





GRAPH3-MANIFOLDS, SPLICE DIAGRAMS, SINGULARITIES

WALTER D.NEUMANN

ABSTRACT. We describe how a coarse classification of graph manifolds can

give clearer insightintotheir structure, and we relate this particularly to the man-
ifolds that can occur as the links ofpoints in normal complex surfaces. We relate
this discussion to a special class of singularities; those of "splice type", which
turn outto play a central role among singularities of complex surfaces.

An appendix gives a brief introduction to classical 3manifold theory.
This paper was written to serve as notes for a short course at ICTP Trieste.

1. INTRODUCTION

The early study of 3manifolds and knots in 3manifolds was motivated to a
large extent by the theory of complex surfaces. For example, Poul Heergaard's
1898 thesis [7], in which he introduced the fundamental tool of 3manifold theory
now called a "Heegaard splitting," was on the topology of complex surfaces. For
a thread from Heergaard's thesis through knot theory to the "splice diagrams" that
will play a central role in this paper, see the survey [::] on topology of complex
surface singularities.
The local topology of a normal complex surface ("normal" roughly means that

any "inessential" singularities have been removed) at any point is the cone on a
closed oriented 3manifold. The manifold is called the "link" of the point. We call
it a "singularitylink," even though we allow S3. which can only be the link of a
nonsingular point (Mumford [

Singularity links and other 3manifolds that arise in the study of complex sur-
faces are of a special type, namely "graph manifolds." Graph manifolds were de-
fined and classified by Waidhausen in his thesis [f]. The motivation was certainly
that the set of graph manifolds includes all singularitylinks, and Waidhausen's
work together with Grauert's criterion effectively gave a description of exactly
what 3manifolds are singularitylinks. This description was put in a more conve-
nient algorithmic form in [. 7]. More elegant versions have emerged since, which
depend on taking a coarser look at the classification of graph manifolds. These
coarse classifications are a central theme of this paper. They will also lead us to a
special class of singularities, the singularities of "splice type" which encompasses
several important classes of singularities.
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An appendix to this paper provides a convenient reference for some of the basic
3manifold theory that we use.

This paper was written to serve as notes for a short course at ICTP Trieste. It is
based in part also on lectures the author gave at CIRM (Luminy) in March 2005.

2. THE PLACE OF GRAPH MANIFOLDS IN 3-MANIFOLD THEORY

Throughout this paper, 3manifolds will be compact and oriented unless other-
wise stated. They will also be prime - not decomposable as a nontrivial con-
nected sum. One forms the connected sum of two 3manifolds by removing the
interior of a disk from each and then gluing the resulting punctured 3manifolds
along their 82 boundaries. Kneser and Milnor [12, 2] showed that any oriented
3manifold has an essentially unique decomposition into prime 3manifolds. Sin-
gularity links are always prime ([7]).

Definition 2.1. A graphmanifold is a 3manifold M that canbe cut along a family
of dis oint embedded tori to decompose it into pieces S x Si-, where each S is a
compact surface (i.e., 2manifold) with boundary.

The JSJdecomposition is a natural decomposition of any prime 3manifold into
Seifert fibered and simple nonfibered pieces (see the appendix for relevant defini-
tions and more detail). Its existence was proved in the niid 970's independently by
byJaco and Shalen [] and by Johannson LI I, although it had been sketched earlier
by Waidhausen [111. From the point of view of JSJdecomposition, a graph man-
ifold is simply a 3manifold which has no nonSeifertfibered JSipieces. There
are various modifications of the JSJ decomposition, depending on the intended ap-
plication, and they differ in essentially elementary ways (see e.g., One ver-
sion is the "geometric decomposition" - a minimal decomposition along tori and
Klein bottles into pieces that admit geometric structures in the sense of Thurston
(finite volume locally homogeneous Riemannian metrics). The relevant geometry
for simple nonSeifertfibered pieces is hyperbolic geometry . From this geomet-
ric point of view, graph manifolds are manifolds that have no hyperbolic pieces in
their geometric decompositions.

In summary, a graph manifold is a 3manifold that can be glued together from
pieces ofthe form (surface) x S', or more efficiently, from pieces which are Seifert
fibered. Both points of view will be useful in the sequel.

3. SEIFERT MANIFOLDS

Let M3 -* F be a Seifert fibration of a closed 3marnfold. It is classified up
to orientation preserving homeomorphism (or diffeomorphism) by the following
data:

existence of the hyperbolic structure when Mis simple nonSiefert fibered and the JSJ de-

composition is trivial was still conjectural until recently; althoughproved in many cases by Thurston,
it is probably nowproved in general by Perelman's work.
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The homeomorphism type of the base surface F, which we can encode by
its genus g. We use the convention that g < 0 refers to a nonorientable
surface, so g = -1, -2,... means F is a projective place, Klein bottle,
etc.
A collection of rational numbers 0 < qi/pi < 1, i = 1,... , n, that en-
code the types of the singular fibers. Here pi is the multiplicity of the ith
singular fiber and qj encodes how nearby fibers twist around this singular
fiber.

"	 A rational number e =	 - F) called the Euler number of the Seifert
fibration. Its only constraint is that e +		 . should be an integer.	i= pi

It is most natural to think of the base surface F as an orbifold rather than a
manifold, with orbifold points of degrees P1,.. . , p. As such, it has an orbifold
Euler characteristic	

1= Xq -

	

- -)
i		Pi

where Xq is the Euler characteristic of the surface of genus g:

X9 = f2-2g, gˆ0,
g<0.

Note that an oriented 3manifold M3 may be Seifert fibered with nonorientable
base. However, we do not need to consider this for links of singularities: a Seifert
fibered 3manifold is a singularity link if and only if it has a Seifert fibration over
an orientable base and the Euler number e(M -4F) is negative.
From the point of view of geometric structures and geometric decomposition,

there are exactly six geometries that occur for Seifert fibered manifolds and the
type of the geometry is determined by whether			 (F) is > 0, = 0, < 0 and
whether e(M -# F) is = 0 or 0		These two invariants, which we will
abbreviate simply as x and e, are thus fundamental invariants for a Seifert fibered
M3. If e 0 then M3 has a unique orientation that makes e <0, and we call this
its "natural orientation," since it is the orientation that makes it (or a double cover
of it if the base surface is nonorientable) into a singularity link.

The above discussion was for a closed 3manifold M3. If M3 is allowed to have
boundary (but is still compact) then the Euler number e is indeterminate unless one
has extra data. The additional data consists of a choice of a simple closed curve in
each boundary torus of M3, transverse to the fibers of the Seifert fibration.

Definition 3.1. We call this collection ofcurves a system ofmeridiansfor M.

