢, ..., d22 are in T M and form a basis
dual to the basis (9/02¢, . ..,8/022) of T,M and that dz?,...,dz® are in T, M and
form a basis dual to the basis (9/02¢,...,0/9z5) of T, M. Since dz§ A--- Adzf,
where (41, ...,4p) runs through p—tuples of integers with 1 < i; < .-+ < ip < n, form
a basis of A\’ Ty M and dz§, A--- A dz$ ., where (j1,...,jq) runs through g-tuples
of integers with 1 < j; < --- < j, < n, form that of AT, M, a (p,q)-form w is
written as, on U,,

— [s3 {a ] (8} (a3 (o' L3
26) w= T sipronda ()25 Ao Nd2] NDZF N - NdZ5,
1<i1 < <ip<n
1<ji<--<gg<n
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[

reipiiisj, ar€ O functions on U,. By setting I = (i1,-..,%p) and
J = (j1,...,Jq) Wwe may write (2.6) simply as

where

w=Y_ ffy(2)dzf A dzS.
In particular, a (p,0)-form w can be written as, on U,,

w= Y fE (A AdR

1<y < <ip<n

When each fj7 ; is holomorphic, we say that w is a holomorphic p-form. It is
nothing but a holomorphic section of A" T* M.

We denote by AP9(U) the set of (p,q)-forms on an open set U in M. For
each (p, q), it is an A°(U)-module and we have the decomposition

AT(U)= @ ArU).

ptq=r
Thus we may express the exterior derivative d as a sum d = 8 + 9 with
d: APIU) — APTLYU)  and 9 : APY(U) — APITH(D).
From dod =0,
808=0, od=0 and 0+ 00d=0.

3. Stokes’ theorem

Let M be an oriented C*° manifold of dimension m. Recall that, for a C°
m-form w with compact support, we may define the integral [ W

Let D be an open set in M and assume that the boundary 0D of D is C*°,
i.e., for any point p of 9D there is a coordinate neighborhood U with coordinates
(&1; 505 %im) Such that

RNU={qeU|zi(q) < z(p) },

where R = D (the closure of D in M). In this case, R = 9D is an m—1 dimensional
C*° submanifold of M. In fact if (21, ..., 2. ) is a coordinate system as above, then
(z2,...,Zm) is a coordinate system on OR N U. Moreover, if M is orientable, so is
OR. If M is oriented so that a coordinate system (1, ..., T, ) as above is positive,
we orient R so that (z2, ..., Z,,) is positive. Suppose M is oriented and R as above
is compact. Then we may define, for a C® m-form w on a neighborhood of R, the
integral f RW-
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Theorem 3.1 (Stokes’ theorem). Let D be a relatively compact open set in
M with C* boundary (which may be empty). For a C° (m — 1)-form w in a

neighborhood of R = D,
/ dw = / T
R OR

where ¢ : OR «— M denotes the inclusion.

Note that the above formula makes sense if the boundary dR is only piece-
wise C'°.

More generally, let o = Y m;0; be a (C*) singular p-chain in M. Thus
each o; is a C* map from (a neighborhood of) the standard p-simplex AP into M.
For a p-form w on M, we define

/w= E nif o;w.
a AP

If M is a complex manifold, M is orientable (cf. Ch.I, (2.5)). We orient M
so that, if (21,...,2,) is a complex coordinate system on M, (z1,Y1,. .., &n, Yn) I8
a positive coordinate system, where z; = z; + v—1ly;, i=1,...,n.

4. de Rham cohomology

We list [BT] as a basic reference for this section. Let M be a C* manifold
of dimension m. For an open set U in M, we denote by AP(U) the space of complex
valued C*° p-forms on U.

The exterior derivative d defines the de Rham complex of M :

0— A0 L Ao & L aman) S .

The p-th de Rham cohomology HY(M;C) is the p-th cohomology of this complex;
HE(M;C) = Ker d?/Im dP~!. For a close p-form w, we denote its class in H}(M;C)
by [w]. If M is connected, we easily see that H3(M;C) ~ C.

Lemma 4.1 (Poincaré lemma). The de Rham complex of R™ is acyclic, i.e.,

HYR™C)=0 for p>0.

This is a special case of the following de Rham theorem, in fact it is a key
ingredient in the proof of the theorem.

Let Hy(M;C) and H?(M;C) denote the singular (or simplicial) homology
and cohomology of M. The integration of a p-form on a (piecewise C*°) singular
p-chain of M induces a homomorphism

H3(M;C) — HP(M;C),

which is shown to be an isomorphism ;
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Theorem 4.2 (de Rham theorem). For a C*° manifold M,

HE(M;C) ~ H?(M;C).

Now, by (2.4), the pairing
H®(M;C) x HY(M;C) — H}*Y(M;C)

given by ([w], [0]) — [w A ] is well-defined and it corresponds to the cup product in
the isomorphism of Theorem 4.2. We write [w A 8] = [w] «~ [#]. This product makes
the direct sum Hj(M;C) = @, Hj(M;C) a graded ring.

If M is compact, connected and oriented then, by the Stokes theorem, the
integration on M induces a linear map

j : H*(M;C) — C.
- :
Then it is proved that the bilinear form

HE(M;C) x HI'P(M;C) > Hy(M;C) 24 ¢

is non-degenerate ([BT| Ch.I, §5) :

Theorem 4.3 (Poincaré duality). For a compact, connected and oriented C™
manifold M of dimension m, the above pairing induces an isomorphism

P: HY(M;C) S H™?(M;C)* = Hpp(M;C).

In the isomorphism of Theorem 4.3, a class [w] in H?(M; C) corresponds to
the class of a (piecewise C*°) singular (m — p)-cycle C in M satisfying

(4.4) fMW\e:fce

for all closed (m — p)-form € on M. In particular,
H™(M;C) ~ Ho(M;C) =~ C

and, for the class [w] of a closed m-form w, the corresponding homology class may
be thought of as a complex number, which is given by [, w. Also

H,(M;C)~ H*(M;C)~C
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and the homology class in H,,(M;C) corresponging to the class [1] of the function
constantly equal to 1 is represented by an m-cycle C such that [, 8 = [,6 for
all closed m~form 6. Thus this homology class coincides with the class [M] of M
considered as an m-cycle, the fundamental class of the compact oriented manifold
M. Note that it is the canonical generator of the integral homology H,,(M;Z) ~ Z.

Remark 4.5. Let M be a complex manifold and V a compact analytis variety of
dimension £ in M. Then we may think of V' as a 2¢-cycle, for example, by triangula-
tion, in which case we have the class [V] in Hop(V,Z), or by integration of 2¢-forms
on M ([GH] Ch.0), in which case we have the class [V] in Har(M, C). Moreover,
if V is (globally) irreducible, then Ho¢(V,Z) ~ Z and [V] is the fundamental class
(e.g., [Br]).

Recall that the Poincaré isomorphism P in Theorem 4.3 is given by the “cap
product” with the fundamental class;

P(w]) = [w] ~ [M].

5. Cech-de Rham cohomology

The Cech-de Rham cohomology is defined for arbitrary covering of a man-
ifold M, however for simplicity here we only consider coverings of M consisting of
only two open sets.

Let M be a C* manifold of dimension m and U = {Uy, U1} an open covering
of M. We set Ugy = Up N U;. Define a vector space AP(U) as follows:

AP(U) = AP (Up) ® AP(Uy) ® AP~ (Upyy).

Therefore an element o € AP(U) is given by a triple o = (09, 01,001) With 0¢ a
p-form on Uy, oy a p-form on U; and og; a (p — 1)-form on Uyp;.
We define the operator D : AP(U) — AP*! by

Do = (dﬁg,dﬂ'l,o‘l — 0g — dO'()j_).

