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1 Lecture 1

Manifolds and Local, Ambient, Topological-type

We assume that the reader is familiar with the notion of a manifold, but we want to clarify the different
types of manifolds that one can discuss.

Throughout these notes, a topological manifold is a non-empty, Hausdorff, second-countable, topological
space M such that, for all x ∈ M , there exists an open neighborhood Ux of x in M , a natural number nx,
an open subset Vx of R

nx , and a homeomorphism hx : Ux → Vx. Such an hx (or, sometimes, Ux itself)
is called a coordinate chart (or patch) around x. The number nx is uniquely determined and is called the
dimension of M at x. If nx is independent of the point x ∈ M , we say that M is pure-dimensional; if we
call the common value n, then we say that M is (purely) n-dimensional or that M is an n-manifold, and
write dimM = n. If M is a connected manifold, then M is pure-dimensional.

Suppose that M is a topological manifold. If we have two coordinate charts hx : Ux → Vx and hy : Uy →
Vy such that Ux ∩ Uy �= ∅, then we have the transition function txy : hx(Ux ∩ Uy) → hy(Ux ∩ Uy) given by
txy(v) := hy(h−1

x (v)). Note that tyx = t−1
xy . If it is possible to select all of the coordinate charts so that all

of the transition functions are continuously differentiable (or, smooth), then M , together with the collection
(an atlas) of charts, is called a smooth manifold.

One has various notions of smooth manifolds, which correspond to exactly what one means by “continu-
ously differentiable”. If the transition functions are all Cr (continuously r times differentiable), then we have
a Cr manifold. A C1 manifold would be the weakest notion that one could use for a “smooth manifold”. The
case of topological manifolds is the C0 case. We also have C∞ (infinitely differentiable) manifolds, and Cω

(real analytic) manifolds. (Recall, that analytic, over the real or complex numbers, means a function which
can be represented by a convergent power series in a neighborhood of each point.) We refer to all of these
cases by simply writing Cr, and allowing r to have the values 0, 1, 2, 3, . . . ,∞, ω. Note that in all of these
cases, since tyx = t−1

xy , all of the transition functions are invertible and the inverses are required to be equally
as “smooth”, i.e., the transition functions are homeomorphisms (in the C0 case), Cr diffeomorphisms, C∞

diffeomorphisms, or real analytic isomorphisms; we refer to all of these as Cr isomorphisms.
One obtains the notion of a complex (analytic) manifold by replacing the open sets Vx ⊆ R

nx in the
discussion above by open subsets Vx ⊆ C

nx , and using an atlas for which the transition functions are
complex analytic, .i.e., holomorphic. The number nx here is usually referred to as simply the dimension
of M at x, since it is usually obvious that we mean the dimension over the complex numbers. However,
occasionally, it is necessary to explicitly use the terminology complex dimension for this nx to distinguish it
from the real dimension of the complex manifold, which would be 2nx.

Once one has the notions of Cr and complex analytic manifolds, it is not difficult to define the analogous
morphisms between two manifolds of the same type; that is, to define Cr functions between two Cr manifolds
and complex analytic functions between two complex manifolds. The reader is referred to [Spi70] for a
complete treatment. When we say that we have a Cr or complex analytic function between two manifolds,
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we mean that the two manifolds are also of the corresponding type (i.e., in the appropriate category).

Suppose that N is a smooth n-dimensional manifold. A subset M ⊆ N is a Cr submanifold of N if and
only if, for all x ∈M , there exists an open neighborhood U of x in N , an open neighborhood V of 0 in R

n, a
natural number mx, and a Cr isomorphism f : U → V such that f(x) = 0, and f(U ∩M) = V ∩ (Rmx ×{0}).
A Cr submanifold inherits a Cr atlas from the manifold in which it sits, and so Cr submanifolds are Cr

manifolds with a prescribed atlas. When discussing submanifolds, the space in which the submanifold sits
is frequently referred to as the ambient space. Note that the mx here is the dimension of the manifold M at
x. If M is a pure-dimensional submanifold of the pure-dimensional manifold N , then the codimension of M
in N is dimN − dimM .

We shall also be interested in complex submanifolds of a complex n-dimensional manifold N . To obtain
the definition of a complex submanifold, one simply takes the definition above, replaces R with C, and
replaces “Cr isomorphism” with complex analytic isomorphism.

Note that when one is dealing with purely topological questions, there is no need to distinguish between
the real and complex cases, since C

n is homeomorphic to R
2n.

In general, we are interested in the topology of how various subsetsX are embedded in R
n. If x ∈ X ⊆ R

n,
then the local, ambient, topological type of X in R

n at x is determined by the homeomorphism-type of triples
of the form (W,W ∩X,x), where W is an open neighborhood of x in R

n. This means that if x ∈ X ⊆ R
n

and y ∈ Y ⊆ R
n, then we would say that the local, ambient, topological-type of X at x is the same as the

local, ambient, topological-type of Y at y if and only if there exist open neighborhoods Wx and Wy in R
n

around x and y, respectively, and a homeomorphism g : Wx → Wy such that g(Wx ∩ X) = Wy ∩ Y and
g(x) = y.

For a topological submanifold of R
n, there is no interesting local, ambient topology – the local, ambient

topological-type at each point x is prescribed to be the same as that of R
mx × {0} inside R

n at the origin;
we refer to such topological-types as Euclidean or trivial.

The Geometry of the Implicit Function Theorem

We all encountered 1-manifolds in high school. We studied lines, parabolas, circles, ellipses, and hyper-
bolas. We encountered 2-manifolds in multivariable Calculus, where we saw spheres, ellipsoids, paraboloids,
and hyperboloids. Actually, all of these examples are examples of smooth submanifolds of Euclidean space.

One may wonder why equations with such forms as y = x2, x2 + y2 = 4, xy = 1, and 3x2 +2y2 +5z2 = 1
should define smooth (actually, real analytic) submanifolds of R

2 or R
3. In fact this follows from the Implicit

Function Theorem (see, for instance, [Rud53], Theorem 9.28 and [Gri78], p. 19), which we state in a geometric
form.

Theorem 1.1 (Implicit Function Theorem: geometric form) Let r ≥ 1 and let f be a Cr function from an
(m + c)-dimensional manifold N to a c-dimensional manifold P . Suppose that the rank of the derivative,
dxf , of f at a point x ∈ N is equal to c, i.e., dxf is surjective.

Then, there exist open subsets U ⊆ N , V ⊆ P , V ′ ⊆ R
c, and W ′ ⊆ R

m such that x ∈ U , f(U) = V, and
such that there exist Cr isomorphisms φ : W ′ ×V ′ → U and ψ : V → V ′ such that ψ ◦ f|U ◦ φ : W ′ ×V ′ → V ′

is equal to the projection onto V ′.

In addition, the complex analytic version of the above statement is also true.

The following corollary is immediate.
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Corollary 1.2 Let r ≥ 1 and let f be a Cr function from an (m + c)-dimensional manifold N to a c-
dimensional manifold P . Suppose that dxf is surjective.

Then, there exists an open neighborhood U of x in N such that:

1. f|U : U → P is an open map;

2. for all y ∈ U , dyf is surjective; and

3. for every Cr submanifold Q of codimension c′ in (the open set) f(U), U ∩ f−1(Q) is a Cr submanifold
of U of codimension c′; in particular, U ∩ f−1(f(x)) is a Cr submanifold of U of codimension c.

In addition, the complex analytic versions of the above statements are also true.

Example 1.3 Let us see how the Implicit Function Theorem or, rather, its corollary implies that the set,
M , of points in R

2 which satisfy x2 + y2 = 4 form a 1-dimensional Cω submanifold of R
2. Consider the

function f : R
2 → R

1 given by f(x, y) = x2 + y2 − 4. Then, f is a real analytic function, and the rank of
d(a,b)f will be equal to 1 precisely if one of the partial derivatives of f at (a, b) is non-zero.

As the partial derivatives of f are 2x and 2y, we see that d(a,b)f has rank equal to 1 everywhere except
at (0, 0). However, (0, 0) is certainly not in M . Thus, Corollary 1.2 tells us that, for every point (a, b) ∈M ,
there exists an open neighborhood U ′ of (a, b) in R

2 such that U∩f−1(f(a, b)) = U∩M is a Cω 1-submanifold
of R

2. Therefore, M is a Cω 1-submanifold of R
2.

For the remainder of this lecture, suppose that we have f : N → P , a map between pure-dimensional
manifolds, that f is a Cr or complex analytic function, where r ≥ 1, and that dimN ≥ dimP .

Corollary 1.2 tells us that if x ∈ N is such that dxf is surjective, then the local, ambient, topological-
type of f−1(f(x)) at x is Euclidean. Therefore, we can obtain non-Euclidean – that is, interesting – local
topological-types in f−1(f(x)) only at points where the derivative is not surjective.

Hence, we make some definitions.

Definition 1.4 A point x ∈ N such that dxf is surjective is called a regular point of f . A point x ∈ N
at which dxf is not surjective is called a critical point of f . The set of critical points of f is denoted Σf .

The set of critical values of f is f(Σf). The set of regular values of f is P − f(Σf). If Σf = ∅,
then f is called a submersion.

Note that Item 2 of Corollary 1.2 implies that Σf is a closed subset of N .

Using the terminology of Definition 1.4, and arguing as in Example 1.3, we immediately obtain the
following corollary to the Implicit Function Theorem.

Corollary 1.5 Suppose v ∈ f(N) is a regular value of f . Then, f−1(v) is a Cr (or complex analytic)
submanifold of N of codimension equal to dimP .

Example 1.6 If x ∈ Σf , then the local topology of f−1(f(x)) can certainly be non-trivial. Consider the
example from high school: f : R

2 → R given by f(x, y) = xy, where we are interested in the local topology
of f−1(f(0)) = f−1(0) at 0. The set f−1(0) consists of the union of the x- and y− axes and, hence, is not
even a topological manifold – much less, a topological submanifold of R

2 – in a neighborhood of the origin.
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As we are interested in points where spaces fail to be manifolds or submanifolds, as was the case with
the origin above, we make a definition.

Definition 1.7 Suppose that X is a topological space, and x ∈ X. Then, we say that x is a singular point
of X or is a singularity of X if and only if there is no neighborhood of x which is a topological manifold.

Suppose that X is a subspace of a Cr, or complex, manifold N , and x ∈ X. Then, we say that x is a Cr

singular point of X in N or is a Cr singularity of X in N if and only if there is no neighborhood, U ,
of x in N such that U ∩X is a Cr, or complex, submanifold of U .

Example 1.8 Consider the set of points X in R
2 which satisfy y2 = x3. This is called a cusp.

The origin is a C1 singular point of X in R
2, for there is no smooth way to flatten out the sharp point

at the origin.
On the other hand, the origin is not a topological (i.e., C0) singular point of X in R

2. We leave the
verification of this as an exercise for the reader.

Note that “singular point” is a type of point associated to a topological space, while a “critical point” is
a type of point associated to a function. Of course, the Implicit Function Theorem and its corollaries tell us
that these two notions are closely related. We shall return to examples of critical points and singular points
in our other lectures.

Henceforth, for simplicity, we will restrict our attention to three cases: the C∞ case, which we will refer
to as the smooth case, and the real and complex analytic cases. Thus, we will always assume, from now on,
that f : N → P is at least smooth.

The Theorem of Ehresmann and Integrating Vector Fields

The theorem of Ehresmann [Ehr50] is a theorem which describes a nice topological property of proper
submersions.