Given a system of meridians, we can form a closed Seifert fibered manifold M3
by gluing a solid torus onto each boundary component, matching a meridian ofthe
solid torus with the chosen "meridian" on the boundary T2. The Euler invariant
e(M) is called the Euler invariant ofM with its system ofmeridians.
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4. DECOMPOSITION GRAPHS, DECOMPOSITION MATRICES

We now return to a general graph manifold M, considering it from the point of
view of JSJdecomposition. So M can be cut along tori so that if breaks into pieces
that are Seifert fibered 3manifolds. "JSJ decomposition" means that no smaller
collection of cutting tori will work (see the Appendix for a proof of existence and
uniqueness of JSJ decomposition).

If M fibers over the circle with torus fiber or is double covered by such a mani-
fold then M admits a geometric structure, so the geometric version of JSJ decom-
position would not decompose it, even though the standard JSJ usually cuts it along
a torus. Such manifolds are completely understood (for a discussion close to the
current point of view see [.Ci]) so:

Assumption. From now on we assume that M cannot be fibered over S' with T2
fiber.

Each pieceM in the JSJ decomposition comes with a system of meridians (Def-
inition 3.1) by choosing the meridian in each boundary torus ofM to be a Seifert
fiber of the piece across the torus from M. Thus the orbifold Euler characteristic
and Euler number invariants are both defined for the ith piece M, and we call
them j and e.

The decomposition graph is the graph with a vertex for each piece M and an
edge for each gluing torus. The edge connects the vertices corresponding to the
pieces of M that meet along the torus. We decorate this graph with weights as
follows: At the vertex i corresponding to M we give the numbers xi and cj, writing

in square brackets to distinguish it. And for an edge E corresponding to a torus
T2 we record the absolute value of the intersection number F.F', where F and F'
are fibers in T2 of the Seifert fibrations on the pieces M and Mj that meet along
T2. For example, if M is glued from two Seifert fibered pieces, each of which has
one boundary component, then the decomposition graph has the form

el

	

e

S.

[Al]	 [AZ]

There is one problem with the definition of the decomposition graph. If a piece
M is the total space SMb of the unit tangent bundle of the Möbius band, then
weights on adjacent edges of the decomposition graph are not welidefined. This
is because SM/i has two different Seifert fibrations, one as this circle bundle and
another by orbits of the action of the circle on SM/i induced by the nontrivial S'
action on the Möbius band Mb. For this reason we always use the latter Seifert
fibration if such a piece occurs. However, we will usually want to go further and
avoid SMb pieces altogether. This can always be done by replacing M by a double
cover. In fact:

Proposition 4.1	 M always has a double cover whose JSJ decomposition
satisfies:

Every piece ofM has a Sefertflbration over a orientable base surface.
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"	 Thefibers ofeach piece can be oriented so that thefiber intersection num-
ber in each torus is positive''

"	 No SMb pieces occur and nopiece is glued to itselfacross a torus.

If the first condition holds we say M is good and if the first two conditions hold
M is very good.

Remark 4.2. The third of the above conditions is a condition on the decomposition
graph: the absence of8Mb pieces says that the -weight at each vertex is negative
(unless the graph consists of a single vertex with x = 0), and the absence of "self-
gluings" is absence of edges that have both ends at the same vertex.

Even though the decomposition graph carries much less information than is
needed to reconstruct M, it determines M up to finite ambiguity:

Proposition 4.3. There are only finitely many different manifoldsfor any given
decomposition graph.

The proof of this is an exercise, based on the fact that there are only finitely
many 2orbifolds with given orbifold Euler characteristic x But the number can
grow quite rapidly with x, so already for simple decomposition graphs the number
of manifolds can be large. Nevertheless, the decomposition graph does determine
M up to commensurability (recall that manifolds are commensurable if they have
diffeomorphic finite covers):

Theorem 4.4 ([24]). If MI and M2 are graph manifolds with no SMb pieces and
their decomposition graphs are isomorphic then there exist dfold covers M1 and
M2 ofMi and M2 for some d C N such that Mi M2.

For many properties of M even less information suffices. Namely, the decom-
position matrix is the matrix A = (aj) with entries

= e + 2 :i: lp(E) I
if i =

iEi

=

	

ifij,
iEj

where iEj means E is an edge joining i and j, and p(E) is the fiber intersection
weight on this edge. So the decomposition matrix no longer retains the invariants
Xi nor the exact number of edges joining a vertex to another.

It turns out that a variety of questions about M are answered in the litera-
ture completely in terms of the decomposition matrix (in some cases variations
of "good" or "very good" are needed, that are always achieved in some double
cover):




Is M a singularity link ([10])?

2To get a well defined intersection number we view the separating torus from one side and inter-
sect the Seifert fibers in the torus in the order (fiber from the near side).(fiber from the far side). If
we look fromtheother side we reverse the orientation ofthe torus and reverse the order of the fibers,

so the intersection number stays the same.
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" Does M fiber over the circle ([2)])?
" Does some cover of M fiber over the circle ([1(u)?
" Does Mhave an immersed incompressible surface of negative Euler num-

ber ([21: ])?
" Does some cover of M have an embedded incompressible surface of neg-

ative Euler number ([.1])?
" Does M admit a metric of nonpositive curvature (I

For the first of these the answer is as follows:

Theorem 4.5. M is a singularity link ifand only if it is very good and the decom-
position matrix is negative definite.

This is proved in [1i1 by a combinatorial argument, but we can give a geometric
reason why it might be expected. Grauert's criterion [] characterizes singularity
links among "plumbed manifolds" (another way oflooking at graph manifolds) by
the negative definiteness ofthe intersection matrix ofa resolution of the singularity.
Our decomposition matrix is the intersection matrix of a resolution, but not a full
resolution. The socalled logeanonical resolution of a surface singularity resolves
the singularity to the point where only cyclic quotient singularities remain. Al-
though we then do not yet have a smooth manifold, it is a Qhomology manifold,
so intersection numbers are still defined (they are rational numbers rather than inte-
gers). The resulting intersection matrix is the decomposition matrix. The theorem
can be interpreted to say that Grauert's criterion still holds in this situation.