Then it is not difficult to see that DoD = 0. This allows us to define a cohomological
complex, the Cech-de Rham complex:

o AP 2 Ar ) 2D ar i) — -
Set ZP(U) = Ker DP, B?(/{) = Im DP~! and
HpU) = zP(U)/BP(U),
which is called the p-th Cech-de Rham cohomology of U. We denote the image of

o by the canonical surjection Z?(U) — HZ(U) by [o].
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Theorem 5.1. The map AP(M) — AP(U) given by w — (w,w,0) induces an
isomorphism
a: HY(M) = HRH(U).

Proof. 1t is not difficult to show that « is well-defined. To prove that « is surjective,
let 0 = (09,01,001) be such that Do = 0. Let {po, p1} be a partition of unity
subordinated to the covering U. Define w = poog + p101 — dpg A 0p1. Then it is
easy to see that dw = 0 and [(w,w, 0)] = [o]. The injectivity of « is not difficult to
show. [

We define the “cup product”
AP(U) x AYU) — APTIU)

by assigning to o in AP(U) and 7 in A4(U) the element o « 7 in APT9(Y) given by

(52) (0’ — T)i = 0J; A Tis g O, 1, (0’ ~ T)Ol = (-—l)pdo A To1 + ap1 A T1.

Then we have D(c ~ 7) = Do ~ 7+ (—1)P0 ~ Dr. Thus it induces the
cup product
Hp,U) x HpU) — HE*U)

compatible, via the isomorphism of 5.1, with the cup product in the de Rham
cohomology.

Now we recall the integration on the Cech-de Rham cohomology (cf. [Leh]).
Suppose that the m-dimensional manifold M is oriented and compact and let
U = {Uy, U1} be a covering of M. Let Ry, Ry C M be two compact manifolds of
dimension m with C'° boundary with the following properties:

(1) R cUj for j =0,1,
(2) Int Ro NInt Ry = {) and
(3) RoUR; = M.

Let Ryp; = Ro N Ry and give Rg; the orientation as the boundary of Ro;
Roy = 0Ry, equivalently give Ro; the orientation opposite to that of the boundary
of Ry; Rop1 = —9R;. We define the integration

/:Am(u)ﬁc by fcr=/ o'o+/ 0'1-1—[ 001-
M M Ro R_\ RDl

Then by the Stokes theorem, we see that if Do = 0 then [,, o is independent
of {Ry, Ry} and that if o = D7 for some 7 € AP~'(U) then [, 0 = 0. Thus we
may define the integration

/ . H3(U) — C,
M
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which is compatible with the integration on the de Rham cohomology via the iso-
morphism of 5.1.

Next we define the relative Cech-de Rham cohomology and describe the
Alexander duality. Let M is an m-dimensional oriented manifold (not necessarily
compact) and S a compact subset of M. Let Uy = M \ S and let U; be an open
neighborhood of S. We consider the covering U = {Uy, U1} of M. We set

APU,Up) = { o = (00,01,001) € AP(U) | 00 =0}.

Then we see that if ¢ is in A?’(Lv{, Up), Do is in AP(U,Up). This gives rise
to another complex, called the relative Cech-de Rham complex and we may define
the p-th relative Cech-de Rham cohomology of the pair (U, Up) as

HY(U,Up) = Ker D?/Im DP~1.
By the five lemma, we see that there is a natural isomorphism
HY,(U,Up) ~ HP(M, M \ S;C).

Let Ry be a compact manifold of dimension m with C* boundary such that

ScIntRy C Ry C Uy. Let R = M \ Int R;. Note that Ry C Up. The integral

operator |, » (Which is not defined in general for A™(Uf) unless M is compact) is
well defined on A™ (U, Uy):

/:Am(U,Ug)—)fC, /JZ/ 0’1+/ 001,
M M Ry Roy

and induces an operator [, : Hp (U, Up) — C.

In the cup product A?(U) x A™ P(U) — A™(U) given as (5.2), we see that
if o9 = 0, the right hand side depends only on ¢1,001 and 73. Thus we have a
pairing AP(U, Up) x A™P(U;) — A™(U, Up), which, followed by the integration,
gives a bilinear pairing

AP(U, Up) x A™~P(U;) — C.

If we further assume that U; is a regular neighborhood of S, this induces the
Alexander duality

(5.3) A:HP(M,M\ S;C) ~ HP(A*(U,Up)) = H™ P(Uy,C)* =~ Hp_p(S,C).
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Proposition 5.4. If M is compact, we have the commutative diagram

HP(M,M\ S;C) ——— H?(M;C)

[ |7

Hm*P(Sa C) _h_'} Hm—P(Ms (C)v

where i and j denote, respectively, the inclusions S — M and (M,0) — (M, M\ S).

Example 5.5. Let M = R™ and S = {0} with m > 2. Then Uy = R™ \ {0},
which retracts to S™~!. Let U; = R™. In this situation, we compute HE (U, Uy).
For p = 0, each element o in A°(U,Up) can be written as ¢ = (0, f,0) for some
C* function f on Uy. If Do = 0, we have f = 0 and therefore HY (U, Uy) = {0}.
Next, an element o in AY(U, Uy) can be written as o = (0,07, f) with o1 a 1-form
on Uy and f a C* function on Uy NU;. If ¢ is a cocycle then doy = 0 on U; and
df = o1 on UyNU;. By the Poincaré lemma the first condition implies that oy = dg
for some C'*° function g on U; and the second condition implies that f = g + ¢
for some ¢ € C. Therefore f has a C* extension, still denoted by f, over {0} and
o = (0,df, f) = D(0, f,0). Hence H},(U,Us) = {0}. For p > 2 the map

HY ™' (Uo) — Hp(U,Us)  given by  [w] = [(0,0,~w))
can be shown to be an isomorphism (we leave the details to the reader) and we have

B C for p=m
H2 (U, Uo) = HY N (Uy) = HP~1 (g™ :{
D(u’ 0) d (0) ( ) 0 for p=2,...,m—1.

An explicit generator of H™~(S™~1) is given as follows ([GH] p.370). For
z = (z1,...,Zm) in R™, we set ®(z) =dz1 A--- Adz,, and

®i(z) = (-1 zdzy A~ A d/OE; A Ada,.

Also, let C,, be the constant given by

{ %ﬂ, for m =2¢
Cm=

%, for m =20+ 1.

Then the form .
- C Zz’:l ®;(x)

NEE
0

wm=



is a closed (m — 1)-form on R™ \ 0 whose integral on the unit sphere S™ ! (in
fact a sphere of arbitrary radius) is 1. Now we identify C* with R?", then 13, =

(Bn + Br)/2, where

Q;(2) A ®(2)
]2 ’

6n — C# E?:l Cr — (_:l)ﬁ’—';—,—_ﬁ (n’ '_ 1)'

(2mv/=I)"

Then B, is a closed (n,n — 1)-form on C"\ 0, real on §?"~! and g1 B = 1. We
call 3, the Bochner-Martinelli kernel on C™. Note that

1 dz

SRS

the Cauchy kernel on C.
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Chapter III. Chern-Weil theory of characteristic classes and some more
complex analytic geometry

1. Chern classes via connections

Let M be a C° manifold of dimension m. For an open set U in M, we

denote by A°(U) the C-algebra of C™ functions on U. Also, for a C* complex
vector bundle E of rank r on M, we let AP(U, F) be the vector space of C* sections
of AP(TEM)* ® E on U. Thus A%(U, E) is the A°(U)-module of C* sections of E.

Definition 1.1. A connection for F is a C-linear map
V:A°(M,E) — AY(M, E)
satisfying

V(fs)=df ® s+ fV(s) for fe A°(M) and s € A°(M, E).

Example 1.2. The cxterior derivative
d: A°(M) — AY(M)

is a connection for the trivial line bundle M x C.
From the definition we have the following :

Lemma 1.3. A connection V is a local operator, i.e., if a section s is identically
0 on an open set U, so is V(s).