Recall that a continuous function g : X → Y between topological spaces is called proper provided that
for every compact subset C of Y , g−1(C) is compact. It is an easy exercise to show that if g : X → Y is
proper, and Y is Hausdorff and compactly-generated, e.g., a manifold, then g is a closed map. On the other
hand, Item 1 of the Corollary 1.2 tells us that submersions are open maps. Therefore, we have:

Proposition 1.9 If f : N → P is a proper submersion, and P is connected, then f is a surjection.

Ehresmann’s Theorem refers to smooth, locally trivial, fibrations. We need to define this concept.
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Definition 1.10 A smooth function g : M → Q between two manifolds is a smooth, trivial fibration
if and only if there exists a smooth manifold F such that g : M → Q is diffeomorphic to the projection
π : Q× F → Q, i.e., there exists a diffeomorphism ψ : M → Q× F such that g = π ◦ ψ.

Note that, if g is a smooth trivial fibration, then each fiber g−1(q), for q ∈ Q, is diffeomorphic to F . The
manifold F (or, actually, its diffeomorphism-type) is referred to as the fiber of the trivial fibration.

A smooth function g : M → Q between two manifolds is a smooth, locally trivial fibration if and
only if, for all q ∈ Q, there exists an open neighborhood V of q in Q such that g|g−1(V)

: g−1(V) → V is a
trivial fibration.

It is easy to show that if g : M → Q is a smooth, locally trivial fibration, and Q is connected, then the
diffeomorphism-type of each of the fibers g−1(q) is independent of q; this common diffeomorphism-type is
referred to as the fiber of the locally trivial fibration.

It is important to note that the “locally” in the term “locally trivial fibration” refers to local in the base
space Q, not local in the space M . Later, in Theorem 2.58, we shall need the notion of a (topological)
locally trivial fibration; one obtains this notion exactly as above, replacing “smooth” by “continuous” and
“diffeomorphism” by “homeomorphism”.

Before we state the theorem below, we should point out to the reader that two smooth manifolds are
smoothly homotopy-equivalent if and only if they are (topologically) homotopy-equivalent. See [Bot82], p.
36. In particular, there is no difference between a contractible smooth manifold and a smoothly contractible
smooth manifold.

The following theorem is well-known; see, for instance, [Ste51], 11.6.

Theorem 1.11 If f : N → P is a smooth, locally trivial fibration and P is contractible, then f is a smooth
trivial fibration.

Now we state the theorem of Ehresmann, [Ehr50].

Theorem 1.12 If f : N → P is a proper submersion, then it is a smooth, locally trivial fibration.

One might hope that if f is assumed to be real or complex analytic, then a generalization of Ehresmann’s
Theorem would imply that the local trivializations could be made real or complex analytic; this is not
the case, even though the Implicit Function Theorem tells us that, locally in N , we obtain such analytic
trivializations. The problem is that one cannot analytically “patch together” the local trivializations in N
to obtain an analytic trivialization over open subsets of P . We wish to say more about this, and discuss
some important aspects of the proof of Ehresmann’s Theorem.

The idea in the proof of Theorem 1.12 is fairly simple. Suppose p ∈ P . As f is assumed to be proper,
f−1(p) is compact. By the Implicit Function Theorem, at every x ∈ f−1(p), there is a local trivialization of
f . As f−1(p) is compact, a union of a finite number of these trivializations in N will contain f−1(p). Each
of these local trivializations yields a local vector field on N . One then takes a C∞ partition of unity (see
[Spi70], p. 69-70), subordinate to the collection of trivializations, and use this partition of unity to smoothly
patch together the local vector fields to obtain a smooth vector field in a neighborhood of f−1(p). One then
integrates this vector field, i.e., follows the flow of f−1(p) as points on it “move”, along integral curves, with
velocities given by the vector field (see [Spi70], p. 203-204 or [Mil63], p. 9-11). As f is proper, this flow
yields a smooth family of diffeomorphisms. For details of this proof, see 8.12 of [Bro73].

Integrating along vector fields is a fundamental differential technique for obtaining diffeomorphisms and
trivializations. We shall return to this topic in Lecture 2. Note that the existence of C∞ partitions of unity
is used in a strong way above. The non-existence of analytic partitions of unity is what prevents us from
proving a real or complex analytic version of Ehresmann’s Theorem.
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Basic Morse Theory

Ehresmann’s Theorem is a theorem about smooth functions with no critical points. Morse Theory is
the study of what happens at the most basic type of critical point of a smooth map. The classic, beautiful
references for Morse Theory are [Mil63] and [Mil65]. We also recommend the excellent, new introductory
treatment in [Mat97].

For the remainder of this lecture, f : N → R will be a smooth function from a smooth manifold of
dimension n into R. For all a ∈ R, let Na := f−1((−∞, a]). Note that if a is a regular value of f , then Na

is a smooth manifold with boundary ∂Na = f−1(a) (see, for instance, [Spi70]).

The following is Theorem 3.1 of [Mil63].

Theorem 1.13 Suppose that a, b ∈ R and a < b. Suppose that f−1([a, b]) is compact and contains no critical
points of f . Then, Na is a deformation retract of Nb via a smooth isotopy. In particular, Na is diffeomorphic
to Nb.

As [a, b] is contractible, Theorem 1.13 essentially follows from a combination of Theorem 1.11 and The-
orem 1.12. In [Mil63], Milnor uses the existence of a Riemannain metric on M , and then integrates the
corresponding normalized gradient vector field on M . As with partitions of unity, this is a C∞ technique
which does not work analytically; Riemannian metrics need only vary in a C∞ manner as one varies the
point in N .

Let p ∈ N , and let (x1, ..., xn) be a smooth, local coordinate system for N in an open neighborhood of p.

Definition 1.14 The point p is a non-degenerate critical point of f provided that p is a critical point
of f , and that the Hessian matrix

(
∂2f

∂xi∂xj
(p)

)
i,j

is non-singular.

The index of f at a non-degenerate critical point p is the number of negative eigenvalues of(
∂2f

∂xi∂xj
(p)

)
i,j

, counted with multiplicity.

It is left to the reader to check that p being a non-degenerate critical point of f is independent of the
choice of local coordinates on N . The reader may also try, as an exercise, to prove that the index of a
non-degenerate critical is independent of the coordinate choice; this is also true, but not quite so easy (see
[Mil63], p. 4-5). Note that since the Hessian matrix is a real symmetric matrix, it is diagonalizable and,
hence, the algebraic and geometric multiplicities of eigenvalues are the same.

The following is Lemma 2.2 of [Mil63], which tells us the basic structure of f near a non-degenerate
critical point.

Lemma 1.15 (The Morse Lemma) Let p be a non-degenerate critical point of f . Then, there is a local
coordinate system (y1, . . . , yn) in an open neighborhood U of p, with yi(p) = 0, for all i, and such that, for
all x ∈ U ,

f(x) = f(p) − (y1(x))2 − (y2(x))2 − . . .− (yλ(x))2 + (yλ+1(x))2 + . . .+ (yn(x))2,

where λ is the index of f at p.
In particular, the point p is an isolated critical point of f , i.e., there is an open neighborhood of p (namely,

U) in which p is the only critical point of f .
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The fundamental result of Morse Theory is a description of how Nb is obtained from Na, where a < b,
and where f−1([a, b]) is compact and contains a single critical point of f , and that critical point is contained
in f−1((a, b)) and is non-degenerate. In [Mil63], Theorem 3.2, , Milnor gives this result up to homotopy.
However, we wish to give the stronger “handle” result, as given in [Mil65], Theorems 3.13 and 3.14, and in
[Mat97], Theorem 3.2. First, we need a definition. Let Bk denote a closed ball of dimension k.

Definition 1.16 A smooth n-dimensional manifold M ′ with boundary is obtained from a smooth n-
dimensional manifold M with boundary by smoothly attaching a λ-handle provided that there is
an embedding i : ∂Bλ × Bn−λ → ∂M such that M ′ is diffeomorphic to the space obtained by attaching the
space Bλ ×Bn−λ to M via i and then “smoothing the corners” (see [Mat97], p. 78).

Theorem 1.17 Suppose that a < b, f−1([a, b]) is compact and contains a single critical point of f , and that
critical point is contained in f−1((a, b)) and is non-degenerate of index λ. Then, Nb is obtained from Na by
smoothly attaching a λ-handle.

In particular, Nb has the homotopy-type of Na with a λ-cell attached, and so Hi(Nb, Na; Z) = 0 if i �= λ,
and Hλ(Nb, Na; Z) ∼= Z.

Thus, functions f : N → R that have only non-degenerate critical points are of great interest, and so we
make a definition.

Definition 1.18 The smooth function f : N → R is a Morse function if and only if all of the critical
points of f are non-degenerate.

Remark 1.19 The reader should be careful when encountering the term “Morse function” in various refer-
ences. We have given the weakest possible definition. Other authors sometimes mean that f is proper, or
that N must be compact, or that the critical values at distinct critical points must be distinct.

If a and b are not critical values of f and M := f−1([a, b]) is compact, then the change in diffeomorphism-
type between Na and Nb is determined by the restriction of f to the smooth manifold with boundary M .
We make the following definitions (see [Mil65]).

Definition 1.20 The triple (M ;V0, V1) is a smooth manifold triad if and only if M is a compact, smooth,
pure-dimensional manifold, and the boundary ∂M is the disjoint union of two open and closed submanifolds
V0 and V1.

A Morse function on the smooth manifold triad (M ;V0, V1) is a smooth function g : M → [a, b] ⊆ R

such that g−1(a) = V0, g−1(b) = V1, and all of the critical points of g lie in M−∂M and are non-degenerate.

Note that a Morse function on a smooth manifold triad has at most a finite number of critical points,
since the manifold must be compact and Morse critical points are isolated. Also, note that a smooth manifold
triad includes as a special case a compact manifold without boundary, i.e., V0 = V1 = ∅; in this case, a Morse
function g : M → [a, b] would have a below the minimum value of g and b above the maximum.

Definitions 1.18 and 1.20 would not be terribly useful if there were very few Morse functions. However,
there are a number of theorems which tell us that Morse functions are very plentiful. We remind the reader
that “almost all” means except for a set of measure zero.

Theorem 1.21 ([Mil65], p. 11) If g is a C2 function from an open subset U of R
n to R, then, for almost

all linear functions L : R
n → R, the function g + L : U → R has no degenerate critical points.
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Theorem 1.22 ([Mil65], p. 14-17) Let (M ;V0, V1) be a smooth manifold triad, and suppose a < b. Then,
in the C2 topology, the Morse functions form an open, dense subset of the space of all smooth functions
g : (M,V0, V1) → ([a, b], a, b). In particular, there exists a Morse function on the triad.

Theorem 1.23 ([Mil63], Theorem 6.6) Let M be a smooth submanifold of R
n, which is a closed subset of

R
n. For all p ∈ R

n, let Lp : M → R be given by Lp(x) := ||x − p||2. Then, for almost all p ∈ R
n, Lp is a

proper Morse function such that Ma is compact for all a.

Corollary 1.24 ([Mil63], p. 36) Every smooth manifold M possesses a Morse function g : M → R such
that Ma is compact for all a ∈ R. Given such a function g, M has the homotopy-type of a CW-complex with
one cell of dimension λ for each critical point of g of index λ.

While we stated the above as a corollary to Theorem 1.23, it also strongly uses two other results: Theorem
3.5 of [Mil63] and Whitney’s Embedding Theorem, which tells us that any smooth manifold can be smoothly
embedded as a closed subset of some Euclidean space.