5. SPLICE DIAGRAMS FOR RATIONAL HOMOLOGY SPHERES

This section and the next describe joint work of the author and J. Wahi. We
will describe a different encoding of graph manifolds, that again brings focus to
some information by throwing away other information. We now restrict to graph
manifolds M which are rational homology spheres, that is H1 (M; Z) is finite.
We say, briefly, that M is a QHS. For the JSJ decomposition this implies that the
decomposition graph must be a tree, and, moreover, that the base of each Seifert
fibered piece is of genus zero. However, instead ofusing the JSJ decomposition we
now use the Waidhausen decomposition - the minimal decomposition into pieces
ofthe form (surface) x S'
We again form a graph for this decomposition. This graph, with weights on

edges to be described, is called a splice diagram.
The Waidhausen decomposition differs from the JSJ decomposition in that for

each singular fiber of a Seifert fibered piece we must cut out a D2 x S1- neighbor-
hood of that singular fiber. For example, the JSJ decomposition graph for a Seifert
fibered manifold consists of a single vertex (decorated with two numerical weights
e and x), while the splice diagram is a starshaped graph: a central node with an
edge sticking out for each singular fiber of the Seifert fibration. We weight the
edges by the degrees of the singular fibers. For example a Seifert fibered manifold
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with exactly three singular fibers of degrees 2, 3,5 would have splice diagram
2	 3

p		 p

(There are infinitely many such Seifert manifolds, all with the same splice diagram;
the corresponding decomposition graphs consist of a single vertex with weights
= 1/30], e = q/30, with q an arbitrary integer prime to 30.)
In general a slice diagram is a finite tree withvertices only ofvalence 1 ("leaves")

or 3 ("nodes") and with nonnegative integer weights decorating the edges
around each node, and such that the weights on edges from nodes to leaves are
> 2. In addition, we decorate a node with an additional "-" sign if the link-
ing number inM of two fibers of the corresponding Seifert piece is negative (this
never occurs for splice diagrams of links of singularities).

Here is an example of a splice diagram for a certain singularity link M.

2 17 10 7 26 2p
14 11 13

We describe the meaning of the weights by example of the weight 17. It is on an
edgejoining the two nodes, and this edge corresponds to a torus T2 which cuts M
into two pieces M1 and M2 (M1 is Seifert fibered and M2 is not). We look at the
piece M2 at the far side of T2 and form a closed manifold M2 by gluing a solid
torus into its boundary, matching - as in the previous section - meridian of the
solid torus with the "meridian curve" on the boundary ofM2 (recall that this is a
fiber in T2 of the Seifert fibration across T2 from M2). The weight 17 is the order
IH1 (M2; Z) I. This procedure weights an edge leading to a leaf with degree of the
singular Seifert fiber corresponding to that leaf.

(It turns out that there is just one manifold with the above splice diagram. Its JSJ
decomposition graph, obtained from the splice diagram by removing all the leaves
and decorating with appropriate Xi and e weights, is

-5	 -5

	

-7
4	 3

	

'I

F..11	 1-21

	

[711L4J		L3J

Definition 5.1. The edge determinant of an edge connecting two nodes in a splice
diagram is defined to be the product of the two weights on that edge minus the
product of the weights adjacent to that edge.

For example, both edge determinants in the above splice diagram are 2 since
10 x 17-2 x4x3x7=2and7x26-10 x 3x2x 2=2.

Theorem 5.2. M is the link ofa singularity ifand only fno + decorations occur
in the diagram and every edge determinant ispositive.

Again, although the splice diagram does not determineM uniquely in general, it
does determine M up to commensurability. In fact, recall that the universal abelian
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cover of a space M is the Galois cover whose covering transformation group is
Hi (M, Z).

Theorem 5.3 (??). IfM1 and M2 are QHS graph manifolds with the same splice
diagram then the universal abelian covers ofMI and M2 are diffeomorphic.

The question marks are because we have not yet carefully written up a full proof
of this theorem in the generality claimed. It is certainly correct when M1 and M2
are singularity links (the case that interests us most here).

In general the universal abelian cover of a QHS graph manifold M may be
something quite horrible, with a complicated decomposition graph and lots of ho-
mology. But there is a case when we can describe it very nicely. For any splice
diagram with pairwise coprime weights around each node there is a unique inte-
gral homology sphere (7ZHS) with the given splice diagram. It is its own universal
abelian cover, so the theorem implies that this ZHS is diffeomorphic to the univer-
sal abelian cover of any other graph manifold with the same splice diagram.

The splice diagram of a ZHS graph manifold always has pairwise coprime
weights around each node, so such diagrams classify 7ZHS graph manifolds (see
[::])
We saw that the decomposition graph determines M up to finite ambiguity. The

same is true for the splice diagram, except in the case of onenode splice diagrams
(a onenode splice diagram always has infinitely many different manifolds associ-
ated with it). This is a consequence of Proposition 4.3 and the following:

Proposition 5.4 The splice diagram ofM and the order of Hi(M; Z) to-
gether determine the decomposition graph of M. The order of H1(M; Z) is a
common divisor ofthe edge determinants ofthe splice diagram.

6. SINGULARITIES OF SPLICE TYPE

In general it has been very difficult to give explicit analytic realizations of sin-
gularities with given topology, but when the link is a QHS the recently discovered
"singularities of splice type" [} often do this.

Singularities of splice type have very strong properties: the universal abelian
cover of a splice type singularity (by which we mean the maximal abelian cover
that is ramified only at the singular point) is a complete intersection, defined by
a quite elegant system of equations, and the covering transformation group acts
diagonally in the coordinates. So the singularity is described by explicit equations
and an explicit diagonal group action.

But, despite these strong properties, splice type singularities seem surprisingly
common. For example, it has long been known that weighted homogeneous singu-
larities with QHS link are of splice type ([1 ;.]), we (J. Wahl and the author) showed
in [: I] that Hirzebruch's quotienteusp singularities are, and recently Okuma [ :2]
has confirmed our conjecture that every rational singularity is of splice type and
every minimally elliptic singularities with QHS link also is. Very recently we have
proved a conjecture we had struggled with for some time, the "End Curve Con-
jecture", which postulated a characterization of this class of singularities in terms
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of curves through the singular point, and which has Okuma's theorem as a conse-
quence.
To describe this result we need some terminology. Let (V, o) be a normal com-

plex surface singularity and it: (Y, E) -* (V, o) a good resolution. Recall that this
means that rr (o) = E, it is biholomorphic between Y - E and V - o, and E is a
union of smooth curves E that intersect each other transversally, no three through
a point. The link of the singularity is a QHS if and only if the resolution graph (the
graph with a vertex for each E and an edge for each intersection of two Ei's) is
a tree and each E is a rational curve. Let E correspond to a leaf j of the tree,
so E1 intersects the rest of E in a single point x. An endeurve for j is a smooth
curve germ cutting E transversally in a point other than x. An endeurvefunction
for this leaf j is an analytic function germ z3: (V, o) -* (C, 0) that "cuts out" an
endeurve for j, in the sense that its zero set is the image in V of an endeurve for
j (with some multiplicity).

Theorem 6.1 (End Curve Theorem,	 Suppose (V, o) is a normal complex
surface singularity with QHS link It is of splice type ifand only if an endeurve
function existsfor each leafofthe resolution graph. In this case appropriate roots
of the endeurve functions can be used as coordinates on the universal abelian
cover.