Thus the restriction of V to an open set U makes sense and it is a connection
for E|y. From the definition we also have the following lemma.

Lemma 1.4. Let Vy,...,Vy be connections for E and f1,..., fr C° functions on
M with Ele fi=1. Then Ele fiVi is a connection for E.

Exercises 1.5. (1) Prove Lemmas 1.3 and 1.4.
(2) Show that every vector bundle admits a connection.

If V is a connection for F, it induces a C-linear map
V:AY(M,E) — A*(M,E)
satisfying

Viw®s)=dw®s—wAV(s) for we A'(M)and s € A°(M, E).
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The composition
K=VoV:A"M,E)— A*(M,E)

is called the curvature of V. It is not difficult to see that
K(fs)y= fK(s) for fe AD(M) and s € AO(M, E).

The fact that a connection is a local operator allows us to get local repre-
sentations of it and its curvature by matrices whose entries are differential forms.
Thus suppose that V is a connection for a vector bundle E of rank r and that E is
trivialon U ; E|ly ~U xC". If s = (81,...,8y) is a frame of F on U, then we may
write, for 1 = 1,...,r,

V()= 8;;®s;, b € A{U).
i=1

We call 8 = (6;;) the connection matrix with respect to s. For an arbitrary section
s on U, we may write s = >_._, fis; with f; C° functions on U and we compute

V(S) = Z(df; + Z fjgjf;) & s;.

i=1 j=1

The connection V is trivial with respect to s, if and only if 6 = 0. Thus in this case
we have V(s) = 3.7_, df; ® s;. Also, from the definition we compute to get

r r
K(Si) = Zﬁ?ij @ Sj, Kij = d@gj = Z gik /\9;63:.
j=1 k=1

We call kK = (k) the curvature matrix with respect to s. If s’ = (s}...,s]) is
another frame of E on U’, we have s; = 3_7_, ai;s; for some C* functions a;; on
UNU’'. The matrix A = (a;;) is non-singular at each point of U NU’. If we denote

by ¢’ and k' the connection and curvature matrices of V with respect to s/,

(1.6) ' =dA-A"'+ AGA™" and K =AkA™' In UNU.
Let n = [m/2] and, for each i = 1,...,n, let o; denote the i-th elementary
symmetric function in n variables X, ..., X, i.e., 0;(Xy,...,X}) is a polynomial

of degree ¢ defined by

n
[T +X) =1+ 01(Xp, o, Xo) -+ 0n(Xay o, Xon).
i=1
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Since differential forms of even degrees commute with one another with respect
to the exterior product, we may treat x as an ordinary matrix whose entries are
numbers. Thus we define a 2i-form o;(x) on U by

det(I, + k) = 1+ o1(k) + - - + o5 (k),

where I. denotes the identity matrix of rank r. Note that o;(k) = 0 for ¢ =
r +1,...,n and, in particular, oy(x) = tr(x) and o.(k) = det(x). Although o;(k)
depends on the connection V, by (1.6), it does not depend on the choice of the
frame of E and it defines a global 2i-form on M, which we denote by ¢;(V). It is
shown that the form is closed ([GH] Ch.3, 3 Lemma, [MS] Appendix C, Fundamental
Lemma). We set

_(VAIY
w(¥) = (G) av)
and call it the ¢-th Chern form.

If we have two connections V and V' for F, there is a (2:—1)-form ¢;(V, V')
with ¢;(V, V') = —¢;(V’, V) and satisfying

(1.7) dei(V, V') = (V') — ei(V).

In fact the form ¢;(V, V') is constructed as follows ([Bo] p. 65). We consider the
vector bundle £ x R — M x R and let V be the connection for it given by

V=_»1-t)V+tV,

where t denotes a coordinate on R. Denoting by [0,1] the unit interval and by
m: M % [0,1] — M the projection, we have the integration along the fiber

7. A%(M x [0,1]) — AZ"Y(M).

Then we set ¢;(V, V') = 7, (c;(V)).

From the above, we see that the class [¢;(V)] of the closed 2i-form ¢;(V) in
the de Rham cohomology H?!(M;C) depends only on E and not on the choice of
the connection V. We denote this class by ¢;(E) and call it the i-th Chern class
ci(E) of E. We call :

c(E)=1+c1(E)+c2(E)+ -+ (E)

the total Chern class of E, which is considered as an element in the cohomology
ring H*(M;C). Note that the class ¢(E) is invertible in H*(M;C).

Remarks 1.8. 1°. It can be shown that the top Chern class ¢.(F) is equal to the
Euler class e(E) of the underlying real bundle.
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2°. Tt is known that ¢;(E) is in the image of the canonical homomorphism
H*(M;Z) — H*(M;C).

In fact it is possible to define ¢;(E) in H?(M;Z) using the obstruction
theory; it is the primary obstruction to constructing r — 7 + 1 sections linearly
independent everywhere [St].

3°. For the hyperplane bundle H,, on CP" (Ch.II, Example 1.9),

C(Hn) —_ 1 '+’ hn,
where h,, denotes the canonical generator of H?(CP"; C) (the Poincaré dual of the
homology class [CP"'].

More generally, if we have a symmetric polynomial ¢, we may write ¢ =
P(01,09,...) for some polynomial P. We define, for a connection V for E, the
characteristic form (V) for ¢ by ¢(V) = P(c1(V),c2(V),...), which is a closed
form and defines the characteristic class o(F) of E for ¢ in the de Rham cohomology.
We may also define the difference form ¢(V, V') by a similar construction.

2. Virtual bundles

For simplicity, we consider only virtual bundles involving only two vector
bundles.

If we have two complex vector bundles £ and F, the total Chern class of
the “virtual bundle” F — E is defined by
(2 ¢(F — E) =c(F)/c(E).

Let VE and V¥ be connections for E and F, respectively. We write the
degree ¢ term in the right hand side of (2.1) as

a(F-E)=3_ o$(E) - (F)

with api{) (E) and 1!)?’) (F) polynomials in the Chern classes of E and F, respectively.
Then the i-th Chern class of F' — E is represented by the differential form

a(V*) =3¢ (VE) A (V)

where V* denotes the pair (VE, VF).
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Also, for a polynomial ¢ in the Chern classes of F, we may define a closed
form ((V*®) which represents the class ¢(F — E).

If we have two pairs of connections V§, V] for E and F, there is a form
©(V§, V?) satisfying an identity similar to (1.7).

Now let

(2.2) 0ESLFAHG—0

be a sequence of vector bundles on M, and V¥, VF and V€ connections for E, F
and G, respectively. We say that the family (VZ, V¥, V) is compatible with the
sequence if the following diagram is commutative :

AYM,E) —2— A°(M,F) —Y— A°(M,G)

R

AYM,E) 222, Ay, F) 2B AY(M,G).

If the above sequence is exact, there is always a family (V¥, V¥, V%) of connections
compatible with the sequence and for such a family we have ([BB] (4.22) Lemma)

e(V*) = ¢(VE).

3. Characteristic classes in the Cech-de Rham cohomology and a van-
ishing theorem

Let M be a C* manifold and U = {Uy,U;} an open covering of M. For a
vector bundle E — M, we take a connection V; on Uj, j = 0,1. Then let ¢;(V.,)
be the element of A% () given by

(3.1) ci(Vs) = (¢i(Vo), ¢i(V1), ci(Vo, V1)).

Then we see that Dc;(V,) = 0 and this defines a class [¢;(V.)] € HE (U).

Theorem 3.2. The class [c;(V.)] € HE(U) corresponds to the Chern class ¢;(E) €
H2(M) under the isomorphism of Ch.II, Theorem 5.1.

By a similar construction, we may define the characteristic class ¢(E) for a
polynomial ¢ in the Chern polynomials in the Cech-de Rham cohomology. It can
be done also for virtual bundles.