To apply Theorem 1.17 at each critical point of a Morse function g on the smooth manifold triad
(M ;V0, V1), we need to know that the critical values of g are distinct.

Theorem 1.25 ([Mil65], Lemma 2.8) Let g be a Morse function on the smooth manifold triad (M ;V0, V1)
with critical points p1, . . . , pk of indices λ1, . . . , λk, respectively. Then, there exists a Morse function h on
(M ;V0, V1) with critical points p1, . . . , pk of indices λ1, . . . , λk, respectively, such that all of the critical values
h(pi) are distinct for distinct pi. Moreover, h can be chosen arbitrarily close to g in the C2 topology.

By combining Theorems 1.17, 1.22, and 1.25, we immediately obtain:

Corollary 1.26 Every smooth compact n-manifold has a finite handlebody structure, i.e., is formed by
successively attaching a finite number of handles of various indices.

In the above corollary, one begins at the global minimum of a Morse function with distinct critical
values, and “attaches” a 0-handle (a closed n-ball) to the empty set. The final attaching occurs at the global
maximum, where one attaches an n-handle, i.e., attaches an n-ball along its bounding (n− 1)-sphere.

We now wish to mention a few complex analytic results which are of importance.

Theorem 1.27 ([Mil63], p. 39-41) Suppose that M is an m-dimensional complex analytic submanifold of
C

n. For all p ∈ C
n, let Lp : M → R be given by Lp(x) := ||x − p||2. If x ∈ M is a non-degenerate critical

point of Lp, then the index of Lp at x is less than or equal to m.

Corollary 1.24 immediately implies:

Corollary 1.28 ([Mil63], Theorem 7.2) If M is an m-dimensional complex analytic submanifold of C
n,

which is a closed subset of C
n, then M has the homotopy-type of an m-dimensional CW-complex. In partic-

ular, Hi(M ; Z) = 0 for i > m.

Note that this result should not be considered obvious; m is the complex dimension of M . Over the
real numbers, M is 2m-dimensional, and so m is frequently referred to as the middle dimension. Thus,
the above corollary says that the homology of a complex analytic submanifold of Cn, which is closed in C

n,
has trivial homology above the middle dimension.
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The reader might hope that the corollary above would allow one to obtain nice results about compact
complex manifolds; this is not the case. The maximum modulus principle, applied to the coordinate functions
on C

n, implies that the only compact, connected, complex submanifold of C
n is a point.

Suppose now that M is a complex m-manifold, and that c : M → C is a complex analytic function. Let
p ∈M , and let (z1, ..., zm) be a complex analytic coordinate system for M in an open neighborhood of p.

Analogous to our definition in the smooth case, we have:

Definition 1.29 The point p is a complex non-degenerate critical point of c provided that p is a
critical point of c, and that the Hessian matrix

(
∂2c

∂zi∂zj
(p)

)
i,j

is non-singular.

There is a complex analytic version of the Morse Lemma, Lemma 1.15:

Lemma 1.30 Let p be a complex non-degenerate critical point of c. Then, there is a local complex analytic
coordinate system (y1, . . . , ym) in an open neighborhood U of p, with yi(p) = 0, for all i, and such that, for
all x ∈ U ,

c(x) = c(p) + (y1(x))2 + (y2(x))2 + . . .+ (yn(x))2.

In particular, the point p is an isolated critical point of c.

The first statement of the following theorem is proved in exactly the same manner as Theorem 1.21; one
uses the open mapping principle for complex analytic functions to obtain the second statement.

Theorem 1.31 If c is a complex analytic function from an open subset U of C
m to C, then, for almost all

complex linear functions L : C
m → C, the function c+L : U → C has no complex degenerate critical points.

In addition, for all x ∈ U , there exists an open, dense subset W in HomC(Cm,C) ∼= C
m such that, for

all L ∈ W, there exists an open neighborhood U ′ ⊆ U of x such that c+L has no complex degenerate critical
points in U ′.

Finally, we leave the following theorem as an exercise for the reader. We denote the real and imaginary
parts of c by Re c and Im c, respectively.

Theorem 1.32 Let p be a complex non-degenerate critical point of c. Then, the real functions Re c : M → R

and Im c : M → R each have a (real, smooth) non-degenerate critical point at p of index precisely equal to
m, the complex dimension of M . In addition, if c(p) �= 0, then the real function |c|2 : M → R also has a
non-degenerate critical point of index m at p.
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2 Lecture 2

Real and Complex Analytic Sets

In Lecture 1, Definition 1.7, we defined a singular point as a point where a topological space is not locally
homeomorphic to an open subset of Euclidean space. While this is, in fact, a reasonable definition of a
singular point, it is unreasonable to expect to be able to obtain nice results about the local topology of
arbitrary topological spaces at such singular points. We need to restrict our attention to topological spaces
which are more manageable, and occur “naturally”.

Thus, we shall restrict our attention to algebraic and analytic sets (varieties) over a field K,
which we assume to be R or C; we will define these notions below. When we write analytic below, we
mean real analytic if K = R, and complex analytic if K = C. There are two topologies on Kn which we
will consider; the classical topology on R

n or C
n, which is what we used in the first lecture, and the Zariski

topology, which the reader may be familiar with, but which we will define below. When we use the terms
“open” and “closed” without qualification, we mean open or closed in the classical topology. When we want
to refer to the Zariski topology, we shall do so explicitly.

In the algebraic setting, we shall consider global algebraic subsets of Kn, i.e., affine algebraic sets. In
the analytic setting, instead of restricting ourselves to connected open subsets of Kn, it is useful to allow
the ambient space to be more general. Thus, throughout this lecture, unless we specifically state
otherwise, M denotes a connected n-dimensional analytic manifold.

There are many, many basic references for algebraic geometry, and we shall not need very much of the
theory. The references for analytic geometry, even in the complex case, are not so widely known. While we
shall discuss most of the results that we need, we recommend, for this series of lectures: [Mil68], §2, for the
real and complex algebraic cases; [Boc98], Chapters 2 and 3, for the real algebraic case; [Har77], I.1, and
[Mum76], Chapter 1, §1, for the complex algebraic case; Chapter 1 of [Kra92] for the real analytic case; for
the complex analytic case, [Mum76], Chapter 4A and [�Lo91], Chapters II and IV; for a combined treatment
of the complex algebraic and analytic cases, [Gri74], Chapter 0, §1 and §2; and, finally, for both the real and
complex analytic cases, [Car57] and [Nar66].

We let OKn := K[x1, . . . , xn] denote the polynomial ring in n variables over K. We let Oanal

M denote the
ring of analytic functions from M to K; these are functions which are locally, on coordinate patches, given by
convergent power series in n variables over the field K; over C, these are simply the holomorphic functions
on M . It is important to note that an analytic function is not required to have one fixed power series
representation that can be used at all points. We write (x1, . . . , xn) for local analytic coordinates on M .

Recall the notions of the germ of a topological space, X, and germ of a function on a topological space,
h : X → Y at a point p ∈ X; intuitively, the germ at p means the space X or the function h in an
arbitrarily small neighborhood of p. Rigorously, the germ of X (resp., h) at p is the equivalence class under
the equivalence relation: two spaces (resp., functions) X and X ′ (resp., h and h′) have the same germ at
p ∈ X ∩ X ′ if and only if there is an open neighborhood U of p in X and U ′ of p in X ′ such that the
topological spaces (resp., functions) U and U ′ (resp., h|U and h|U′ ) are equal. We denote the germ of X
(resp., h) at p by Xp (resp., [h]p).

Now, if p = (p1, . . . , pn) ∈ M , we let Oanal

M,p denote the ring of germs of functions which are analytic on
some open neighborhood of p in M ; these are the power series that converge in some neighborhood of p.
Note that Oanal

M,p is a local ring, whose maximal ideal, in local coordinates (x1, . . . , xn), is

m
M,p

:=< x1 − p1, . . . , xn − pn >⊆ C{x1 − p1, . . . , xn − pn} = Oanal

M,p.

The following result is fundamental.
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Theorem 2.1 (The Principle of Analytic Continuation) Suppose that p ∈ M , f ∈ Oanal

M , and [f ]p = 0 in
Oanal

M,p. Then, f = 0 in Oanal

M .

Proof. Let Z := {x ∈ M | [f ]x = 0}. Then, Z is non-empty (since p ∈ Z) and is clearly open in M .
However, as power series representations of functions are unique on the domain of convergence, Z is also
closed in M . As M is connected and non-empty, Z = M , i.e., f = 0 in Oanal

M . �

We have the following basic algebraic result (see [Nar66]).

Theorem 2.2 The rings OKn and Oanal

M,p are Noetherian, unique factorization domains (UFDs). The ring
Oanal

M is an integral domain, but need not be Noetherian or a UFD.

Definition 2.3 Let A ⊆ OKn (resp., A ⊆ Oanal

M ). Then, we define the vanishing locus (or, zero locus) of
A, V (A), to be the set of points in Kn (resp., the set of points in M) V (A) := {x ∈ Kn (resp., M) | f(x) =
0 for all f ∈ A},

If A ⊆ Oanal

M,p, then one makes an analogous definition of Vp(A) as a germ of a set of points in M at p.
(We leave this formulation as an exercise for the reader.)

Let E ⊆ Kn (resp., E ⊆ M). Then, we define the ideal of polynomials (resp., analytic functions)
which vanish on E to be I(E) := {f ∈ OKn(resp., Oanal

M ) | f(e) = 0 for all e ∈ E}.
If Ep is the germ of a set of points in M at p, then one makes an analogous definition of I(Ep) as an

ideal in Oanal

M,p. (We leave this formulation as an exercise for the reader.)

If A = {f1, . . . , fj}, we write V (f1, . . . , fj) in place of V (A).

The following proposition is a straightforward exercise. Recall that the radical,
√
J , of an ideal J in a

ring R is equal to {f ∈ R | there exists k ∈ N such that fk ∈ J}. Also, recall that for A ⊆ R, 〈A〉 is the
ideal generated by A, i.e., the intersection of all ideals in R which contain A.

Proposition 2.4 Let E ⊆ F ⊆ Kn, and A ⊆ B ⊆ OKn . For all α in some indexing set S, let Jα be an ideal
in OKn . For all β in some indexing set T , let Gβ be a subset of Kn.

1. I(E) is, in fact, an ideal in the ring OKn , and
√I(E) = I(E);

2. I(F ) ⊆ I(E);

3. V (B) ⊆ V (A);

4. E ⊆ V (I(E));

5. A ⊆ I(V (A));

6. V (A) = V (I(V (A)));

7. I(E) = I(V (I(E)));

8. V (A) = V (〈A〉) and
√〈A〉 ⊆ I(V (A));

9. for α, β ∈ S, V (Jα) ∪ V (Jβ) = V (Jα ∩ Jβ) = V (Jα · Jβ);
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10. V
( ∑

α∈S

Jα

)
=

⋂
α∈S

V (Jα);

11. for all α ∈ S, V (
√
Jα) = V (Jα);

12. I
( ⋃

β∈T

Gβ

)
=

⋂
β∈T

I(Gβ).

Moreover, the analogous statements for Oanal

M,p and Oanal

M are also true.

Definition 2.5 An algebraic subset of Kn or an affine algebraic set is a set of the form V (A), where
A ⊆ OKn . As V (A) = V (〈A〉) and OKn is Noetherian, this is equivalent to saying that an algebraic subset
of Kn is defined by the vanishing of a finite number of polynomials, i.e., is of the form V (f1, . . . , fj).