The existence of end¬urve functions is well known for rational singularities and
for QHSIInk minimally elliptic ones, so Okuma's theorem that these are of splice
type follows.

To give the analytic description of splice type singularities we start with the
weighted homogeneous case. Then there is a C*_action on the singularity which
induces an S1-action on the link M, so the the link is Seifert fibered. The splice
diagram thus has the form

P1

	

Pp p

In this case it was shown in [ ] that the universal abelian cover of the singularity
is a Brieskorn complete intersection

/ab{(zl,...,zt)ECkIajl41+...+aikzt=0, i=1,...,t-2},
for suitable coefficients Moreover, an explicit action of H1 (M; Z) on this
Brieskorn complete intersection was given, with quotient the original singular-
ity. Note that the Brieskorn equations are weighted homogeneous of total weight
P1... Pt if we give the jth variable weight P1 .. ... p.

General splice type singularities generalize this situation. A variable z is asso-
ciated to each leaf of the splice diagram, and for each node j of the diagram one
associates a collection of S - 2 equations (S the valence of the node) which are
weighted homogeneous with respect to a system of weights associated to the node
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(one also allows higher weight perturbations of these equations). Doing this for all
nodes gives a total oft - 2 equations, where t is the total number of leaves.
To describe these weights, fix the node v. The vweight ofthe variable z corre-

sponding to leaf i is the product of the weights directly adjacent to but not on the
path from v to un the splice diagram. We denote this number	 For example, if
v is the left node in the splice diagram

z1 z4

77;
Z2 Z3

then the vweights of the variables z1, Z, Z3, Z4 are:

£i=3x37111, 42=74, 43=18, 44=30.

The weight of the equations that we want to write down is the product of the
weights at the node v, we denote this d; in our example d 222. For each
of the edges e departing v we choose a monomial M of total weight d in the
variables corresponding to leaves beyond e from v. In this example the monomials
4, 4, and 44 are suitable. Our equations will be equations which equate 8 - 2
generic linear combinations of these monomials to zero, where 8 is the valence of
v. So in this case a there would be a single equation for the node v, of the form
az? + b4 + c4z = 0, for example

(1)

	

4+4+44=0.
Note that a monomial M as above may not exist in general. The monomial

Me ft z has weight > cj4j, and the equation

d =	 a14

may not have a solution in nonnegative integers a1 as i runs through the leaves
beyond e. The solubility of these equations gives a condition on the splice diagram
that we call the semigroup condition. It is a fairly weak condition; for example the
fact that rational and QHSliiik minimally elliptic singularities are of splice type
says that the semigroup condition is satisfied for the splice diagrams of the links of
such singularities.

If the semigroup condition is satisfied, then we can write down equations as
above for all nodes of the splice diagram, and we get a complete intersection sin-
gularity whose topology is the desired topology of a universal abelian cover. The
other ingredient in defining splice type singularities is the group action that gives
the covering transformations for the universal abelian cover. This group action in
computed in a simple way from the desired topology ofthe singularity (as encoded
by a resolution diagram; we describe this later), but the above equations will not
necessarily be respected by it. Being able to choose the monomials so that the
equations are respected is a further condition (on the resolution diagram for the
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singularity rather than just the splice diagram) which we call the congruence con-
dition. Again, it is a condition that is satisfied for the classes of singularities that
we mentioned above.

If both the semigroup condition and congruence condition are satisfied, so that
the monomials can be chosen appropriately, then the complete intersection sin-
gularity we have described is the universal abelian cover of a singularity with the
desired resolution diagram and the covering transformations are given by the group
action in question.

We will carry this out for the explicit example of the splice diagram above. This
is the splice diagram for a singularity with ZHS link. The universal abelian cover
is a trivial cover in this case, so the equations we construct will actually give such
a singularity.
We have already seen that a possible equation for the left node is given by equa-

tion (1). In a similar way, we see that a possible equation for the right node is

(2)

	

ziz+.4+z=O.
The variety

V={(zi,z2.z3,z4) z2		3+z+44=O, ziz2		5+z+4=O}
thus has an isolated singularity at 0 whose link is the ZHS corresponding to the
above splice diagram.

However, suppose the singularity we are really interested in is not the singularity
with ZHS link, which has resolution graph

-2 -3
-7 -2 -1 -3 -2 -2

~-2-2~-2

> -~2

but instead the singularity with resolution graph

-2 -3

which has the same splice diagram, but its link M has first homology
Hi (M;Z) =Z/169.

By what we have already said, we expect the above variety V to be the universal
abelian cover of what we want, so we want the Z/169 action on V. As we describe
in more detail below, the action of Z/169 is generated by the map

(z, ZZ, Z3, Z4) i-+ (9z1, 66Z2, 38Z3, 7Z4),

where is a primitive 169th root of unity. This multiplies the first equation by 18

and the second by
21, so itrespects the equations and gives a free action of Z/169

on the variety. The theory developed in [.] proves that V' = V/(Z/169) has the
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desired topology and that V is its universal abelian cover.

To describe the action of H1(M; Z) on Ct in general we first recall from [1.]
how to construct the splice diagram from the resolution graph F. Denote the inci-
dence matrix of F byA(F) - this is the intersection matrix of the resolution: the
matrix whose diagonal entries are the sellintersection weights of F and which has
has an entry 1 or 0 in the ki position with k 1 according as F does or does not
have an edge connecting vertices k and 1. The cokernel of A([') is isomorphic to
H,(M Z), so det(-A(F)) Hi(M;Z)I.

The splice diagram has the same shape as F but with vertices of valence
2 suppressed. The splice diagram weights can be computed as follows. If one
removes a node v of F and adjacent edges then F breaks into 6 subgraphs, where 6
is the valence of v. The weights adjacent to v are the number det(-A(F')) as F'
runs through these subgraphs.

This allows us to define a weight also adjacent to leaves of the splice diagram
, namely det(-A(F")) where F' is obtained by removing the leaf and adjacent

edge. We now define 4j for any pair of leaves as the product of weights adjacent
to the direct path from ito j (or just the weight adjacent to i if i = j).

With the leaves of numbered j 1,... t we define for each leaf i a diagonal
matrix

gj = dia(e214i/d;j = 1,... t)
where d = H1 (M; Z) . These matrices generate a diagonal subgroup of GL(Ct)
which is isomorphic to H1 (M; Z). This gives the desired action of H1 (M; 7Z) on
Ct (see [2SJ).

In our particular example above, any one of g,.. . ,g generates the cyclic group
H1 (M; Z) = Z/169 and the actual element we gave above was g.