Let E be a complex vector bundle of rank r on a C° manifold M. Let
s = (s1,...,8¢) be an {-frame of E on an open set U, ie., ¢ sections linearly
independent everywhere on U. We say that a connection V for F on U is s-trivial,
N ) =0 ford= Lol
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Proposition 3.3. IfV is s-trivial, then

ci(V)=0 for i>r—£+41.

Proof. For simplicity, we prove the proposition when £ = 1. Let U C M be an open
set such that Ely ~ U x C". Since s; # 0 everywhere on M, we may take a fram
e = (e1,...,er) on U so that e; = s;. Then all the entries of the first row of the
curvature matrix s of V with respect to e are zero. Since ¢.(V) = det k, up to a
constant, we have ¢.(V)=0. O

4. Divisors

Let M be a complex manifold of dimension n. A meromorphic function ¢
on M is defined by a data {(Ua, f*,9%)}, where {U,} is a covering of M, and f¢
and g* are holomorphic functions on U, such that the germ ¢¢ at z is non-zero for
all z in Uy, the germs f and g¢ are relatively prime for all z in U, (cf. the phrase
after Ch.I, Theorem 3.6) and that f@g? = fP¢® in U, N Uz. We write ¢ = f*/g*
on U,.

A divisor D on M is a finite formal sum D = Z;.':] n;V;, where the V;’s
are irreducible hypersurfaces in M and the n;’s are integers. Thus, if we cover M
by open sets {U,} so that V; is defined by f* on U, (cf. Ch.II, Example 1.9), the
meromorphic function ¢® = [[_,(f#)™ defines D on U,. For each pair (e, ),
foP = ¢ /P is a non-vanishing holomorphic function on U, N Uz and the system
{ f*P} defines a line bundle on M. We call this bundle the line bundle defined by D
and denote it by L(D). We may write L(D) = @;_, L(V;)™, where L(V;)™ denotes
the tensor product of n; copies of L(V;), for n; > 0, and the tensor product of —n;
copies of L(V;)*, for n; < 0. A divisor D = }_!_, n;V; is called effective if n; > 0
for all ¢. Thus an effective divisor is defined locally by a holomorphic function.

If ¢ is a meromorphic function on M given by ¢ = f%/g* on U,, taking
the irreducible decompositions of f* and g, we may consider a divisor, which we
call the divisor of ¢ and denote by (). We may write (¢) = Dy — D, where Dy
and D, are defined, respectively, by f* and g% on U,. Clearly the bundle L(yp) is
trivial. Conversely, it is shown that, if L(D) is trivial for a divisor D, then D = ()
for some meromorphic function ¢ ([GH| Ch.1, 1, [Hi] §15). We say that two divisors
D, and D, are linearly equivalent if D1 — Dy = () for some meromorphic function
. Thus this is equivalent to saying L(D;) = L(D3).

For a divisor D = Y_!_, n;Vi, we set |D| = |J;_, V; and call it the support of
D. If each V; is compact, the divisor D defines a homology class [D] = 37, n;[Vj]
in Hypn_o(M;Z) (or in Hon_2(|D|;Z)). It is known that, if M is compact, [D]
is the Poincaré dual of ¢;(L(D)) ((GH] Ch.1, 1 Proposition, see [Su3] for more
“precise” duality). Thus, if D; and D, are linearly equivalent, then [D;] = [Da].
Also, for n divisors Dq,..., D, the “global” intersection number (D;---D,) is
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given by [y, c1(L(Dy))--c1(L(Dy)), where the product is the cup product. If the
intersection ([, | D;| consists of isolated points, then this number is the sum of the
intersection numbers at the points of intersection. See Example 6.2 below for this
“local” intersection number when the divisors are effective.

Example 4.1. Let V be the algebraic variety in CP" = {[(o,...,(n]} defined by
a homogeneous polynomial P of degree d (Ch.I, 4). The function ¢ = P/({ is a
well-defined meromorphic function on CP", which is given as the quotient of P/¢¢
by ¢&/¢¢ on each affine open set U; = {(; # 0}. Thus, if we denote by D, the
hyperplane defined by {, = 0, then V is linearly equivalent to d Dy, and [V] =
d [Deo). Recall that (D] = [CP™ 1] is the generator of Hy, o(CP";Z) ~ Z. Also,
the intersection of k copies of [Dy,] generates Hap 2k (CP™;Z) ~Z,for k=1,...,n
(cf. ChlI, (4.11)).

5. Complete intersections and local complete intersections

We start with the local situation. Let O, be the ring of convergent power
series in (21,. .., Zn+k)-

Definition 5.1. Let V be a germ of variety at 0 of pure dimension n in C***,
We call V a complete intersection if the ideal I(V) is generated by k germs of
holomorphic functions. In particular, if kK = 1, V' is a (germ of) hypersurface.

In general, let V be a germ of variety at 0 in C™**. Take germs fi,..., f-

in O, and set g; = Z;=1 a;; f; with a;; € Opyg, for i =1,...,s. Then

8(f11°°'1f'r‘)

321 2ot k)

9(g1,---,9s)
0215+ -y Zntk)

rank (0) < rank (0).

Thus we have

Lemma 5.2. If the germs fi,..., fr generate I(V), then the rank of the Jacobian
matriz (f1,-- -, fr)/0(21, - -, 2n+k) at 0 does not depend on fi,..., fr.

Let V be a complete intersection of dimension n and f, ..., fx generators of
I(V). We take a neighborhood U of 0 in C*** such that the germs V and fi,..., fk
have representatives on U. We may assume that the germs fi .,..., fr » generate

I(Vy) for all z in U (*coherence of the ideal sheaf”, e.g., [GR]) and hence we may
write

V={zeU|fi(z)=-= filz) =0}.

We call fi,..., f- as above “reduced defining functions” for V. With these
functions, we may describe the singular set of V' as follows:
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Proposition 5.3. IfV is a k codimensional complete intersection,

O f15-++5 Jr)
)(:c)<k}

3(31, ceey Antk

Sing(V) = {:1: € V | rank

Remark 5.4. If V is a pure k-codimensional subvariety, which may not be a com-
plete intersection, the set Sing(V) may be expressed similarly as above, replacing
f1,- -+, fx by (arbitrary number of) generators fi,..., fr of I(V) (e.g., [Ok] Ch.I,
§1). Thus, for an analytic variety V, Sing(V) is also an analytic variety.

In general, let V be a variety in a neighborhood U of 0 in C*** which has 0
as its only singular point. Let Be = { (21,...,2n4k) | |21]* + - + |2n4k|? < &2} be
the closed disk of radius € and S. the (2(n + k) — 1)-sphere of radius &, which is the
boundary of B.. It is known that, for sufficiently small £, the pair (B¢, B. NV) is
homeomorphic to the cone over (S, S: NV ([Mi] Theorem 2.10, see also [Ok] Ch.I,
§1). In this case, S; and V are transverse and K = S.NV is a (2n— 1) dimensional
C* manifold, which is called the link of the singularity of V" at 0.

Now let V be a (germ of ) complete intersection of dimension n and fi,..., fk
generators of I(V). We suppose that these germs have representatives in U and we
think of f = (f1,..., fx) as a holomorphic map from U onto a neighborhood W
of 0 in CF. Let C(f) be the set of critical points of f. Then, by Proposition 5.3,
Sing(V) = VN C(f). Note that, when k£ = 1, Sing(V) = C(f) (cf. [Lo] Proof of
(1.2) Proposition). :

We have the following “fibration theorem”, which is due to [Mi] when k = 1
and to [Ham] for general k, see also [HL], [Lé&2], [Lo] and [Ok].