A subset X ⊆M is an analytic subset of M if and only if X is closed in M and, for all x ∈ X, there
exists an open neighborhood W of x in M and a finite collection f1, . . . , fj ∈ Oanal

W such that V (f1, . . . , fj) =
W ∩X.

A subset E of M is locally analytic if and only if, for all p ∈ E, there exists an open neighborhood W
of p in M such that W ∩ E is an analytic subset of W.

Remark 2.6 Item 6 of Proposition 2.4 tells us that if X is an algebraic set (resp., Xp is the germ of an
analytic subset), then V (I(X)) = X (resp., Vp(I(Xp)) = Xp).

However, an analytic subset X of M need not be defined by the vanishing of a collection of analytic
functions which are defined everywhere on M . In this case, while it is still true that X ⊆ V (I(X)), the
containment may well be proper. A particularly striking example is given in [Car57], §11, where a real
analytic subset S ⊆ R

3 is defined by the vanishing of a C∞ function, and it is shown that I(S) = 〈0〉.
We should also remark that some authors do not require an analytic subset to be closed. Their notion

of an analytic subset of M is what we have called a locally analytic subset. One must be careful when
reading the definition of “analytic subset” in a given source. Another source of possible confusion is that
it is common to require an analytic subset X to be closed without explicitly stating that X is closed; some
authors take our definition, omit the phrase “X is closed in M”, but change “for all x ∈ X” to “for all
x ∈M”.

The following theorem follows from Item 10 of Proposition 2.4 in the algebraic case. In the analytic case,
it is substantially more difficult; see [Whi72], Theorem 9C and [Nar66], Cor. 2, p. 100.

Theorem 2.7 Intersections of affine algebraic sets are affine algebraic sets. Intersections of analytic subsets
of M are analytic subsets of M ; in particular, if A ⊆ Oanal

M , then V (A) is an analytic subset of M .

In light of this theorem, and the fact that V (1) = ∅ and V (0) is the entire ambient space, Kn or M , we
may make the following definition.

Definition 2.8 The algebraic Zariski topology on Kn is the topology in which the closed sets are precisely
the algebraic subsets.

The analytic Zariski topology on M is the topology in which the closed sets are precisely the analytic
subsets.

We denote the topological closure of E ⊆ M by E and the analytic closure, i.e., the closure in the
analytic Zariski topology, by E

anal
.
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Note that the Zariski topologies are very coarse; the open subsets are very big and special. In particular,
a Zariski-open (resp., closed) set is open (resp., closed) in the classical topology. We remind the reader that
when we use the terms “open” and ”closed”, or other topological notions, without qualification, we mean in
the classical topology.

Definition 2.9 A non-empty algebraic subset in Kn (resp., analytic subset of M) is irreducible if and only
if it cannot be written as the union of two proper algebraic (resp., analytic) subsets.

An analytic subset X ⊆M is irreducible at a point p ∈ X (or the germ Xp is irreducible) if and
only if the Xp cannot be written as the union of two proper germs of analytic spaces at p.

Note that it is immediate from the definition that an irreducible analytic subset of M must be connected.
Moreover, the following proposition is an easy exercise:

Proposition 2.10

1. If X is an irreducible algebraic set in Kn, then I(X) is a prime ideal in OKn . Moreover, the analogous
statements for irreducible analytic sets in M and irreducible germs are also true.

2. If A ⊆ OKn , X := V (A), and I(X) is a prime ideal in OKn , then X is irreducible. Moreover, the
analogous statement in Oanal

M,p is also true.

In particular, an algebraic set (resp., an analytic germ) is irreducible if and only if the ideal of polynomials
vanishing on the set (resp., the ideal of germs of analytic functions vanishing on the germ) is prime.

Note that we are not claiming that Item 2 of Proposition 2.10 holds for analytic subsets X ⊆M .

Example 2.11 Consider X := V (y2 − x3 − x2) ⊆ R
2.

This algebraic/analytic set is both algebraically and analytically irreducible in R
2. However, X is not

analytically irreducible at 0. In the graph, one sees that in a small neighborhood of the origin, X consists
of two smooth curves which transversely intersect each other. One detects this analytically by factoring
y2 − x3 − x2 as (y + x

√
1 + x)(y − x

√
1 + x). Here,

√
1 + x denotes one of the two convergent power series

at 0 whose square is 1 + x, and the equality y2 − x3 − x2 = (y + x
√

1 + x)(y − x
√

1 + x) holds only on

neighborhoods of the origin where the power series for
√

1 + x converges, i.e, inside an open ball
◦
B of radius

1. Thus, by Item 9 of Proposition 2.4, inside
◦
B,

X = V (y + x
√

1 + x) ∪ V (y − x
√

1 + x),

and so the germ of X at 0 has two irreducible “components” (see below).
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Note that the Inverse Function Theorem ([Rud53], 9.24; [Kra92], 1.8.1; [Whi72], Appendix II, Lemma
2.A) implies that the map (x, y) �→ (x

√
1 + x, y) is a local, analytic change of coordinates at the origin. This

means that, up to an analytic isomorphism in a neighborhood of the origin, the analytic set V (y2 −x3 −x2)
is the same as V (y + x) ∪ V (y − x), i.e., two intersecting lines.

Our final comment on this example is that we could have written all of the above with x and y as complex
variables and X being a complex analytic subset of C

2. Of course, C
2 is real 4-dimensional, and so we have

no hope of drawing an accurate picture over C. It is common in low-dimensional complex analytic geometry
to draw the picture of the corresponding situation over R and hope that the picture over the real numbers
provides one with some intuition for what happens over C.

There are, unfortunately, quite a few definitions of smooth, regular, and singular points in the literature.
The issues involved in the various definitions are whether one uses globally-defined polynomials or local
analytic functions, and whether one allows regular points of more than one dimension. Throughout our
lectures, we will deal with the local analytic situation, and below we adopt notation and terminology for this
situation. In the remark following the definition, we discuss the algebraic situation.

Definition 2.12 Let X be an analytic subset of M . A point p ∈ X is called smooth, of dimension d, if
and only if there exists an open neighborhood W of p in M such that W ∩X is an analytic submanifold of
W of dimension d (over the field K). Thus, p ∈ X is smooth of dimension d if and only if there exists an
open neighborhood W of p in M and fd+1, . . . fn ∈ Oanal

W such that W ∩ X = V (fd+1, . . . , fn) and, for all
x ∈ W, dxfd+1, . . . , dxfn are linearly independent.

We denote the set of smooth points of X by
◦
X, and the set of smooth points of dimension d by

◦
X(d).

A smooth point of X of highest dimension is a regular point; we denote the set of regular points of X by
Xreg.

A point p ∈ X which is not smooth is called a singular point (or, a singularity). We denote the set
of singular points, the singular locus, of X by ΣX. The set of exceptional points of X is X−Xreg, and
is denoted by Xexc.

Remark 2.13 In the above definition, we have followed the standard analytic definition, as given in [Car57],
[Nar66], [�Lo91], and [Whi72] – though, we have used the term smooth where some authors write regular.
Our uses of the terms regular and exceptional are not standard in many references. The reader should be
careful to look up the definitions of any such terms in any given source.

The reader should also note that the definitions of smooth/regular/simple/non-singular and singular
points given in [Mil68] are different; Milnor is dealing with the algebraic case and, in addition, gives a
definition which is satisfactory only when all of the regular points have the same dimension; see [Mil68],
p.10 and be sure to read the footnote. In the real or complex algebraic setting, it is standard to use
globally-defined polynomials in the definitions of regular and singular points, as Milnor does in [Mil68]; see,
in addition, [Boc98], §3.3 and [Mum76], §1A and §1.B.

Using global polynomial functions, one can still define smooth points of dimension d (as in [Boc98]), and

avoid the “problem” mentioned in the footnote of [Mil68], p. 10. The set of algebraic smooth points
◦
Xalg is

the union of the smooth points of all dimensions, and the complement of this set is one notion of the algebraic
singular locus of X, which we will denote by ΣalgX. The algebraic regular points are the algebraic smooth
points of highest dimension; we denote the set of algebraic regular points by Xalg

reg . If X is algebraically

irreducible, then Xalg
reg =

◦
Xalg. The set of algebraic exceptional points of X is X −Xalg

reg , and is denoted
by Xalg

exc.
Clearly, ΣX ⊆ ΣalgX ⊆ Xalg

exc. An important question, of course, is whether or not ΣX = ΣalgX.

14



In fact, in the complex algebraic case, Milnor’s remark and proof in [Mil68], p. 13-14, shows that
ΣX = ΣalgX. However, in the real algebraic case, it is false, in general, that ΣX = ΣalgX; see Example
3.3.12a of [Boc98]. However, the algebraic situation over the real numbers is not so badly behaved; over
the reals or complexes, Xalg

exc is an algebraic set; see [Boc98], Proposition 3.3.14, which is essentially the easy
argument given by Milnor in [Mil68], p. 11.

The real analytic situation is much more problematic; see Example 2.31.

Theorem 2.14 Let X be an analytic subset of M . Suppose that 0 ≤ d ≤ n.

1.
◦
X(d) is a d-dimensional analytic submanifold of M , and is an open subset of X;

2. the
◦
X(d) are disjoint for different d,

◦
X =

◦
X(0) ∪ . . . ◦

X(n),
◦
X is an analytic submanifold of M , and

◦
X

is open in X;

3. if p is a smooth point of X, then the germ Xp is irreducible;

4.
◦
X is dense in X; and

5. ΣX is a closed, nowhere dense subset of X.

Proof. Items 1 and 2 follow at once from the definitions.
At a smooth point p of dimension d, the Implicit Function Theorem tells us that there is an ana-

lytic isomorphism in a neighborhood of p which takes the ideal 〈[fd+1]p, . . . , [fn]p〉 in Oanal

M,p to the ideal
〈[xd+1]p, . . . , [xn]p〉 in Oanal

U,p , where U is an open subset of Kn and (x1, . . . , xn) are coordinates on U . As
〈[xd+1]p, . . . , [xn]p〉 is obviously a prime ideal in Oanal

U,p , 〈[fd+1]p, . . . , [fn]p〉 is prime in Oanal

M,p. Item 2 of
Proposition 2.10 now implies that Xp is irreducible.

Item 5 follows immediately from Items 2 and 4.

Item 4 is difficult; see [Nar66], p. 41, Theorem 1. �

Definition 2.15 The dimension (over K), dimX, of an analytic set X ⊆ M is the largest d such that
◦
X(d) is non-empty. The dimension of X at a point p ∈ X, dimpX, is the largest d such that p is in the

closure of
◦
X(d). We say that X is pure-dimensional if and only if the dimension of X at each point p ∈ X

is independent of p.
We make the analogous definitions for local analytic sets.

We have defined dimension geometrically above. However, there are algebraic characterizations. See
[Nar66], p. 32-40. Below, we use the Krull dimension; this follows quickly from [Nar66], since the Krull
dimension of an integral extension of a ring R is the same as that of R (for Noetherian rings). For the global
dimension statement for an algebraic set, there are many references; see, for instance, [Mum76], Chapter 1,
in the complex case, and [Boc98], §3.3 in the real case.

Theorem 2.16 The dimension of an analytic subset X ⊆ M at a point p ∈ X is equal to the (Krull)
dimension of the quotient ring Oanal

M,p/I(Xp) and, thus, dimX is the maximum of these dimensions as p
varies over all of the points of X.