The congruence condition is the condition that for any node of the splice dia-
gram we can choose the monomials M so that they all transform the same way
under this group action. In this example the congruence condition turns out to be
satisfied for any choice of monomials.
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APPENDIX: CLASSICAL 3-MANIFOLD THEORY

This appendix gives a quick survey of some "classical" 3manifold theory. It
is adapted from Chapter 2 of the notes []. Manifolds are always assumed to be
smooth (or at least piecewise smooth).

APPENDIX A. SOME BASICS

This section describes some fundamental classical tools of 3manifold theory.
The proofs of the results in this section can be found in several books on 3-
manifolds, for example [J.

TheoremAl (Dehn's Lemma). IfM3 is a 3manifold and f: D2 - M3 a map
ofa disk such thatfor some neighborhoodNof3D2 the mapfIN is an embedding
and f (1(N)) =N. Then f 3D2 extends to an embedding g: D2 - M3.

Dehn's proof of 1910 [4] had a serious gap which was pointed out in 1927 by
Kneser. Dehn's Lemma was finally proved by Papakyriakopoulos in 1956, along
with two other results, the loop and sphere theorems, which have been core tools
ever since. These theorems have been refined by various authors since then. The

following version ofthe loop theorem contains Dehn's lemma. It is due to Stallings

Theorem A.2 (Loop Theorem). Let F2 be a connected submanifold of 3M3, N

a normal subgroup of 7r1(F2) which does not contain ker(iri(F2) - 7r, (Ml)).
Then there is aproper embedding g: (D2, 3D2) - (M3, F2) such that [glaD2] 0
N.
TheoremA.3 (Sphere Theorem). IfN is a In (M3)invariant proper subgroup of
7r2(M3) then there is an embedding S2 - M3 which represents an element of
'7r2(M3) - N.

(These theorems also hold if M3 is nonorientable except that in the Sphere
Theorem we must allow that themap 52 -* M3 may be a degree 2 covering map
onto an embedded projective plane.)

Definition A.4. An embedded 2sphere S2 C M3 is essential or incompressible
if it does not bound an embedded ball in M3. M3 is irreducible if it contains no
essential 2sphere.

Note that if M3 has an essential 2sphere that separates M3 (i.e., M3 falls into
two pieces if you cut along S2), then there is a resulting expression of Mas a con-
nected sumM= M1#M2 (to form connected sumof twomanifolds, remove the
interior of a ball from each and then glue along the resulting boundary components
S2). If M3 has no essential separating

2 we say M3 is prime

Exercise 1. M3 prime Either M3 is irreducible or M3 S1 x 52 Hint5.

3IfM is prime butnotirreducible then there is an essential nonseparating S2. Considera simple
path y that departs this S2 from one side in M3 and returns on the other. Let N be a closed regular
neighborhood of 2 u -y. Whatis ON? What is M3 - N?
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Theorem A.5 (Kneser and Milnor). Any 3manifold has a unique connected sum
decomposition into prime 3inanifolds (the uniqueness is that the list ofsummands
is unique up to order).

We next discuss embedded surfaces other than 82. Although we will mostly
consider closed 3manifolds (i.e., compact without boundary), it is sometimes nec-
essary to consider manifolds with boundary. If M3 has boundary, then there are
two kinds of embeddings of surfaces that are of interest: embedding F2 into 9M3
or embedding F2 so that 8F2 C UM3 and (F2- aF2) C (M3 - DM3). The
latter is usually called a "proper embedding." Note that 3F2 may be empty. In
the following we assume without saying that embeddings of surfaces are of one of
these types.

Definition A.6. If M3 has boundary, then a properly embedded disk D2 c M3
is essential or incompressible if it is not "boundaryparallel" (i.e., it cannot be iso-
toped to lie completely in DM3, or equivalently, there is no ball in M3 bounded by
this disk and part of aM3). M3 is boundary irreducible if it contains no essential
disk.

If F2 is a connected surface S, D2, an embedding F2 C M3 is incompress-
ible if ir1 (F2) - 1r1 (M3) is injective. An embedding of a disconnected surface is
incompressible if each component is incompressibly embedded.

It is easy to see that if you slit open a 3manifold M3 along an incompressible
surface, then the resulting pieces of boundary are incompressible in the resulting
3manifold. The loop theorem then implies:

Proposition A.7. If F2 g2 D2, then a twosided embedding F2 C M3 is
compressible (i.e., not incompressible) ifand only fthere is an embedding D2
M3 such that the interior ofD2 embeds in M3 - F2 and the boundary ofD2 maps
to an essential simple closed curve on F2.

(For a onesided embedding F2 C M3 one has a similar conclusion except that
one must allow the map of D2 to fail to be an embedding on its boundary: 8D2
may map 21 to an essential simple closed curve on F2. Note that the boundary of
a regular neighborhood of F2 in M3 is a twosided incompressible surface in this
case.)

Exercise 2. Show that if M3 is irreducible then a torus T2 C M3 is compressible
if and only if either

" it bounds an embedded solid torus in M3, or
" it lies completely inside a ball of M3 (and bounds a knot complement in

this ball).

A 3manifold is called sufficiently large if it contains an incompressible sur-
face, and is called Haken if it is irreducible, boundaryirreducible, and sufficiently
large. Fundamental work of Haken and Waidhausen analyzed Haken 3manifolds
by repeatedly cutting along incompressible surfaces until a collection of balls was
reached (it is a theorem of Haken that this always happens). A main result is
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Theorem A.8 (Waidhausen). IfM3 and N3 are Haken 3manfolds and we have
an isomorphism iri(N3) -* 7r, (M') that "respects peripheral structure" (that is,
it takes each subgroup represented by a boundary component of N3 to a a conju-
gate ofa subgroup represented by a boundary component ofM3, and similarlyfor
the inverse homomorphism). Then this isomorphism is induced by a homeomor-
phism N3 -+ M3 which is unique up to isotopy.

The analogous theorem for surfaces is a classical result of Nielsen.
We mention one more "classical" result that is a key tool in Haken's approach.

Definition A.9. Two disjoint surfaces F?, F? C

	

are parallel if they bound a
subset isomorphic to F1 x [0, 1] between them in M3.

Theorem A.1O (KneserHaken finiteness theorem) . For given M3 there exists a
bound on the number of disjoint pairwise nonparallel incompressible surfaces
that can be embedded in M3.