Theorem 5.5. Let V be a complete intersection of dimension n with isolated sin-
gularity at 0 in C"**. Then there exist small disks B, about 0 in U and Bj about
0 in W such that D(f) = B5N f(C(f)) is a hypersurface in B and that f induces
a fiber bundle structure B.N f~1(B5\ D(f)) — Bjs\ D(f). Moreover, the (typical)
fiber F' of this bundle has the homotopy type of a bouquet of n-spheres.

The fiber F' is called the Milnor fiber and the number of spheres appearing
in the above is called the Milnor number of V' at 0 and is denoted by u(V,0).
The number u(V,0) does not depend on the choice of generators of I(V'). There
is an algebraic formula for this number ([Lél], [Gr], see also [Lo] ). We set, for
i=X .1 k4
a; = dlmC Oﬂ+k/(J(f1$ ey fi):fl; e fi—l)}

where the denominator in the right hand side is the ideal generated by the Jacobians
det (3(f1, p— fi)/a(zul, e Zyi)), 1<uvi<- - -<vy;<n+k,and fi,..., fi—1. Then

k

w(V,0) =) (1) a;.
=1
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In particular, when & =1,
(5.6) w(V,0) = dimg Ony1/J(f),
where J(f) = (0f/02,...,0f/0zn41), f = f1 (cf. [Or]).

Now we consider the global situation. Let W be a complex manifold of
dimension n+ k and V' an analytic variety in W. Suppose V' is pure n dimensional.
We call V' a local complete intersection (LCI) if the germ of V at each point of V is
a complete intersection. Thus each point of V has a neighborhood, where V admits
k reduced defining functions.

In this case, there is a vector bundle Ny over V of rank k, which extends
the normal bundle Ny of V' in W. We have a commutative diagram with an exact
row (e.g., [LS] Proposition 1)

TW|y —— Ny
(5.7) Tincl. Tincl.

0 —— TV —— TW|yw —— Nyv —— 0.

If f1,..., fr are local reduced defining functions of V, then there is a frame
of Ny which extends the frame (7(8/9f1),...,m(8/8fk)) of Ny-. (Note that near a
regular point of f = (fy,..., fx), i.e., a regular point of V', we may take (fi,..., fx)
as a part of a local coordinate system on W.) We call it the frame of Ny associated
t0f=(f1,...,fk)- !

For an LCI V in W, we call TW|y — Ny the virtual tangent bundle of V.

Now let N be a holomorphic vector bundle over W of rank k£ and s a
holomorphic section of N. We call the zero set V of s in W an LCI defined by s
if it is an LCI with local components of s (with respect to some local holomorphic
frame of N) as its reduced defining functions. In this case, we have Ny = N|y.

Examples 5.8. As examples of LCIs defined by a section of a holomorphic vector
bundle, we have the following :

1. V a hypersurface in W (k = 1). In this case, we may take as N the line bundle
L(V') defined by V and as s the natural section described in Ch.II, Example 1.9.
2. V a complete intersection. In this case we may take as N the trivial bundle and
as s a system of generators of the ideal of holomorphic functions vanishing on V.
3. V a (projective algebraic) complete intersection in the projective space CP"*k.
This means that the ideal of homogeneous polynomials vanishing on V' is generated
by k homogeneous polynomials Pi,...,P.. Let d; denote the degree of P; for
i=1,...,k and U; the affine coordinate (; # 0 for j =0,...,n+k. Then, in U;, V
isdefined by fi == fr =0, fi =P, /Cf". Note that it is only locally a complete
intersection. In this case, we may take as N the bundle H% @ . .- ® H%, where H
denotes the hyperplane bundle (Ch.II, Example 1.9).
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6. Grothendieck residues

For details on this subject, we refer to [GH]. Let O, denote the ring of
germs of holomorphic functions at the origin 0 in C" and fy,..., f, germs in O,
such that V(f1,..., fn) = {0} (Ch.I, 5). For a germ w at 0 of holomorphic n-form
we choose a neighborhood U of 0 in C™ where f1,..., f, and w have representatives
and let I" be the n-cycle in U defined by

F={zeU|[lfi(2)| = =|ful(2)| =€},

where, ¢ is a small positive number. We orient I' so that the form df; A--- A d#b, is
positive, §; = arg f;. Then we set

W

]_ 1 /’ w
fla”*;fn - (2?1_\/__1]71. j iy fl"'fn'

Note that this residue is alternating in (fy,..., fa)-

o

Example 6.1. When n = 1, the above residue is the usual Cauchy residue at 0 of
the meromorphic 1-form w/ f;.

Example 6.2. If w =dfi A--- Adfy, then

Res; [df} 1/\ - r} ffn]

is a positive integer which is simultaneously equal to

(i) the intersection number (D ---Dy)o at 0 of the divisors D; defined by f; (see
section 4 and [GH] Ch.5, 2, [Su3]),

(ii) dimg On/(fl: s rfn) and

(ili) the (Poincaré-Hopf) index at 0 in C™ of the vector field v = Y-, fi - 8/0z
(the mapping degree of f = (f1,..., fn)), see Ch.IV, sections 2 and 3.

Example 6.3. In particular, if f; = 8f/0z; for some f in O,, then it is the Milnor
number x(V,0) of the hypersurface V defined by f at 0 (see section 5) :

Resg [d (%2;\ o A;f_(%) ] = u(V,0).

Oz17" 7" Bz,

We also call this number the multiplicity of f at 0 and denote it by m(f,0)
(cf. Ch.IV, 3 below).
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Chapter IV. Localization of Chern classes and associated residues
1. Localization of the top Chern class

Let w: E — M be a C*° complex vector bundle of rank r over an oriented
C*° manifold M of dimension m. Let s be a non-vanishing section of E on some
open set U. Recall that a connection V for F on U is s-trivial, if V(s) =0. If V is
an s-trivial connection, we have the vanishing (Ch.III, Proposition 3.3)

(1.1) (V) = 0.

Let S be a closed set in M and suppose we have a C° non-vanishing section
s of E on M\ S. Then, from the above fact, we will see that there is a natural
lifting ¢, (E, s) in H?"(M, M \ S;C) of the top Chern class ¢,(E) in H*"(M, C).

Letting Up = M \ S and U; a neighborhood of S, we consider the covering
U = {Uy,Ur} of M. Recall the Chern class ¢.(E) is represented by the cocycle
c-(V.) in A?"(U) given by

cr(Vi) = (er(Vo), ¢r(V1), ¢+(Vo, V1)),

where Vi and V; denote connections for £ on Uy and Uq, respectively. If we take
as Vp an s-trivial connection, then ¢.(Vy) = 0 by (1.1) and thus the cocycle is in
A?"(U,Up) and it defines a class in the relative cohomology H?"(M, M\ S; C), which
we denote by ¢.(E, s). It is sent to the class ¢,.(E) by the canonical homomorphism
§* : H*(M,M \ S;C) — H?"(M;C). It does not depend on the choice of the
connection Vi or on the choice of the s-trivial connection V. We call ¢, (E, s) the
localization of ¢, (F) with respect to the section s at S.

In the above situation, suppose that S is a compact set, with a finite number
of connected components (S) ), admitting a regular neighborhood. Then we have
the Alexander duality Ch. II (5.3) :

A: HzT(M?M\Si C) = m—?.r(SsC) = @Hm~2r(s)\:{c)-
A

Thus the class ¢,.(F, s) defines a class in Hp,—2-(Sy; C), which we call the residue
of ¢.(E) at Sy with respect to s and denote by Res., (s, E; Sy). This residue corre-
sponds to what is called the “localized top Chern class” of E with respect to s in
[Fu] §14.1. |

For each A\, we choose a neighborhood Uy of Sy in Uy, so that the Uy’s are
mutually disjoint. Let Ry be an m-dimensional manifold with C**° boundary in U,
containing S} in its interior. We set Rgy = —OR). Then the residue Res,, (s, E; Sx)
is represented by an (m — 2r)-cycle C in S, such that

(1.2) _/T=/ cr(Vl)/\T—%f er(Vo, Vi) AT
C R;\ 42 Ro,\



for any closed (m — 2r)-form 7 on U,. In particular, if 2r = m, the residue is a
complex number given by

(1.3) Res., (s, E; Sy) = /

cr(V1) +f cr(Vo, Vy).
R, Rox

By Ch.II, Proposition 5.4, we have the following “residue formula”.