If X is an algebraic subset of Kn, then dimX is equal to the dimension of OKn/I(X).
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We have the following corollary, over R or C, which is a very easy exercise, but is still extremely useful
for proving local irreducibility:

Corollary 2.17 Suppose that α is an ideal in Oanal

M,p such that
√
α is a prime ideal p, and such that

dim

(
Oanal

M,p

α

)
= dimVp(α).

Then, I(Vp(α)) = p and, hence, Vp(α) is irreducible.

In particular, if f is an irreducible element (in particular, not a unit or zero) of Oanal

M,p such that
dimVp(f) = n− 1, then 〈f〉 = I(Vp(f)) and Vp(f) is irreducible.

Remark 2.18 It is tempting to read more into Theorem 2.16 and Corollary 2.17 than they actually say.
Suppose that Xp is irreducible of dimension d, and f ∈ Oanal

M,p is such that f(p) = 0 and Xp �⊆ Vp(f). Then,
one might think that Krull’s Hauptidealsatz would easily imply that dim(Xp ∩ Vp(f)) = d− 1. While this is
true if K = C, it is not true if K = R.

What the Hauptidealsatz actually does tell us is that dim
Oanal

M,p

I(Xp) + 〈f〉 = d− 1. As

dim
Oanal

M,p

I(Xp) + 〈f〉 = dim
Oanal

M,p√I(Xp) + 〈f〉 .

and, by Item 1 of Proposition 2.4, I(Xp∩Vp(f)) is equal to its own radical, the question is: does I(Xp∩Vp(f))
equal

√I(Xp) + 〈f〉? The answer is “yes” if K = C, by Hilbert’s Nullstellensatz (see Theorem 2.19 below),
and “no”, in general, if K = R.

It is easy to see/explain this failure over R; if f1, . . . , fk are real analytic functions and f := f2
1 + . . .+f2

k ,
then V (f1, . . . , fk) = V (f). Thus, being locally defined by the vanishing of a single real analytic function
should not have any nice dimensionality properties. For instance, if p = (p1, . . . , pn), dimXp ≥ 2, and we

choose f = (x1 − p1)2 + . . . + (xn − pn)2 ∈ Oanal

M,p, then dim(Xp ∩ Vp(f)) = 0, while dim
Oanal

M,p√I(Xp) + 〈f〉 =

(dimXp) − 1 ≥ 1.

In the complex algebraic setting, there are a large number of references for Hilbert’s Nullstellensatz; see,
for instance, [Mum76], Theorem 1.5. In the local complex analytic setting, see [�Lo91], III.4.1.

Theorem 2.19 (Hilbert’s Nullstellensatz) Let K = C. Suppose that α is an ideal in OKn (resp., in Oanal

M,p).
Then,

√
α = I(V (α)) (resp., = I(Vp(α))).

Our discussion in Remark 2.18 immediately yields:

Proposition 2.20 Let K = C, f ∈ Oanal

M , and p ∈ V (f). Suppose that [f ]p �= 0. Then, dimVp(f) = n− 1.
In particular, if f �≡ 0, then V (f) is purely (n− 1)-dimensional (this vacuously allows for V (f) = ∅).
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In analogy with the manifold terminology, we say, in the setting above, that V (f) has codimension 1
everywhere.

It should come as no surprise that Proposition 2.20 fails over the real numbers, even if one assumes that
V (f) is irreducible of dimension n− 1.

Example 2.21 A famous example of a real algebraic set which is “troublesome” is the Whitney umbrella,
X := V (y2 − zx2) ⊆ R

3.

Note the 2-dimensional portion above the xy-plane, and that when z < 0, the only points of X are on the
z-axis. One might suspect that X is not irreducible, as X is certainly the union of the z-axis (the handle of
the umbrella) and the 2-dimensional “umbrella” portion. However, X ∩{(x, y, z) | z ≥ 0} is not an analytic
set (use Corollary 2.17 at the origin), and X is, in fact, irreducible.

Thus, the Whitney umbrella is an irreducible analytic set which is not pure-dimensional.

Proposition 2.22 Suppose that f ∈ Oanal

M,p has an irreducible decomposition ufα1
1 fα2

2 . . . fαl

l , where u is a
unit, and the fi are non-associated, irreducible elements of Oanal

M,p. Then, Vp(f) is an (n − 1)-dimensional
analytic submanifold inside the germ of M at p if and only if there exists i0 such that dpfi0 �= 0 and such
that, for all i �= i0, V (fi) ⊆ V (fi0) and dimVp(fi) < dimVp(fi0).

Therefore, if K = C and f ∈ Oanal

M,p, then Vp(f) is an (n− 1)-dimensional analytic submanifold inside the
germ of M at p if and only if there exists an irreducible g ∈ Oanal

M,p and α ∈ N such that f = gα and dpg �= 0.

Proof. Suppose that there exists i0 such that dpfi0 �= 0 and such that, for all i �= i0, V (fi) ⊆ V (fi0) and
dimVp(fi) < dimVp(fi0). Then, Item 9 of Proposition 2.4 tells us that Vp(f) = Vp(fi0), and the Implicit
Function Theorem (Corollary 1.2) tells us that Vp(fi0) is an (n− 1)-dimensional analytic submanifold of the
germ of M at p.

Now suppose that Vp(f) is an (n−1)-dimensional analytic submanifold inside the germ of M at p. Then,
I(Vp(f)) equals a prime ideal p and, since Vp(f) = ∪i Vp(fi), we also have that I(Vp(f)) = ∩i I(Vp(fi)).
Therefore, there exists i0 such that p = I(Vp(fi0)); it follows that Vp(f) = Vp(fi0) and dimVp(fi0) = n− 1.
Thus, for all i, V (fi) ⊆ V (fi0).

Now, note that we are in the situation of the last statement of Corollary 2.17, and so we conclude that
I(Vp(f)) = I(Vp(fi0)) = 〈fi0〉. As Vp(f) is an (n − 1)-dimensional analytic submanifold, there exists some
g ∈ Oanal

M,p such that Vp(g) = Vp(f) and dpg �= 0. Since g ∈ I(Vp(f)) = 〈fi0〉, there exists q ∈ Oanal

M,p such that
g = q · fi0 . The product rule yields dpg = q(p)dpfi0 + fi0(p)dpq = q(p)dpfi0 , and so dpfi0 must be unequal
to zero.
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Suppose that for some i �= i0, dimVp(fi) = n− 1. Then, applying Corollary 2.17 again, we conclude that
I(Vp(fi)) = 〈fi〉. Thus, we obtain a containment of prime ideals 〈fi0〉 = I(Vp(f)) ⊆ I(Vp(fi)) = 〈fi〉, where
dimOanal

M,p/〈fi0〉 = dimOanal

M,p/〈fi〉. Hence, 〈fi0〉 = 〈fi〉, which contradicts that fi is not associated to fi0 .

This finishes the proof, except for the final statement, which now follows at once from Proposition 2.20
(and the fact that one can extract arbitrary roots of units over C). �

Example 2.23 Over R, one does not have the nice result that one has over C in Proposition 2.22. Consider
the germ of the real function f = −(x2 + y2)2x2 at the origin in R

2. Then, V (f) = V (x) is certainly a
smooth 1-manifold at the origin, and yet one cannot eliminate the x2 + y2 factors from f nor “absorb” the
unit −1 into the powers of irreducible elements.

For lack of a convenient reference, we will now prove:

Theorem 2.24 Suppose that X is an analytic subset of M , and E is a connected, pure-dimensional, locally
analytic subset of M such that, for all x ∈ E, Ex is irreducible. Finally, suppose that p ∈ E is such that
Ep ⊆ Xp. Then, E ⊆ X.

Proof. Let F := {x ∈ E | Ex ⊆ Xx}. We will show that F is both open and closed in E. As E is connected
and p ∈ F , it will follow that F = E, and so E ⊆ X. Let d denote the dimension of E at each of its points.

By definition of the containment of germs, the set F is open in E. It remains for us to show that the
complement of F in E is open in E.

Suppose that q ∈ E and Eq �⊆ Xq. As Eq �⊆ Xq, I(Xq) �⊆ I(Eq). Therefore, there exists an open
neighborhood W ⊆M of q and f ∈ Oanal

W such that f|W∩X
≡ 0 and f �∈ I(Eq). It follows that Eq ∩V (f) is a

proper analytic germ inside the irreducible germ Eq. By Proposition 7, p. 41, of [Nar66], dimq(E∩V (f)) < d.
Let W ′ ⊆ W be an open neighborhood of q in M such that dim(W ′ ∩E ∩ V (f)) < d. We claim that, for all
x ∈ W ′ ∩ E, Ex �⊆ Xx, i.e., that the complement of F in E is open.

Suppose, to the contrary, that x ∈ W ′ ∩ E and Ex ⊆ Xx. Then, as f|W∩X
≡ 0, x ∈ V (f), and so

dimEx∩V (f) < d. However, Ex ⊆ Xx ⊆ V (f) and, hence, dimEx∩V (f) = dimEx = d. This contradiction
concludes the proof. �

The following corollary is an easy exercise.

Corollary 2.25 Suppose that E is a connected, pure-dimensional, locally analytic subset of M such that,
for all x ∈ E, Ex is irreducible. Then, E

anal
is irreducible in M .

Example 2.26 Theorem 2.24 is false without the assumption that E is pure-dimensional. Consider the set
E := V (z(x2 + y2) − x3) ⊆ R

3. This is an example of H. Cartan from p. 93 of [Car57]; see also [Nar66],
Example 1, p. 106. We refer to this example as the Cartan top.
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The Implicit Function Theorem tells us that outside Z := {(0, 0, z) | z ∈ R} (i.e., the z-axis), E is an an
analytic 2-manifold. Therefore, E−Z is irreducible at each point. In addition, at any point p on Z−{0}, Ep

is certainly irreducible since it agrees with Zp. Finally, use Corollary 2.17, or refer to [Car57] and [Nar66],
for the irreducibility of E at 0.

Thus, E is connected and locally irreducible. Let p := (0, 0,−1). Then, Ep ⊆ Zp, but certainly E �⊆ Z.

The following result is very useful.

Theorem 2.27 Suppose that X is a connected, pure-dimensional, locally irreducible, analytic subset of M .
Suppose that W is a non-empty, open subset of X. Then, the analytic closure of W in M is equal to X.

Proof. Let Ω be the interior of Wanal
in X. Then, Ω is a non-empty open subset of X. We shall show that

Ω is closed in X. As X is connected, that will conclude the proof. Let d denote the common dimension of
X at each of its points.

Let x ∈ Ω ⊆ Wanal
; we will show that x ∈ Ω. For every open neighborhood V of x in X, Ω ∩ V �= ∅ and,

thus, dim
(Wanal)

x
= d. As

(Wanal)
x
⊆ Xx, and Xx is irreducible is dimension d, we may use Proposition

7, p. 41, of [Nar66] to conclude that
(Wanal)

x
= Xx. Therefore, there is an open neighborhood V of x in X

such that V ∩Wanal
= V, i.e., such that V ⊆ Wanal

. Thus, by definition of the interior, x ∈ Ω. �

Corollary 2.28 Suppose that Y is an affine linear subspace of Kn, and that W is a non-empty open subset
of Y . Then, the analytic closure of W in Kn is Y .

We shall now give a number of fundamental results which hold over the complex numbers, but not over
the real numbers. In Item 1 below, we use the convention that dim ∅ = −∞.

Theorem 2.29 Let X be a non-empty analytic subset of M . Let V be an irreducible analytic subset of M .
Then, the following statements hold for K = C and are false, in general, for K = R.