APPENDIX B. JSJ DECoMPosiTIoN

We shall give a quick proof, originating in an idea of Swarup (see [2.]), of the
main "JSJ decomposition theorem" which describes a canonical decomposition of
any irreducible boundaryirreducible 3manifold along tori and annuli. The char-
acterization of this decomposition that we actually use in these notes is here an
exercise (Exercise 3 at the end of this section). F. Costantino gives a nice exposi-
tion in [:] ofa proof, based on this proof and ideas ofMatveev, that directly proves
this characterization.
We shall just describe the decomposition in the case that the boundary of M3 is

empty or consists of tori, since that is what is relevant to these notes. Then only
tori occur in the JSJ decomposition (see section C.5). An analogous proof works in
the general torusannulus case (see but the general case can also be deduced
from the case we prove here.
The theory of such decompositions for Haken manifolds with toral boundaries

was first outlined by Walcihausen in [ 1; see also [4:] for his later account ofthe
topic. The details were first fully worked out by Jaco and Shalen [] and indepen-
dently Johannson [1 1.
Definition B.1. M is simple if every incompressible torus in M is boundary-
parallel.

If M is simple we have nothing to do, so suppose M is not simple and let
ScMbe an essential (incompressible and not boundaryparallel) torus.

Definition B.2. S will be called canonical if any other properly embedded essen-
tial torus T can be isotoped to be disjoint from S.

Take a disjoint collection {S,. . . , S,} of canonical tori in M such that
" no two of the S are parallel;
" the collection is maximal among disjoint collections of canonical tori with
no two parallel.
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A maximal system exists because of the KneserHaken finiteness theorem. The
result of splitting M along such a system will be called a JSJ decomposition of
M. The maximal system of pairwise nonparallel canonical tori will be called a
JSfsystem.

The following lemma shows that the JSJsystem {S1,. . . , S} is unique up to
isotopy.


	

Lemma B.3. Let S1,

	

Sj be pairwise disjoint and nonparallel canonical tori
in M. Then any incompressible torus T in M can be isotoped to be disjointfrom
Si U U Sj. Moreover, ifT is notparallel to any Sj then the final position ofT
in M - (S1 U ... U Sj) is determined up to isolopy.

By assumption we can isotop T off each S individually. Writing T = S0, the
lemma is thus a special case of the stronger:

Lemma B.4. Suppose {S0, S1,..., Sk} are incompressible surfaces in an irre-
ducible manifold M such that each pair can be isotoped to be disjoint. Then
they can be isotoped to be pairwise disjoint and the resulting embedded surface
So U ... U Sk in M is determined up to isotopy.

Proof. We just sketch the proof. We start with the uniqueness statement. Assume
we have Si,... , Sj, disjointly embedded and then have two different embeddings
of S= Sodisjoint from T= S1U...USk. Let f: SxI-4 Mbeahomotopy
between these two embeddings and make it transverse to T. The inverse image of
T is either empty or a system of closed surfaces in the interior of S x I. Now use
Dehn's Lemma and Loop Theorem to make these incompressible and, of course,
at the same time modify the homotopy (this procedure is described in Lemma 1.1
of [ ] for example). We eliminate 2spheres in the inverse image of T similarly.
If we end up with nothing in the inverse image of T we are done. Otherwise each
component T' in the inverse image is a parallel copy of S in S x I whose funda-
mental group maps injectively into that of some component S of T. This implies
that S can be homotoped into S and its fundamental group in(S) is conjugate into
some ir1(S). It is a standard fact (see, e.g., [7]) in this situation of two incom-
pressible surfaces having comparable fundamental groups that, up to conjugation,
either 7r, (S) = ini(Sj) or S is onesided and 7r, (S) is the fundamental group of
the boundary of a regular neighborhood of T and thus of index 2 in in(S3). We
thus see that either S is parallel to S and is being isotoped across S or it is a
neighborhood boundary of a onesided S and is being isotoped across S3. The
uniqueness statement thus follows.
A similar approach to proves the existence of the isotopy using Waidhausen's

classification of proper incompressible surfaces in S x I to show that So can
be isotoped off all of S1,.. . Sj if it can be isotoped off each ofthem. U

The thing that makes decomposition along incompressible annuli and tori spe-
cial is the fact that they have particularly simple intersection with other incom-
pressible surfaces.
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Lemma B.5. If a properly embedded incompressible torus T in an irreducible
manifold M has been isotoped to intersect another properly embedded incom-
pressible surface F with as few components in the intersection as possible, then
the intersection consists of a family ofparallel essential simple closed curves on
T.

Proof Suppose the intersection is nonempty. If we cut T along the intersection
curves then the conclusion to be proved is that T is cut into annuli. Since the Euler
characteristics of the pieces of T must add to the Euler characteristic of T, which
is zero, if not all the pieces are annuli then there must be at least one disk. The
boundary curve ofthis disk bounds a disk in F by incompressibility of F, and these
two disks bound a ball in M by irreducibility of M. We can isotop over this ball to
reduce the number of intersection components, contradicting minimality. S

Let IVI1,. . . , M17 be theresult of performing the JSJdecomposition of M along
the JSJsystem {S1 U"" U $5}.

Theorem B.6. Each M is either simple or Seifertfibered by circles (or maybe
both).

Proof Suppose N is one of theM which is nonsimple. We must show it is Seifert
fibered by circles.

Since N is nonsimple it contains essential tori. Consider a maximal disjoint
collection ofpairwise nonparallel essential tori {T1... , T } in N. SplitN along
this collection into pieces N1,.. . , N. We shall analyze these pieces and show
that they are of one of nine basic types, each of which is evidently Seifert fibered.
Moreover, we will see that the fibered structures match together along the T when
we glue the pieces N together again to form N.

Consider N1, say. It has at least one boundary component that is a Ti,. Since T
is not canonical, there exists an essential torus T" in N which essentially intersects
T1. We make the intersection of T' with the union T = T1 U ... U T. minimal, and
then by Lemma 13.5 the intersection consists ofparallel essential curves on T'.
Lets beoneofthecurves ofTj fl T'. LetPbethepart ofT' fl N1 that has s

in its boundary. P is an annulus. Let s' be the other boundary component of P. It
may lie on a Tk with k j or it may lie on Tj again. We first consider the case

Case 1: s' lies on a different Tk.

p

FIGURE 1.
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In Fig. I we have drawn the boundary of a regular neighborhood of the union

TjUTkUP in N1. The top and the bottom ofthe picture shouldbe identified, so that
the whole picture is fiberedby circles parallel to s and s'. The boundary torus Tof
the regular neighborhood is anewtorus disjoint from the Ti's, so it must be parallel
to a or nonessential. If T is parallel to a T then N1 is isomorphic to X x S1,
whereX is athe sphere with three disks removed. Moreover all three boundary tori
are Ti's. If T is nonessential, then it is either parallel to a boundary component of
N or it is compressible in N. In the former case N1 is again isomorphic to XxS',
but with one of the three boundary tori belonging to ON. If T is compressible then
it must bound a solid torus in N1 and the fibration by circles extends over this solid
torus with a singular fiber in the middle (there must be a singular fiber there, since
otherwise the two tori Tj andTk are parallel).
We draw these three possible types for N1 in items 1,2, and 3 of Fig. 2., sup-

pressing the circle fibers, but noting by a dot the position of a possible singular
fiber. Solid lines represent part of ON while dashed lines represent Ti's. We next
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FIGURE 2.

consider
Case 2. s' also lies on I, so both boundary components s and s' ofPlie on T3.
Now Pmay meet Tj along s and s' from the same side or from opposite sides,

so we split Case 2into the two subcases:
Case 2a. P meets T along s and s' both times from the same side;
Case 2b. P meets T along s and s' from opposite sides.
It is not hard to see that after splitting along ?i, Case 2b behaves just like Case

1 and leads to the same possibilities. Thus we just consider Case 2a. This case has
two subcases 2a1 and2a2 according to whether s and s' have the same or opposite
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orientations as parallel curves of Tj (we orient s and s parallel to each other in

P). We have pictured these two cases in Fig. 3 with the boundary of a regular
neighborhood of Tj U P also pictured.