Proposition 1.4. In the above situation, if M is compact,

> (i2)« Resc, (s, E; Sy) = ¢r(E) ~ [M]  in Hp_3(M;C),
A

where i) denotes the inclusion Sy — M.

2. Residues at an isolated zero

Let w : E — M be a holomorphic vector bundle of rank n over a complex
manifold M of dimension n. Suppose we have a section s with an isolated zero at p
in M. In this situation, we have Res, (s, E;p) in Ho({p};C) = C. In the following,
we give explicit expressions of this residue.

Let U be an open neighborhood of p where the bundle F is trivial with holo-
morphic frame (ey,...,e,). We write s =Y. fie; with f; holomorphic functions
on U.

(I) Analytic expression

Theorem 2.1. In the above situation, we have

A« Adfy,
Res,, (s, E;p) = Res, [df_}l fnf ]

Proof. We indicate the proof for the case n = 1 (for n > 1, we use the Cech-
de Rham cohomology theory for n open sets, see [Su3|, [Su5]). Thus s = fe; for
some holomorphic function f on U. Let R be a closed disk about p in U. In the
expression (1.3) of the residue, we may take as V; an ej-trivial connection on U,
thus ¢;(V;) =0 and

Res,(s, E,p) = —-/ c1(Vo, V1)
aR
with Vo an s-trivial connection on U’ = U \ {p}. Now we recall how the Bott
difference form ¢;(Vy, V1) is defined (Ch.III, 1). Consider the bundle £ = E x R
over U x R, and let ¢ be a coordinate on R. Define a connection for E on U’ x R by
43



V=(1-tVo+tV;y. Let 7 : U’ x [0,1] — U’ be the canonical projection and let
7. be the integration along the fibers of #. Then we define ¢1(Vo, V1) = m.c1(V).

Let 6; be the connection matrix of V,;, i = 0,1 with respect to the frame
e;. Therefore 8; = 0. To find 6y, we use Ch.III, (1.6). Since the connection matrix
with respect to s is zero, we get

2
Thus ; . 4
a(Vo, V1) =mer(9) = Loman Iy = - =4,

which proves the theorem (for the case n =1). 0O

Remark 2.2. For general n, if we take suitable connections we see that the difference
form is given by

Cﬁ.(vorvl) T _f*ﬁm
where f = (f1,..., fa) and 3, denotes the Bochner-Martinelli kernel on C* (Ch.II,
5). This gives a direct proof of Theorem 2.4 below. Thus we reprove the fact that

the Grothendieck residue in the above theorem is equal to the mapping degree of f
(cf. [GH] Ch.5, 1. Lemma).

(IT) Algebraic expression
Theorem 2.3. In the above situation, we have
Rese, (s, E;p) = dim O /(f1,. .., fn)-
This can be proved, for example, by perturbing the sections and using the
theory of Cohen-Macaulay rings (e.g., [Sub]).
(III) Topological expression

Let §27~! denote a small 2n — 1 shere in U with center p. Then we have
the mapping

f 2n—1 2n—1
= < 2 87 — S ;
LT

where S?"~! denotes the unit shere in C™.
Theorem 2.4. In the above situation, we have
Res,, (s, E;p) = deg .

This can also be proved by perturbing the sections, see [GH], [Su5].
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3. Examples 1

(a) Poincaré-Hopf index theorem
Let M be a complex manifold of dimension n. We take as E the holomorphic
tangent bundle 7M. Then a section of TM is a (complex) vector field v. We define
the Poincaré-Hopf index PH(v, S)) of v at a connected component Sy, of its zero set
S by
PH(v, S)) = Res,, (v, TM; Sy).

Then, if M is compact, by Proposition 1.4, we have

ZA: PH(v, S)) = /M en (M),

where ¢, (M) = ¢,(TM) and it is known that the right hand side coincides with
the Euler-Poincaré characteristic x(M) of M (“Gauss-Bonnet formula”). Thus, by
Theorem 2.4, we recover the Poincaré-Hopf theorem in case v is holomorphic and
the zeros are isolated.

Ezercise 3.1. Find all the holomorphic vector field on the Riemann sphere CP' and
verify the Poincaré-Hopf formula for each of them.

(b) Multiplicity formula

Let M be a complex manifold of dimension n. We take as E' the holomorphic
cotangent bundle 7* M. For a holomorphic function f on M, its differential df is a
section of T*M. The zero set S of df coincides with the critical set C(f) of f. We
define the multiplicity m(f, S)) of f at a connected component Sy of C(f) by

m(f? S)\) = Rescn(df: T*M; SA)

Note that, if Sy consists of a point p, it coinsides with the multiplicity m(f, p) of f
at p described in Example 6.3 of Ch.IIL.

Now we consider the global situation. Let f : M — C be a holomorphic
map of M onto a complex curve (Riemann surface) C. The differential

df : TM — f*TC

of f determines a section of the bundle 7*M ® f*T'C, which is also denoted by df.
The set of zeros of df is the critical set C(f) of f. Suppose C(f) is a compact set
with a finite number of connected components (Sy)x. Then we have the residue

Res., (df, T*M ® f*TC;S,) for each A. If M is compact, by Proposition 1.4, we
have

> Res, (df, T*M ® f*TC; 5)) = / en(T*M ® f*TC).
A M

We look at the both sides of the above more closely. In the sequel, we set
D(f) = f(C(f)), the set of critical values. Then, if M is compact, f defines a C®
fiber bundle structure on M \ C(f) — C\ D(f).
We refer to [IS] for a precise proof of the following
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Lemma 3.1. If M is compact, and if D(f) consists of isolated points,

fM en(T*M ® f*TC) = (~1)™(x(M) — x(F) x(C)),

where F' denotes a general fiber of f.

Suppose that f(S)) is a point. Taking a coordinate on C around f(S,), we
think of f as a holomorphic function near S). Then we may write

Res,, (df, T*M ® f*TC; 5,) = Rese, (df, T*M; Sy) = m(f, S»),

the multiplicity of f at S). Thus we have

Theorem 3.2. Let f : M — C be a holomorphic map of a compact complex
manifold M of dimension n onto a complex curve C. If the critical values D(f) of
f consists of only isolated points, then

> _m(f,8)) = (=1)"(x(M) - x(F) x(C)),

where the sum is taken over the connected components Sy of C(f).
In particular, we have ([I], see also [Fu] Example 14.1.5) :

Corollary 3.3. In the above situation, if the critical set C(f) of f consists of only
isolated points,

>~ m(f,p) = (=1)"(x(M) = x(F) x(C)).

peC(f)

4. Residues of Chern classes on singular varieties

In this section, we deal with the situation more general than the one we
discussed in section 1, in two ways. Namely, we consider Chern classes other than
the top ones for vector bundles on possibly singular varieties. We refer to [Su2] and
[Su5] for details of the material in this section.

Let V be an analytic variety of pure dimension n in a complex manifold
W of dimension n + k. We denote by Sing(V') the singular set of V' and set V' =
V' \ Sing(V).

First, suppose V is compact and let U be a regular neighborhood of V' in

W. Then, as in Ch.II, 4, the cup product in H*(U) ~ H*(V) and the integration

/ CHM0) > C
i
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induces the “Poincaré homomorphism”
P: H?(V,C) — Hap_,(V,C),

which is not an isomorphism in general. Note that in [Br] the above homomorphism
P, as well as the Alexander homomorphism defined below, are described in a com-
binatorial way for (co)homology with integral coefficients. The homomorphism P
is given by the cap product with the fundamental class [V].