1. ΣX is an analytic subset of M of dimension strictly less than dimX.

2. V is pure-dimensional.

3. If p ∈ V and Vp ⊆ Xp, then V ⊆ X.

4. X is irreducible if and only if it is the topological closure of a non-empty, connected analytic submani-
fold.

5. If V �⊆ X, then V −X and
◦
V −X are connected and dense in V .

6. For every connected component C of
◦
X, the closure C is an irreducible analytic subset ofM , and distinct

connected components C yield distinct C. The collection K := {C | C a connected component of
◦
X}

is countable and locally finite. None of the elements of K is contained in the union of the others, and
the union of all of the elements of K is X. If V ⊆ X, then there exists Y ∈ K such that V ⊆ Y .

7. Suppose that X =
⋃

iXi, where the Xi are irreducible analytic subsets of M , {Xi}i is locally finite (or
countable), and Xi1 �⊆ Xi2 if i1 �= i2. Then, {Xi}i equals the set K from Item 6.

8. If X is connected and irreducible at each point, then X is irreducible.
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9. If X ⊆ V , and dimX = dimV , then X = V .

Proof. We give references for each of these results over C, except we will prove Item 8, and leave Item 9 as
an exercise. We give examples below which show that the general statements are false if K = R.

While these results can be found in many places, all of our references are to [�Lo91]. Item 1 is Theorem 1,
p. 211. Item 2 is immediate from Item 4. Item 3 is Proposition 4, p. 217. Item 4 is Corollary 3 on p. 216.
Item 5 is Corollary 1 to Proposition 3 on p. 216. Items 6 and 7 are the corollary and Theorem 4 on p. 217.

Finally, we use Items 3 and 6 to prove Item 8. Suppose that X is connected and irreducible at each
point. Write X =

⋃
C C, where the C’s are the connected components of

◦
X. We need to show that there is

only one such C. Suppose not. Fix a C0. As X is connected, C0 cannot be disjoint from
⋃

C �=C0
C (locally

finite unions of closed sets are closed). Let p ∈ C0 ∩
⋃

C �=C0
C. As X =

⋃
C C, which is a locally finite union,

and we are assuming that Xp is irreducible, there must be a Ci such that Xp = (Ci)p. However, this implies
that for every other distinct Cj such that p ∈ Cj , (Cj)p ⊆ Xp = (Ci)p. By Item 3, this implies Cj ⊆ Ci; a
contradiction of Item 6. �

Definition 2.30 When K = C, we refer to the C of Item 6, or the Xi of Item 7, in Theorem 2.29 as the
irreducible components of X.

We will now give examples which show that all of the items of Theorem 2.29 fail over R.

Example 2.31

• Looking at Definition 2.12, it is tempting to believe that an easy argument – such as that mentioned in
[Mil68], p. 11 – in terms of determinants of the minors of the matrix of partial derivatives would allow one
to conclude in the real or complex analytic case that ΣX is analytic. However, the result is simply false if
K = R; see Example 3 on pages 106-107 of [Nar66]. In this example, an analytic subset A ⊆ R

3 is described
such that dim(ΣA

anal
) = dimA.

• The Whitney umbrella of Example 2.21 or the Cartan top of Example 2.26 are examples of irreducible real
analytic sets which are not pure-dimensional.

• Let V equal the Whitney umbrella or the Cartan top, and let X denote the z-axis in R
3. Let p = (0, 0,−1).

Then V is irreducible, Vp ⊆ Xp, but V �⊆ X. Thus, Item 3 of Theorem 2.29 fails over R. Also, even though V
is irreducible, it is not the closure of a connected analytic submanifold; therefore, Item 4 of Theorem 2.29
fails over R.

Note, however, that the other implication in Item 4 remains valid even when K = R. That is, if an
analytic subset X of M is the topological closure of a non-empty, connected analytic submanifold, then X
is irreducible. This follows immediately from Corollary 2.25.

• As R − {0} is not connected, certainly the connectedness conclusion of Item 5 is terribly false over R. In
addition, removing the z-axis from V , where V is the Whitney umbrella or Cartan top, leaves one with a
non-dense subset of V , which means that the other conclusion of Item 5 is not generally true over R.

• No reasonable concept of an analytic irreducible component of a space X, as appears in Items 6 and 7,
exists over the real numbers. Certainly the topological closure of the 2-dimensional connected component of
the smooth points of the Whitney umbrella or the Cartan top are not analytic sets. However, the situation
is significantly worse than this.

Example 4 on p. 107 of [Nar66] is an example of an analytic subset S of R
3 such that if S = B ∪ C,

where B and C are analytic subsets and B is irreducible, then C = S.
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• Suppose that Y is the Cartan top, V (z(x2 + y2) − x3) ⊆ R
3. Let Z be a shifted copy of the Cartan top,

Z := V ((z+1)(x2 + y2)−x3). Then, Y ∩Z is the z-axis. Let X := Y ∪Z. Then, X is connected and locally
irreducible, but not irreducible. Therefore, Item 8 does not hold over R.

• Example 5 on p. 108 of [Nar66] is an example of an irreducible 2-dimensional analytic subset S of R
3

containing proper 2-dimensional analytic subsets. Thus, Item 9 fails over R.

Real and Complex Semianalytic Sets

When dealing with analytic subsets of an analytic manifold M , we frequently use constructions which
require intersecting the analytic set with a closed ball, or use some other non-analytic intersection. Therefore,
it is useful to expand our point-of-view somewhat and discuss semianalytic subsets. See [�Lo65] and [Bie88].

Definition 2.32 Suppose that K = R. Let W be an open subset of M . A basic semianalytic subset of W
is a subset of the form V (f1, . . . fk) ∩ {x ∈ W | gλ(x) > 0, λ = 1, . . . , l}, where f1, . . . , fk, g1, . . . , gl ∈ Oanal

W .
A subset X in M is semianalytic if and only if, for all p ∈ M , there exists a open neighborhood W of

p such that W ∩X is a finite union of basic semianalytic subsets of W.
Note that, by negating functions, the definition of a basic semianalytic subset can also contain gλ(x) < 0

and so, after taking unions, we can also obtain gλ(x) �= 0, gλ(x) ≥ 0, and gλ(x) ≤ 0.

Now, suppose that K = C. Let W be an open subset of M . A basic semianalytic subset of W is a
subset of the form V (f1, . . . fk) ∩ {x ∈ W | gλ(x) �= 0, λ = 1, . . . , l}, where f1, . . . , fk, g1, . . . , gl ∈ Oanal

W .
A subset X in M is semianalytic if and only if, for all p ∈ M , there exists a open neighborhood W of

p such that W ∩X is a finite union of basic semianalytic subsets of W.
If X is a semianalytic subset of M , and Y is a semianalytic subset of an analytic manifold N , then a

function f : X → Y is semianalytic if and only if the graph of f is a semianalytic subset of M ×N .

We summarize a number of properties of semianalytic sets below. The first item is an easy exercise and
the others can be found in [Bie88], §2.

Theorem 2.33 Let K be R or C. Let X be a semianalytic subset of M

1. The collection of semianalytic subsets of M is closed under finite unions, finite intersections, and taking
complements.

2. Every connected component of X is semianalytic.

3. The family of connected components of X is locally finite.

4. X is locally connected.

5. The closure and interior of X is semianalytic. In fact, if K = C, X is an analytic subset of M .

Remark 2.34 Later, we shall see that Item 4 above can be substantially strengthened; semianalytic subsets
are, in fact, locally contractible.

The following is Corollary 2.9 of [Bie88].

Proposition 2.35 Let K = R. Let X be a semianalytic subset of M .
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1. Let V be a semianalytic subset of M such that V ⊆ X, and V is open in X. Then, for all x ∈ X, there
exists an open neighborhood W of x in M such that W ∩ V is a finite union of sets of the form

W ∩ {x ∈ X | f1(x) > 0, . . . , fk(x) > 0},

where f1, . . . , fk ∈ Oanal

W .

2. If X is closed in M , then, for all x ∈ X, there exists an open neighborhood W of x in M such that
W ∩X is a finite union of sets of the form

{x ∈ W | f1(x) ≥ 0, . . . , fk(x) ≥ 0},

where f1, . . . , fk ∈ Oanal

W .

The following lemma is an extremely useful tool; see [Mil68], §3 and [Loo84], §2.1. The complex analytic

statement uses Lemma 3.3 of [Mil68]. Below,
◦
Dδ

denotes an open disk of radius δ > 0 centered at the origin
in C.

Lemma 2.36 (Curve Selection Lemma) Let K = R, and let p ∈ M . Let Z be a semianalytic subset of M
such that p ∈ Z. Then, there exists a real analytic curve γ : [0, δ) → M with γ(0) = p and γ(t) ∈ Z for
t ∈ (0, δ).

Let K = C, and let p ∈ M . Let Z be a semianalytic subset of M such that p ∈ Z. Then, there exists a
complex analytic curve γ :

◦
Dδ

→M with γ(0) = p and γ(t) ∈ Z for t ∈ ◦
Dδ

− {0}.

Theorem 2.37 Let f ∈ Oanal

M . Let p ∈M . Then, there exists an open neighborhood W of p in M such that
the critical locus W ∩ Σf ⊆ f−1(f(p)), i.e., locally in M , the critical values of f are isolated.

Proof. Suppose to the contrary that, for every open neighborhood W of p in M , W∩(
Σf−f−1(f(p))

) �= ∅,
i.e., that p ∈ Σf − f−1(f(p)). Let γ denote either a real or complex curve as guaranteed by the Curve
Selection Lemma; so, γ(0) = p and γ(t) ∈ Σf − f−1(f(p)) for small t �= 0. Then, the derivative (f ◦ γ)′(t) is
an analytic function which is zero for all small t �= 0, and so must also be zero at t = 0. Therefore, (f ◦ γ)(t)
must be constant. As f(γ(0)) = f(p), it follows that f(γ(t)) = f(p) for all small t, i.e., γ(t) ∈ f−1(f(p)) for
all small t. This is a contradiction. �

Remark 2.38 In the algebraic setting, there is a much stronger result. For an algebraic set X ⊆ Kn, recall
the definition of

◦
Xalg from Remark 2.13. The following is Corollary 2.8 of [Mil68]:

Let X be an algebraic subset of Kn, and let f ∈ OKn . Then, the restriction of the polynomial map f to the
set

◦
Xalg has a finite number of critical values.

Definition 2.39 Let X be a semianalytic subset of M .
Then, we define smooth points, regular points, singular points, and exceptional points exactly

as we did for analytic subsets in Definition 2.12, and we use the same notations.
As we shall see below (Corollary 2.48), the smooth points of a semianalytic set are dense, and so we

define the dimension of X, and the dimension of X at a point exactly as we did for analytic subsets in
Definition 2.15.
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Remark 2.40 As with analytic sets, it follows at once from the definitions that, for 0 ≤ d ≤ n,
◦
X(d) is open

in X and, hence, that
◦
X and Xreg are open in X. Thus, ΣX and Xexc are closed in X.

The following result is from [�Lo65], and [Bie88], Theorem 7.2 and Remark 7.3..

Theorem 2.41 Let X be a non-empty semianalytic subset of M . Suppose that 0 ≤ d ≤ n. Then,
◦
X(d) is

semianalytic and, thus, so are
◦
X, ΣX, Xreg, and Xexc. In addition, dimXexc < dimX.