FIGURE 3.

In Case 2a1 the regular neighborhood is isomorphic to Xx S' and there aretwo
tori in its boundary, each of which maybe parallel to a T, parallel to a boundary
component of N, or bound asolid torus. This leads to items 1 through 6 of Fig. 2.

In Case 2b the regular neighborhood is a circle bundle over amöbius band with
one puncture (the unique such circle bundle with orientable total space). The torus
in its boundary may be parallel to a T, parallel to a component of N, or bound a
solid torus. This leads to cases 7, 8, and 9 of Fig. 2. In all cases but case 9 a dot

signifies a singular fiber, but in case 9 it signifies a fiber whichmay or may not be

singular.
We now know that N1 is of one of the types of Fig. 2. and thus has a Seifert

fibration by circles, and therefore similarly for each piece N. Moreover, on the

boundary componentTj that we are considering, the fibers of N1 are parallel to the
intersection curves of Tj and T' and therefore match up with fibers of the Seifert
fibration on the piece on the other side ofT3. We must rule out the possibility that, if
we do the same argument using a different boundary component Th., of N1, it would
be a different Seifert fibration which we match across that boundary component.
In fact, it is not hard to see that if N1 is as in Fig. 22 with more than one boundary
component, then its Seifert fibration is unique. To see this up to homotopy, which
is all we really need, one can use the fact that the fiber generates a normal cyclic
subgroup of iri(Ni), and verify by direct calculation that (N1) hasaunique such

subgroup in the cases in question.
(In fact, the only manifold of atype listed in Fig. 2 that does not have a unique

Seifert fibration is case 6 when the two singular fibers are both degree 2 singular
fibers and case 9 when the possible singular fiber is in fact not singular. These are
in fact two Seifert fibrations of the same manifold T'Mb, the unit tangent bundle
of the Möbius band Mb. This manifold can also be fibered by lifting the fibration
of the Möbius band by circles to a fibration ofthe total space of the tangent bundle
ofMb by circles.)

	

El

An alternative characterization of the JSJ decomposition is as a minimal decom-

position of Malong incompressible tori into Seifert fibered and simple pieces. In

particular, if some torus of the JSJsystem has Seifert fibered pieces on both sides
of it, the fibrations do not matchup along the torus.
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Exercise 3. Verify the last statement.

APPENDIX C. SEIFERT FIBERED MANIFOLDS

In this section we describe all threemanifolds that can be Seifert fibered with
circle or torus fibers.

Seifert's original concept of what is now called "Seifert fibration" referred to
3manifolds fibered with circle fibers, allowing certain types of "singular fibers."
For orientable 3manifolds this gives exactly fibrations over 2orbifolds, so it is
reasonable to use the term "Seifert fibration" more generally to mean "fibration
of a manifold over an orbifold." So we start by recalling what we need about
orbifolds.

C.1. Orbifolds. An norbifold is a space that looks locally like IRTh/G where C is
a finite subgroup ofGL(n, IR). Note that Cvaries from pointto point, for example,
a neighborhood of [x e R/Glooks like lRTh/G whereG = {g e G I gx x}.
We will restrict, for simplicity, to locally orientable 2orbifolds (i.e., the above

G preserves orientation). Then the only possible local structures are R2/c, p =

1, 2. 3,..., where C is the cyclic group of orderp acting by rotations. the local
structure is then a "cone point" with "cone angle 2n-/p" (Fig. 4).

mental domain

_+ -<Q

FIGURE 4

Topologically, a 2orbifold is thus simply a 2dimensional manifold, in which
certain points are singled out as being "orbifold points" where the total angle
around the point is considered to be 2ir/p instead of 2ir. The underlying 2manifold
is classified by its genus g (we use negative numbers to refer to nonorientable sur-
faces, so genus -1, -2,... mean projective plane, Klein bottle, etc.). We can thus
characterize a 2-orbifold by atuple of numbers (g; P1

	

Pk) whereg is the genus
and P1

	

Pk describe the orbifold points.

C.2. General concept of Seifert fibrations via orbifolds. A map M - Nis a

Seifert fibration if it is locally isomorphic to maps of the form (U xF)/G - U/C,
with U/G an orbifold chart in N (so Uis isomorphic to an open subset ofRTh with
an action of the finite group G) and F a manifold with Gaction such that the

diagonal action of G on U x F is a free action. The freeness of the action is to
make Mamanifold rather than just an orbifold.
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C.3. Seifert circle fibrations. We start with "classical" Seifert fibrations, that is,
fibrations with circle fibers, but with some possibly "singular fibers." We first
describe what the local structure of the singular fibers is. This has already been
suggested by the proof of JSJ above.
We have a manifold M3 with a map 7r: M3 -+ F2 to a surface such that all

fibers of the map are circles. Pick one fiber fo and consider a regular neighborhood
N of it. We can choose N to be a solid torus fibered by fibers of ir. To have a
reference, we will choose a longitudingal curve 1 and a meridian curve m on the
boundary torus T = 0N. The typical fiber f on T is a simple closed curve, so it is
homologous to pl + rm for some coprime pair of integers p, r. We can visualize
the solid torus N like an onion, made up of toral layers parallel to T (boundaries
of thinner and thinner regular neighborhoods) plus the central curve fo. Each toral
shell is fibered just like the boundary T, so the typical fibers converge on fo as
one moves to the center of N.

Exercise 4. Let s be a closed curve on T that is a section to the boundary there.
Then (with curves appropriately oriented) one has the homology relation m =
ps + qf with qr 1 (mod p).

The pair (p.q) is called the Seifert pair for the fiber fo. It is important to note
that the section s is only well defined up to multiples of f, so by changing the
section s we can alter q by multiples of p. If we have chosen things so 0 q <p
we call the Seifert pair normalized.