Now suppose V may not be compact. Let S be a compact set in V. We
assume that S has a finite number of connected components, S O Sing(V') and that
S admits a regular neighborhood in W. Let U; be a regular neighborhood of S in
W and Up a tubular neighborhood of Uy = V \ S in W. We consider the covering

= {Ug, Ul} of the union U = Uy U U;, which may be assumed to have the same
homotopy type as V. We define the subcomplex A*(U, Up) of A*(U) as in Ch.II, 5.
Then we see that
HY (U, Ty) ~ HP(V,V \ S;C).

Again, as in Ch.II, 5, the cup product and the integration induces the
“Alexander homomorphism”

A: HP(V,V\ S;C) = Han_,(S,C),

which is not an isomorphism in general.
Suppose V' is compact. Then the following diagram is commutative :

HP(V,V\ S;C) —X— HP(V,C)

(4.1) lA lp

Hyn p(S,C) —2— Hyy ,(V,C),

where 7 and j denote, respectively, the inclusions S < V and (V,0) — (V,V'\ S).

For a complex vector bundle E over U of rank r, the i-th Chern class c;(F)
is in H?(U) ~ H*(V). The corresponding class in H?(V) is denoted by ¢;(E|y).
The class ¢;(E) is represented by a Cech-de Rham cocycle ¢;(V,) on U given as
(3.1) in Ch.III with V and V; connections for E on U, and Uy, respectively. Note
that it is sufficient if Vy is defined only on Uy, since there is a C* retraction of
Uy onto Up. Suppose we have an f-tuple s = (sq,..., s;) of C* sections linearly
independent everywhere on Up and let V be s-trivial. Then we have the vanishing
¢i(Vo) =0, for i > r —£+1 (Ch.III, Proposition 3.3), and the above cocycle ¢;(V.)
defines a class ¢;(E|y,s) in HF (U, Up) ~ H*(V,V \ S;C). It is sent to ¢;(E|y) by
the canonical homomorphism j* : H*(V,V \ §;C) — H?*(V,C).
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Let (Sy)a be the connected components of S. Then, for each A, ¢;(E|y,s)
defines the residue Res, (s, E|y; S)) via the Alexander homomorphism

A: H¥(V,V\ S;C) — Han—2i(S,C) = P Han—2i(Sx, C).
A

For each A, we choose a neighborhood Uy of Sy in I}l, so that the f},\ S are
mutually disjoint. Let R) be a real 2(n + k)-dimensional manifold with C'* bound-
ary in U, containing S;\ in its interior such that the boundary 6R,\ is transverse to
V. We set Roy = —9R\NV. Then the residue Res., (s, E|v; Sy) is represented by a
2(n — i)-cycle C in Sy satisfying the identity as (1.2) for every closed 2(n — i)-form
7 on Uy. In particular, if i = n, the residue is a number given by a formula as (1.3).

From the commutativity of (4.1), we have the “residue formula”

Proposition 4.2. In the above situation, if V is compact, we have, fori > r—£+1,

> (ix)s Resc, (s, Elv; Sa) = i(E) ~ [V]  in Hap_2:(V,C),
A

where 1) : Sy — V denotes the inclusion.

Note that the Res,, (s, F|y; Sy)’s are in fact in the integral homology and
the above formula holds in the integral homology.

5. Residues at an isolated singularity

Let V be a subvariety of dimension n in a complex manifold W of dimension
n + k, as before. Suppose now that V has at most an isolated singularity at p
and let E be a holomorphic vector bundle of rank r (> n) on a small coordinate
neighborhood U of pin W. We may assume that E is trivial and let e = (ey,...,€,)
be a holomorphic frame of £ on U. Let £ =7 —n + 1 and suppose we have an
{-tuple of holomorphic sections § of E on U. Suppose that S(8) NV = {p}. Then
we have Res,, (s, E|y;p) with s = §|y. In the following, we give various expressions
of this number.

We write 5; = Z;zl fijes, i =1,...,L, with f;; holomorphic functions on
U. Let F be the £ x r matrix whose (4, j)-entry is fij. We set

I:{(il,...,’if)[13i1<"-<2'g57‘}.

For an element I = (iy,...,%) in Z, let F; denote the £ x £ matrix consisting
of the columns of F' corresponding to I and set ¢; = det Fy. If we write e =
ei, A+ Nej,, we have

 WARRRTAY:T] 2290[6[.
Iet

Note that S(8) is the set of common zeros of the ¢;’s.
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(I) Analytic expression

First we recall:
Grothendieck residues relative to a subvariety

Let U be a neighborhood of 0 in C"™* and V a subvariety of dimension n
in U which contains 0 as at most an isolated singular point. Also, let fi,..., fn
be holomorphic functions on U and V(fi,..., fa) the variety defined by them. We
assume that V(fy,...,fn,) NV = {0}. For a holomorphic n-from w on U, the
Grothendieck residue relative to V' is defined by (e.g., [Su2] Ch.IV, 8)

N [fl,.c.d.,fn} v (Rl/———l) /p ey

where I is the n-cycle in V' given by
P={¢eUnV|lfilg) =6, i=1,...,n}

for small positive numbers ;. It is oriented so that darg(fi) A--- A darg(f,) > 0.
If £ = 0, it reduces to the usual Grothendieck residue (Ch.III, 6), in which
case we omit the suffix V.

If V is a complete intersection defined by h; = -+ = hy = 0 in U, we have
w wAdhy A~ Adhg
Res =R ;
O{fl,...,fnh B0 fio Farha, o B

To get the analytic expression, we first note that, from the assumption
S(8) NV = {p}, we have ([Sud] Lemma 5.6) :

Lemma 5.1. We may choose a holomorphic frame e = (e1,...,e;) of E so that
there exist n elements IM ... I in T with V(pray, - .., @rm) NV = {p}.

Theorem 5.2. We have

U’n(@)
Res !E > =R 1
cﬂ(s |V p) €Sp [(pf(n,---utpf(“)]v

where @ray, ..., @) are chosen so that they satisfy the conditions in Lemma 5.1
and 0, (©) is a holomorphic n-from given in terms of the matriz F (see [Suj] for
the precise expression).

Here are some special cases:
1. The case £ =1 and » = n. Let e = (e1,...,€e,) be an arbitrary frame of F
and write s = Z?:l fie;. Then we may set ¢y = fi, 1 = 1,...,n, and we have
o'n(@) =dfy A+ ANdfy.
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2. Thecase n =1 and £ = r. Let e = (ej,...,€,) be an arbitrary frame of E and
write s; = Z;zl fijej,i=1,...,7. Let F = (f;;) and set ¢ = det F'. Then we may
set ;1) = @ and we have 0,(0) = de.

See [Su4] for more cases where the form o, (©) is computed explicitly.
(IT) Algebraic expression

Let Of,,p denote the ring of germs of holomorphic functions on U at p, which
is isomorphic to the ring O, of convergent power series in n + k variables. We
assume that V' is a complete intersection defined by hq,. .., hg near p and let F(V),
denote the ideal in (’)ﬁ,p generated by (the germs of) the ¢;’s and hq,. .., hg.

Theorem 5.3. We have

Rese, (s, Elv;p) = dimc Op ,/F(V)p.

(III) Topological expression

We again assume that V is a complete intersection in U. Let W;(C") denote
the Stiefel manifold of £-frames in C". It is known that the space W,(C") is 2(r —¢)-
connected and mwa,—1(Wp(C")) ~ Z (recall 2r — 2{+ 1 = 2n — 1). Let L denote the
link of (V,p). Note that both of W,;(C") and L have a natural generator for the
(2n — 1)-st homology. Thus the degree of the map

@ =s|p: L — Wy(C")

is well-defined.