Partitions and Stratifications

For the remainder of this lecture, it will be necessary to consider both the smooth and semianalytic case.
Thus, below, when we are in the smooth case, X will denote a subset of a smooth, connected
ambient manifold M and, when we are in the analytic/semianalytic case, X will denote a
semianalytic subset of the connected analytic manifold M .

If N is a smooth (resp., analytic) manifold, then we define f : X → N to be smooth (resp.,
analytic) if and only if it extends to a smooth (resp., analytic) function on an open subset of
M .

One approach to describing a singular subset X ⊆ M is to “subdivide” or “partition” the set into
“smooth pieces”, and then try to describe how these pieces are put together to form the analytic subset. As
a first attempt at such a partitioning, one would proceed inductively: write X =

◦
X ∪ ΣX, and then write

ΣX =
◦

(ΣX) ∪Σ(ΣX), and so on. If X is complex analytic, then Item 1 of Theorem 2.29 tells us that ΣX is
complex analytic, and so this “inductive” process works well. However, Example 2.31 tells us that, for a real
analytic X, ΣX need not be real analytic. On the other hand, Theorem 2.41 says that if X is semianalytic,
then ΣX is also semianalytic. Thus, we make the following definition (see [Bie88]).

Definition 2.42 A collection S := {Sα}α of non-empty subsets of M is a smooth (resp., semianalytic)
partition of X if and only if

1. X is the disjoint union of the Sα;

2. Each Sα is a smooth (resp., analytic) submanifold of M and is a connected (semianalytic) subset of
M ;

3. S is locally finite.

Given a smooth (resp., semianalytic) partition S of X, we refer to the elements of S as strata of X.
A smooth (resp., semianalytic) stratification S of X is a smooth (resp., semianalytic) partition of

X which satisfies (the Condition of the Frontier): if Sα, Sβ ∈ S, Sα �= Sβ, and Sα ∩ Sβ �= ∅, then Sα ⊆ Sβ

and dimSα < dimSβ.
A smooth (resp., semianalytic) partition/stratification S ′ of X is a refinement of a smooth (resp.,

semianalytic) partition/stratification S of X if and only if the strata in S ′ are unions of the strata in S.
If X is a complex analytic subset of M , and S is a semianalyic stratification of X, then, for all S ∈ S, in

addition to S being a complex analytic submanifold of M , S is an irreducible complex analytic subset of M ,
and S − S is a complex analytic subset of M . Therefore, we refer to semianalytic stratifications of complex
analytic subsets X of M simply as (complex) analytic stratifications of X.

Note that, in the Condition of the Frontier, it is irrelevant whether the closures are inX or in M ; however,
using closures in X, the Condition of the Frontier says precisely that the closure of a stratum Sα is equal to
the union of Sα and smaller-dimensional strata.
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Also, note that, in our definition, we have required the strata to be connected; not all authors require
this.

Example 2.43 Consider the analytic set X := V (xy) ⊆ R
2 consisting of the x- and y-axes. Then,

S :=
{
V (x), {(x, 0) | x > 0}, {(x, 0) | x < 0}}

is a semianalytic partition, but is not a stratification. One must refine the partition by including the origin,
in order to make the Condition of the Frontier hold. Thus,

S ′ :=
{{(0, y) | y > 0}, {(0, y) | y < 0}, {(x, 0) | x > 0}, {(x, 0) | x < 0}, {0}}

is the “best”, i.e., most coarse, stratification of X.

Definition 2.44 Let S be a partition of X, let N be a smooth (resp., analytic) manifold, and let f : X → N
be a smooth (resp., analytic) function. Then, the stratified critical locus of f (with respect to S) is
ΣSf :=

⋃
S∈S Σ(f|S ). Naturally, we define a stratified critical value of f (with respect to S) to be be an

element of f(ΣSf).

We leave the proof of the following generalization of Theorem 2.37 as an exercise.

Theorem 2.45 Let S be a semianalytic partition of X, and let f : X → K be an analytic function. Let
p ∈ X. Then, there exists an open neighborhood W of p in X such that W ∩ ΣSf ⊆ f−1(f(p)), i.e., locally
in X, the stratified critical values of f are isolated.

If, in addition, f is a proper function, then the set of stratified critical values of f is discrete.

The following theorem is in [�Lo65] and is Corollary 2.11 of [Bie88].

Theorem 2.46 Let {Xi}i be a locally finite collection of semianalytic subsets of M . Then, there exists a
semianalytic stratification S := {Sα}α of M which is compatible with {Xi}i, i.e., each Xi is a union of
elements of S.

Remark 2.47 Let X be a semianalytic subset of M . Then, one easily concludes from Theorem 2.46 that
there is a semianalytic stratification S of M such that M−X and the connected components of

◦
X are strata,

and X is a union of strata. Therefore, S ′ := {S ∈ S | S ⊆X} is a semianalytic stratification of X.

As an example of how one can use Theorem 2.46, we leave it as an exercise for the reader to prove:

Corollary 2.48 Let X be a semianalytic subset of M . Let S be a semianalytic stratification of X. Let
p ∈ X, and let S be a stratum in S such that S has maximal dimension among all strata contained p in their
closures. Then, S ⊆ ◦

X.

In particular,
◦
X is dense in X.

A stratification is useful since it decomposes a space into pieces which are smooth manifolds. However, to
understand the original space better, one would like to know how a given stratum behaves as it approaches
points in another stratum. The classic conditions to desire/require are the Whitney conditions: Whitney’s
condition a) and condition b). See [Whi65b], [Whi65a], [Mat70], and [Gor88].
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Definition 2.49 Let S be a smooth (resp., semianalytic) partition of X. Let Sα, Sβ ∈ S, and let p ∈ Sα.
Fix a local coordinate system for M at p.

A Whitney a) sequence in Sβ at p is a sequence of points pi ∈ Sβ such that pi → p and the tangent
spaces TpiSβ converge to some T in the appropriate Grassmanian.

A Whitney b) pair of sequences in (Sβ , Sα) at p is a pair of sequences of points pi ∈ Sβ and qi ∈ Sα

such that {pi} is a Whitney a) sequence in Sβ at p, qi → p and the lines (using our fixed coordinate system)
piqi converge to some line l.

The pair (Sβ , Sα) satisfies Whitney’s condition a) at p if and only if, for all Whitney a) sequences
{pi} in Sβ at p, TpSα ⊆ lim

i→∞
Tpi

Sβ.

The pair (Sβ , Sα) satisfies Whitney’s condition b) at p if and only if, for all pairs of Whitney b)
sequences {pi}, {qi} in (Sβ , Sα) at p, lim

i→∞
piqi ⊆ lim

i→∞
TpiSβ.

The Whitney conditions are independent of the choice of local coordinates on M , and are vacuously
satisfied if p �∈ Sβ.

The smooth (resp., semianalytic) partition S is a smooth (resp., semianalytic) Whitney a) parti-
tion of X if and only if, for all Sβ , Sα ∈ S, the pair (Sβ , Sα) satisfies Whitney’s condition a) at each point
of Sα. If S is, in fact, a stratification, we naturally refer to S as a Whitney a) stratification.

The smooth (resp., semianalytic) partition S is a smooth (resp., semianalytic) Whitney b) parti-
tion of X if and only if, for all Sβ , Sα ∈ S, the pair (Sβ , Sα) satisfies Whitney’s condition b) at each point
of Sα. By [Mat70], Proposition 2.4 and Corollary 10.5, a Whitney b) partition also satisfies Whitney’s con-
dition a) and the condition of the frontier; hence, we generally refer to a Whitney b) partition as a Whitney
stratification.

Example 2.50 Consider a family of nodes degenerating to a cusp, given by V (f) ⊆ K3, where K is R or C

and f = y2 − x3 − tx2.

Then, ΣV (f) = V (x, y), and {V (f)− V (x, y), V (x, y)} is a semianalytic stratification of V (f). However,
this stratification is not a Whitney a) stratification; the tangent planes to V (f) − V (x, y) along the line
where y = 0 and x = −t approach a plane which does not contain T0V (x, y).

Now consider another family of nodes degenerating to a cusp, given by V (g) ⊆ K3, where g = y2−x3−t2x2.
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Then, ΣV (g) = V (x, y), and {V (g)−V (x, y), V (x, y)} is a semianalytic Whitney a) stratification of V (g).
However, this stratification is not a Whitney stratification. We leave it as an exercise for the reader to show
that Whitney’s condition b) fails at the origin.

The following proposition is an easy exercise.

Proposition 2.51 Let N be a smooth manifold and let f : X → N be a smooth function on X. Suppose
that S is a Whitney a) partition of X. Then, ΣSf is closed in X.

The following strengthened version of Theorem 2.46 follows from [�Lo65].

Theorem 2.52 Let {Xi}i be a locally finite collection of semianalytic subsets of M . Then, there exists a
semianalytic Whitney stratification S := {Sα}α of M which is compatible with {Xi}i, i.e., each Xi is a union
of elements of S.

Remark 2.53 In the general smooth case, one is not guaranteed that Whitney stratifications exist. We
could look at subanalytic subsets of M , for which subanalytic Whitney stratifications always exist (see [Har75]
and [Hir73]), but we do not wish to discuss this generalization here.

Henceforth, we fix a smooth (resp., semianalytic) Whitney stratification S of X. In the smooth
case, the existence of a Whitney stratification is a new condition which we place on the space X.

The following proposition is a good exercise.

Proposition 2.54 Let N be a smooth (resp., an analytic) submanifold of M which transversely intersects
a stratum S0 ∈ S at a point p ∈ S0.

Then, there exists an open neighborhood U of p in M such that, for all S ∈ S, U ∩ N transversely
intersects U ∩ S in U ; in addition, in every such neighborhood U , {U ∩ S ∩N | S ∈ S} is a smooth (resp.,
semianalytic) Whitney stratification of U ∩X ∩N .

We naturally refer to the stratification {U ∩ S ∩ N | S ∈ S} above as the stratification induced by the
transverse intersection.

We now wish to consider definitions that involve “closed balls in M”. Locally, we could simply use closed
balls with respect to any coordinate choice. However, we wish to compare the structure of Whitney stratified
spaces at different points in a given stratum, and thus will need to take closed balls at various points.
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Hence, we now assume that M is endowed with a Riemannian metric. By taking infimums
of lengths of piecewise smooth paths between pairs of points, this Riemannian metric induces a global
(topological) metric r : M ×M → R. The closed ball of radius ε > 0 centered at a point p ∈M is, of course,
Bε(p) := {x ∈M | r(x, p) ≤ ε}. We let Sε(p) denote the sphere ∂Bε(p).

We shall also need to use the notion of the abstract cone on a set. If Y is a topological space, then, by
cone(Y ), we shall mean the pair of spaces (Y × [0, 1]/Y × {0}, Y × {0}), where Y × {0} is the equivalence
class which is normally referred to as the cone point.

The following result follows from [�Lo65], [Mat70], and §1.4 of [Gor88].

Theorem 2.55 Let p ∈ M . Then, for all sufficiently small ε > 0, Sε(p) transversely intersects all of the
strata of S, and there is a homeomorphism hε : cone(Sε(p) ∩ X) → (Bε(p) ∩ X, {p}) which ”preserves the
strata”, i.e., for all S ∈ S, hε((Sε(p) ∩ S) × (0, 1]) ⊆ S, and which is a diffeomorphism when restricted to
each (Sε(p) ∩ S) × (0, 1) for S ∈ S. In particular, X is locally contractible.