By changing orientation of fo if necessary, we may assume p ˆ 0. In fact:

Exercise 5. If M3 contains a fiber with p = 0 then M3 is a connected sum of lens
spaces. (A lens space is a 3manifold obtained by gluing two solid tori along their
boundaries; it is classified by a pair of coprime integers (p, q) with 0 < q < p
or (p, q) = (0, 1). One usually writes it as L(p, q). Special cases are L(0, 1) =
S2 x S1, L(1, 0) = s. For p ˆ 0 L p, q) can also be described as the quotient
of S3 = (Z' W) E C2 : Iz2 + 1w12 = 1} by the action of Z/p generated by
(z, w)

	

(e2u/Pz, e2/Pw).)

We therefore rule out p = 0 and assume from now on that every fiber has p> 0.
Note that p = 1 means that the fiber fo is a nonsingular fiber, i.e., the whole
neighborhood N of fo is fibered as the product D2 x S'. If p > 1 then fo is a
singular fiber, but the rest of N consists only of nonsingular fibers. In particular,
singular fibers are isolated, so there are only finitely many of them in M3.
Now let fo, .. ., f. be a collection of fibers which includes all singular fibers.

For each one we choose a fibered neighborhood N and a section s on 8N as
above, giving a Seifert pair (pi., qj) with p2 ˆ 1 for each fiber. Now on M0
M3 -U f(N) we have a genuine fibration by circles over a surface withboundary.
Such a fibration always has a section, so we can assume that our sections s2 on
0M0 have come from a global section on M0. This section on M0 is not unique.
If we change it, then each s is replaced by s + nJ for some integers n, and a
homological calculation shows that n must equal 0. The effect on the Seifert
pairs (pi, qi) is to replace each by (pi, qj - fljpj). In summary, we see that changing
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the choice of global section on M0 changes the Seifert pairs (pi, qj) by changing
each qj, keeping fixed:

" the congruence class qj (mod p)
" e :=

The above number e is called the Euler number of the Seifert fIbration. We have
not been careful about describing our orientation conventions here. With a standard
choice of orientation conventions that is often used in the literature, e is more
usually defined as e

Note thatwe can also change the collection of Seifert pairs by adding or deleting
pairs ofthe form (1, 0), since they correspondto nonsingular fibers with choice of
local section that extends across this fiber. Up to these changes the topology of the
base surface F and the collection of Seifert pairs is a complete invariant of M3. A
convenient normalization is to take fo to be a nonsingular fiber and fi

	

f8 to
be all the singular fibers and normalize so that 0 < qi <j for ˆ 1. This gives a
complete invariant:

(g; (l,qo),(pi,qi),...,(pr,qr)) withg = genus(F)
which is unique up to permuting the indices i = 1,. . . , r. A common convention
is to use negative g for the genus of nonorientable surfaces (even though we are
assuming M3 is oriented, the base surface F need not be orientable).

Exercise 6. Explain why the base surface F most naturally has the structure of an
orbifold of type (g;pi,.. .

Seifert manifolds can begiven locally homogeneous Riemannian metrics (briefly
"geometric structures"). There are six underlying types for the geometric structure.
The orbifold Euler characteristic of this base orbifold and the Euler number e of
the Seifert fibration together determine the type ofnatural geometric structure that
can be put on M3.

There exist a few manifolds M3 that have more than one Seifert fibration. For
example, the lens space L(p, q) has infinitely many, all of them with base surface

and at most two singular fibers (but if one requires the base to be a "good
orbifold"- one that is globally the quotient of a group action on a manifold), then
L(p, q) has only one Seifert fibration up to isomorphism).

C.4. "Seifert fibrations" with torus fiber. There are two basic ways a 3manifold
M3 can fiber with torus fibers. The base must be idimensional so it is either the
circle, or the lorbifold that one obtains by factoring the circle by the involution
z . The latter is the unit interval [0, 11 considered as an orbifold.

In the case M3 fibers over the circle, we can obtain it by taking T2 x [0, 1] and
then pasting T2 x {0} to T2 x {1} by an automorphism of the torus. Thinking
of the torus as R2/Z2, it is clear that an automorphism is given by a 2 x 2 integer
matrix of determinant 1 (it is orientation preserving since we want M3 orientable),
that is, by an element A E SL(2, Z).
Exercise 7. Show the resulting M3 is Seifert fibered by circles if tr(A) I < 2.
Work out the Seifert invariants.
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If tr(A) > 2 then the natural geometry for a geometric structure onM is the
Sol geometry.

In case M3 fibers over the orbifold [0, 1] we can construct it as follows. The
manifold SMb mentioned in Section 4 of this paper can also be described as the
total space of the unique interval bundle over the Klein bottle with oriented total
space. From this point of view, SMb is fibered by tori that are the boundaries of
thinner versions of8Mb obtained by shrinking the interval I, with the Klein bottle
zerosection as special fiber. Gluing two copies of SMb by some identification of
their torus boundaries gives M3. This M3 has a double cover that fibers over the
circle, and it is Seifert fibered by circles if and only this double cover is Seifert
fibered by circles, otherwise it again belongs to the Sol geometry.
C.5. Simple Seifert fibered manifolds. We said earlier that if M3 is irreducible
and all its boundary components are tori then only tori occur in the JSJ decompo-
sition. This is essentially because of the following:
Exercise 8. Let M3 be an orientable manifold, all of whose boundary components
are tori, which is simple (no essential tori) and suppose M3 contains an essential
embedded annulus (i.e., incompressible and not boundary parallel). Then M3 is
Seifert fibered over D2 with two singular fibers, or over the annulus or the Möbius
band with at most one singular fiber.

For manifolds with boundary, "simple" is often defined by the absence ofessen-
tial annuli and tori, rather than just tori. The difference between these definitions
is just the manifolds of the above exercise. D2 x S1 is simple by either definition.
The only other simple Seifert fibered manifolds are those that are Seifert fibered
over S2 with at most three singular fibers or over P2 with at most one singular fiber
and which moreover satisfy e(M3 -* F) 0.

APPENDIX D. GEOMETRIC VERSUS JSJ DECOMPOSITION

The JSJ decomposition does not give exactly the decomposition of M3 into
pieces with geometric structure. This is because of the fact that the manifold 8Mb
(that caused us problems in Section 4 of this paper) may occur as a Seifert fibered
piece in the decomposition, but it does not admit a geometric structure.

Recall (subsection C.4) that 8Mb has an embedded Klein bottle, and splitting
it along this Klein bottle gives T2 x I. Thus, whenever SMb occurs as a piece in
the JSJ decomposition, instead of including the boundary of this piece as one of
the surfaces to split M3 along, we include its core Klein bottle. The effect of this
is simply to eliminate all such pieces without affecting the topology of any other
piece. The modified version of JSJdecomposition that one gets this way is called
geometric decomposition.
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