Theorem 5.4. We have

Rese, (s, Ely; p) = deg .

6. Examples II
(a) Index of a holomorphic 1-form of Ebeling and Gusein-Zade

Let V be a complete intersection in U with an isolated singularity at p

and defined by (hi,...,hs), as before. Also, let L be the link of (V,p). For a

holomorphic 1-form @ on U, we consider the (k + 1)-tuple § = (6, dhy, ..., dhy) of

sections of T*U7, which is of rank n + k. Thusr —¢+1=n+k—(k+1)+1=n.

We assume that S(8) NV = {p}, which means that the pull-back of § to V'\ {p} by

the inclusion V' \ {p} — U does not vanish. Let s = §|y, which defines a map of
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V \ {p} to W,(C"). It should be emphasized that here we take the restrictions of
components of § as sections and not as differential forms.

Following {EG1], [EG2], with different naming and notation, we define the
V-index Indy (0, p) of  at p by

Indy (8, p) = degs|r.

Then by Theorem 5.4, it coincides with Res._ (s, T*U|y; p) and by Theorems
5.2 and 5.3, it has analytic and algebraic expressions. In fact the algebraic one is
already given in [EG1], [EG2].

Remark 6.1. For a vector field, there is a similar index, which is called the GSV-
index ([GSV], [SS1]). Namely, in the above situation let v be a holomorphic vector
field on U. Assume that v is tangent to V \ {p} and non-vanishing there. Set
§ = (v,grad hy,...,grad hi) and s = §|y. Then the GSV-index of v at p is defined
by

GSV(v,p) = degs]|L.

Since s involves anti-holomorphic objects, we cannot directly apply our
previous results. Note that it coincides with the “virtual index” of v ([LSS], [SS2])
and that there is an algebraic formula for it as a homological index, when k = 1

(1G9)). _
(b) Multiplicity of a function on a local complete intersection

We refer to [IS] for details of this subsection. Let V' be a subvariety of
dimension n in a complex manifold W of dimension n + k. We assume that V is
a local complete intersection defined by a section s of a holomorphic vector bundle
N of rank k over W (see Ch.IIL, 5).

Recall that the restriction of N to the non-singular part V' coincides with
the normal bundle of V/ in W. We denote the virtual bundle (T*W — N*)|y by
7y and call it the virtual cotangent bundle of V. Let g be a holomorphic function
on W and let f and f’ be its restrictions to V and V', respectively. We define
the singular set S(f) of f by S(f) = Sing(V) U C(f'). As in the case of vector
bundles, we may define the localization of the n-th Chern class of 7y, by df, which
in turn defines the residue Res,, (df, 7y ;) at each compact connected component
S of S(f). We define the virtual multiplicity m(f, S) of f at S by

(6.2) m(f,S) = Resc, (df, 7v; S).
The multiplicity of f at S is then defined by

(6.3) m(f,S) = fﬁ(gls S) = u(v,8),



where, u(V,S) denotes the (generalized) Milnor number of V at S as defined in
[BLSS] (cf. [A], [P], [PP] in the case k = 1). Note that if S consists of a point p, it
is the usual Milnor number u(V, p) of the isolated complete intersection singularity
(V,p) (cf. Ch.IIL, 5).

Note that, if S is in V', we have Res,, (df, 7; S) = Res,, (df, T*V’;S). On
the other hand, in this case we have u(V,S) = 0 so that m(f, S) coincides with the
one in 3 (b).

Let g : W — C be a holomorphic map onto a complex curve C and set
f=glv, f' = glv and S(f) = Sing(V) U C(f’). We assume that S(f) is compact.
We further set Vo = V' \ S(f) and fo = g|v,. Thus dfo is a non-vanishing section of
the bundle T*Vp ® f§T'C, which is of rank n. If we look at c,(€), e = 7 ® f*TC
and we see that there is a canonical localization ¢, (e,df) in H**(V,V \ S;C) of
en(€).

Let (Sx)x be the connected components of S and let (R))x be as in 4. Then
cn (€, df ) defines, for each A, the residue Res,, (df, 7y ® f*TC; Sy). If V is compact,
by Proposition 4.2, we have

) "Res., (df, 79 ® f*TC; 5)) = f en (T3 ® f*TO).
X 14

The both sides in the above are reduced as follows. If f(S(f)) consists of
isolated points, we may write

Rese, (df, 7y ® f*TC; S\) = m(f, Sx) = m(f, Sx) — u(V, S»)

and, if moreover, V' is compact, we have
| enlri @ £°7C) = (1" (x(V) = X(F)X(C) + S lV: 53),
A

where F is a general fiber of f ([IS] Lemma 5.2). Thus, in the above situation, we
have ([IS] Theorem 5.5) :

Y _m(f, ) = (-1)" (x(V) = x(F) x(C)) -
A
In particular, if S(f) consists only of isolated points,

(6.4) Y mifp) = (~1)" (x(V) - x(F) x(C)),

PES(f)

which generalizes Corollary 3.3 for a singular variety V.
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If S\ consists of a single point p, the residue Res., (df, 7y ;p) is given as
follows. Let U be a small neighborhood of p in W so that the bundle N admits a
frame (v1,...,v;) on U. We write s = Zle h; v; with h; holomorphic functions on
U. Then V is defined by (hy,...,ht) in U. Consider the (k + 1)-tuple of sections

§ = (dg,dhy, . ..,dhg)
of T*U. By the assumption, we have S(8) NV = {p}. Since the rank of T*U is

n+k, we have the residue Res,, (s, 7*Ulv;p), s = §|y. Then we have ([IS] Theorem
4.6) |

(6.5) m(f,p) = Resc, (s, T*Ulv; p)-

The virtual multiplicity m(f,p) was defined as the residue of df on the
virtual bundle 7y, and this definition led us to a global formula as (6.4). The identity
(6.5) shows that it coincides with the residue of s = (dg|v, dhi|v,...,dhg|yv) on the
vector bundle T*U|y. Thus we have various expressions for m(f, p) as given in the

previous sections; by Theorem 5.2 we have a way to compute m(f, p) explicitly, by
Theorem 5.3 we may express

(66) Tﬁ(f:p) = dimc-on+k/(‘](g!hlr o ;hk)ahla ceey hk)a
where J(g, hy, ..., hx) denotes the Jacobian ideal of the map (g, k1, ..., ki), i.e., the

ideal generated by the (k+ 1) x (k+ 1) minors of the Jacobian matrix g%%ﬁ;ﬁ—’:‘))-,
and by Theorem 5.4,

(6.7) m(f,p) = Indy(dg,p).
From (6.3), (6.6) and the identity (cf. [Gr], [Lél])

jJL(V, p) -+ :U'(Vg:p) = dimC On-Hc/(J(gs hl: v :hk)a hl: ceey hk);

where V;, denotes the complete intersection defined by (g, h1,...,hx), assuming
g(p) = 0, we get

(6.8) m(f,p) = u(Vy, p).

(c) Some others
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Let V be a complete intersection defined by (hy,...,h;) in U and p an
isolated singularity of V', as before.
The n-the polar multiplicity m,,(V,p) of Gaffney ([Gal) is defined by

m‘n(V'lp) = dlmc On+k/(‘](€} hls sy hk)': h’]& ey h’k)}
where £ is a general linear function. By (6.6) and (6.7), we may write

mn(V,p) = Indy (d¢, p) = m(f|v, p).

Also, in the expression
Eu(V,p) = 1+ (=1)"*'u(Ve, p)

for the Euler obstruction Eu(V,p) of V at p (cf. [D], [Ka], see also [BLS]), we have
by (6.3),
P"(.stp) = m(ﬂ‘/ap)

Note that these local invariants appear in the comparison of the Schwartz-
MacPherson, Mather and Fulton-Johnson classes of a local complete intersection
with isolated singularities (cf. [OSY], [Sul]).
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