The stratified homeomorphism-type of Sε(p) ∩X is independent of the choice of the Riemannian metric
on M and of the choice of small ε, i.e., if Sε(p) and S′

ε′(p) are spheres centered at p with respect to possibly
different Riemannian metrics and of different radii, then, for both ε and ε′ sufficiently small, there is a
homeomorphism k : Sε(p)∩X → S′

ε′(p)∩X such that, for all S ∈ S, k(Sε(p)∩ S) = S′
ε′(p)∩ S and k|Sε(p)∩S

is a diffeomorphism.

Definition 2.56 The stratified homeomorphism-type of Sε(p) ∩X in Theorem 2.55 is called the real link
of X at p.

Note that Theorem 2.55 implies that Bε(p) ∩X, itself, has a canonical Whitney stratification for small
ε > 0.

We now wish to give a substantial generalization of the Theorem of Ehresmann (Theorem 1.12). First,
we need another definition. Let N be a smooth manifold.

Definition 2.57 Let f : X → N be a smooth function on X. Then, f is a stratified submersion (with
respect to our fixed stratification S) if and only if, for all S ∈ S, f|S is a submersion.

The complete proof of the following theorem can be found in [Mat70].

Theorem 2.58 (Thom’s first isotopy lemma) Suppose that f : X → N is a smooth, proper, stratified
submersion. Then, f is a (topological) locally trivial fibration, and the local trivializations can be chosen to
respect the strata and to be diffeomorphisms when restricted to strata.

We wish to be clear about the conclusion of Thom’s first isotopy lemma. Suppose that f : X → N is
a smooth, proper, stratified submersion, and let q ∈ im f . By Proposition 2.54, {S ∩ f−1(q) | S ∈ S} is
a smooth Whitney stratification of f−1(q). The conclusion of Theorem 2.58 is that there exists an open
neighborhood U of q in N and a homeomorphism h : f−1(U) → U × f−1(q) such that f|f−1(U)

= π ◦h, where
π is the projection from U × f−1(q) onto U ; moreover, for all S ∈ S, the restriction of h is a diffeomorphism
from S ∩ f−1(U) to U × (S ∩ f−1(q)). Below, we will describe this type of situation by saying that f−1(U)
and U ×f−1(q) have the same stratified topological-type, and the same smoothness structure along the strata.

As we discussed briefly in Lecture 1, the Theorem of Ehresmann is proved by integrating a smooth vector
field. Thom’s first isotopy lemma is also proved by integrating a vector field – one which is smooth along
each stratum, but is only continuous on all of X.
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The following corollary tell us that X is topologically trivial along each Whitney stratum, and that the
topological-type is determined by the normal slice to the stratum; see [Gor88], §1.4. Recall that our strata
are assumed to be connected.

Corollary 2.59 Let p ∈ S0 ∈ S. Let U be an open neighborhood of p in M , and let N be a smooth
submanifold of U , which transversely intersects all of the strata of S in U , such that N ∩ S0 = {p} (and,
hence, dimN = dimM − dimS).

Then, for all sufficiently small ε > 0, the stratified topological-type and smoothness structure along the
strata of the pair (N ∩ X ∩ Bε(p), N ∩ X ∩ Sε(p)) is independent of the point p in S0, the choice of the
Riemannian metric on M , the transverse submanifold N , and ε.

In addition, for a fixed choice of all of the above data, there exists a (non-open) neighborhood T of p in X,
an open neighborhood W of p in S0, and a stratum-preserving homeomorphism h : W×(

N ∩X∩Bε(p)
) → T

which is a diffeomorphism when restricted to each stratum and is the “identity map” on {p}×(
N∩X∩Bε(p)

)
.

In particular, the stratified topological-type of X is trivial along a Whitney stratum.

Definition 2.60 The N ∩X∩Bε(p) above (or, sometimes, simply N itself) is referred to as a normal slice
to S0 at p, and N ∩X∩Sε(p) is called the real link of S0 at p (with respect to N at radius ε). The stratified
topological-type, and smoothness structure along the strata, of the pair (N ∩ X ∩ Bε(p), N ∩ X ∩ Sε(p)) is
called the normal data of S0 (in X).

Remark 2.61 Suppose that p ∈ S0 ∈ S. Then we may simply declare {p} to be a “point-stratum” by
refining the Whitney stratification S; one defines a new Whitney stratification

S ′ := {S ∈ S | S �= S0} ∪ {S0 − {p}, {p}}.

In this sense, the real-link defined in Definition 2.56 can be considered the real link of a stratum.

Basic Stratified Morse Theory

Thom’s first isotopy lemma is a generalization of the Theorem of Ehresmann to the Whitney stratified
case. For the remainder of this lecture, we will discuss Goresky and MacPherson’s generalization of Morse
Theory to the Whitney stratified case, as presented in [Gor88].

It is easy to state an intuitive form of the main theorem of stratified Morse Theory: at a well-behaved
isolated critical point p of a smooth function f on a Whitney stratified space, the local Morse data, which
measures how the topology changes at p with respect f , is a product of tangential Morse data and Morse
data which is normal to the stratum containing p. Making this statement precise is the goal of the remainder
of this lecture.

We now assume that X is a semianalytic subset of a real analytic Riemannian manifold M ,
that S is a semianalytic Whitney stratification of X, and that f : X → R is a proper function
which extends to a real analytic function f̃ on an open neighborhood of X in M . We fix an
S0 ∈ S and a point p ∈ S0.

Remark 2.62 We could, in fact, deal with a more general situation; the condition that we need is that p
is a nondepraved critical point of f ; see [Gor88], §2.3. However, we do not wish to go into the details of
this definition. By §2.4 and §2.6 of [Gor88], isolated critical points of real analytic functions on real analytic
manifolds are nondepraved.
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Definition 2.63 The point p is nondegenerate (with respect to f and S) if and only if, for all S ∈ S such
that S �= S0 and S0 ⊆ S, for all sequences pi ∈ S such that pi → p and TpiS converges to some T, it follows
that dpf̃(T) �≡ 0.

The point of saying that p is nondegenerate is that it implies that small perturbations of f will not have
critical points near p, unless those critical points are on S0 itself.

We return to our notation from Lecture 1; for b ∈ R, we let Xb := f−1((−∞, b]). In addition,
if a, b ∈ R, we let X[a,b] := f−1([a, b]).

A technical issue arises in what follows: if D is an arbitrary subset of X, we still wish to keep track of
the intersections of strata with D, even when this does not produce a stratification of D.

Definition 2.64 Let A,B ⊆ X.
Then, an S-function g : A → B is a function such that, for all S ∈ S, g(A ∩ S) ⊆ B ∩ S. Naturally,

an S-homeomorphism h : A → B is a homeomorphism such that h and h−1 are S-functions, i.e., for all
S ∈ S, h(A ∩ S) = B ∩ S.

We say that A and B have the same S-topological-type if and only if there exists an S-homeomorphism
h : A→ B.

We now assume that p is a nondegenerate, isolated critical point of f|S0
, and that p is the

only stratified critical point with critical value v := f(p). Let δ > 0 be small enough so that the
only stratified critical value of f in [v − δ, v + δ] is v (which we may assume by Theorem 2.45); thus,
we are assuming that ΣSf ∩ f−1([v− δ, v+ δ]) = {p}. Note that this implies that f−1(v− δ), f−1(v+ δ),
Xv−δ, and Xv+δ all have induced Whitney stratifications.

The following is a combination of Propositions 3.5.3 and 3.6.2 of [Gor88].

Theorem 2.65 For all sufficiently small ε > 0, for all sufficiently small δ′ > 0 (small compared to ε),
the S-topological-type of the pair (Bε(p) ∩ X[v−δ′,v+δ′], Bε(p) ∩ Xv−δ′) is independent of the choice of the
Riemannian metric and the choices of ε and δ′.

If N is a smooth (not necessarily analytic) normal slice to S0 at p, then, for all sufficiently small ε > 0,
for all sufficiently small δ′ > 0, the S-topological-type of the pair

(N ∩Bε(p) ∩X[v−δ′,v+δ′], N ∩Bε(p) ∩Xv−δ′)

is also independent of the choice of the Riemannian metric and the choices of ε and δ′.

Definition 2.66 The S-topological-type of the pair (Bε(p) ∩X[v−δ′,v+δ′], Bε(p) ∩Xv−δ′) above is the local
Morse data for f at p.

The S-topological-type of the pair (N ∩ Bε(p) ∩ X[v−δ′,v+δ′], N ∩ Bε(p) ∩ Xv−δ′) above is the normal
Morse data for f at p.

The local Morse data for f|S0
at p is the tangential Morse data for f at p.

Note that, in Definition 2.66, one may assume that δ′ ≤ δ; moreover, by re-choosing δ after ε, one may
assume that δ′ = δ. However, below, it is important that δ does not depend on the choice of ε.

The theorem below is Theorem 3.5.4 of [Gor88]. The point of this theorem is that the change in the
topological-type as one passes from Xv−δ to Xv+δ is a result of activity in a small neighborhood of the
unique stratified critical point in X[v−δ,v+δ].
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Theorem 2.67 The stratified space Xv+δ is obtained from Xv−δ by a stratified attaching of the local Morse
data for f at p; more precisely, with ε and δ′ as in Theorem 2.65 and Definition 2.66, there is an S-embedding
j : Bε(p) ∩Xv−δ′ → Xv−δ and an S-homeomorphism (in the obvious sense) from Xv+δ to the identification
space Xv−δ ∪Bε(p)∩X

v−δ′

(
Bε(p) ∩X[v−δ′,v+δ′]

)
.

Therefore, to understand the change in the topology as one passes from Xv−δ to Xv+δ, it is enough to
understand the local Morse data of f at p.

We are now ready to state the main theorem of stratified Morse Theory. We use our notation from
Theorem 2.65 and Definition 2.66. Recall that the product, (P,Q)× (J,K), of two pairs of spaces is defined
to be

(
P × J, (P ×K) ∪ (Q× J)

)
.

Theorem 2.68 (The Fundamental Theorem of Stratified Morse Theory) Let (A,B) equal the local Morse
data (Bε(p) ∩X[v−δ′,v+δ′], Bε(p) ∩Xv−δ′) for f at p. Let (P,Q) equal the tangential Morse data

(Bε(p) ∩ (S0)[v−δ′,v+δ′], Bε(p) ∩ (S0)v−δ′)

for f at p. Let (J,K) equal the normal Morse data (N ∩Bε(p)∩X[v−δ′,v+δ′], N ∩Bε(p)∩Xv−δ′) for f at p.
Then, there is a homeomorphism of pairs h : (A,B) → (P,Q)×(J,K) such that, for all S ∈ S, h(A∩S) ⊆

P × S, i.e., local Morse data is, up to homeomorphism, the product of the tangential Morse data and the
normal Morse data.

The reader needs to understand the point of this theorem. The tangential Morse data is Morse data on
an analytic manifold; this is the classical situation that we discussed in Lecture 1. The tangential Morse
data at an isolated critical point is analyzed by perturbing f slightly (as in Theorem 1.21, for instance) and
thereby “splitting” the isolated critical point into a collection of non-degenerate critical points, and then
applying Theorem 1.17.

The normal Morse data is the really new piece of data that needs to be understood in order for one to
apply the Fundamental Theorem of Stratified Morse Theory. This data can, in fact, be very complicated.
However, a stunning thing happens in the case where X is a complex semianalytic subset of a complex
analytic manifold, and is endowed with a complex analytic Whitney stratification: the normal Morse data
is independent of the function f . This fact underlies much of the beauty of applications of stratified Morse
Theory to complex stratified spaces.
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