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CURVES

Bernard TEISSIER

(Institut mathématique de Jussieu, CNRS)

Summary

This is an introduction to the local study of singular curves in complex analytic geo-

metry. It contains resolution of singularities, the Newton polygon and the Newton

parametrization, the classical Newton-Puiseux invariants, the semigroup associated to

a branch as well as the specialization to the corresponding monomial curve, and a

proof of Bézout’s theorem.

1 What is a curve?

In these lectures I will discuss singular points of complex curves.
A complex curve may locally be regarded as a family of points in
complex affine space Ad(C) depending on one complex parameter.

• The dependence may be explicit, which means that the coordinates
of our points depend explicitely on one parameter, as in:

z1 = z1(t)
z2 = z2(t)
... =

...
zd = zn(t)

where the zi(t) may be any functions C → C although we will
consider here only polynomials or convergent power series. In this
case the functions zi(t) may be defined only in a neighborhood of
some point, which we will usually assume to be the origin; one may
reduce to this case by a translation on the coordinates zi and t.
The curve is non singular at the origin if the minimum of the t-adic
orders of the zi(t) is equal to one.

• A curve may also be given implicitely, which means that it is given
by equations.

The simplest case is that of a plane algebraic curve in the 2-
dimensional affine space A2(C), defined by an equation f(x, y) = 0,
where f ∈ C[x, y] is a polynomial:

f(x, y) = a0(x)yn + a1(x)yn−1 + · · · + an(x),
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with ai(x) ∈ C[x], a0(x) �= 0.
The degree n in y of the polynomial is the number of solutions in
y (counted with multiplicities)for any fixed value x0 of x which is
“sufficiently general” in the sense that a0(x0) �= 0. We shall see later
an interpretation for the total degree (max(i+j) for monomials xiyj

appearing in f(x, y)). The curve is non-singular at the origin if at
least one of the derivatives ∂f

∂x
, ∂f

∂y
does not vanish at the origin.



Bernard Teissier, CIMPA-Lebanese Summer School, 2004 3

The description of a curve in Ad(C) for d ≥ 3 is much more
complicated in general. One can prove that it requires at least d−1
equations, but it may require much more, and then what is im-
portant is the ideal I which these equations generate in the ring
C[z1, . . . , zd] or the ring C{z1, . . . , zd}.
In the case of plane curves, this ideal is a principal ideal so we
have one equation only; more precisely, in the case of polynomi-
als, this equation is unique up to multiplication by a nonvanishing
polynomial, i.e., a nonzero constant. In fact, it is the quotient ring
C[z1, . . . , zd]/I, or C{z1, . . . , zd}/I which we consider.

Assuming that we are in the analytic case and the ring O =
C{z1, . . . , zd}/I is an integral domain, we can bring together the
equational and parametric representations together in the following
diagram of C-algebras:

C{z1, . . . , zd} → O ⊂ C{t},
where the first map is the surjection with kernel I describing O as
a quotient, and the second one is determined by: zi �→ zi(t) 1 ≤
i ≤ d.

The conclusion is that a complex curve, locally, should be thought
of as a one-dimensional reduced local C-algebra O, which is the loc-
alization of a C-algebra of finite type (algebraic case), or is a quo-
tient of a convergent power series ring C{z1, . . . , zd} (analytic case)
or of a formal power series ring C[[z1, . . . , zd]] (formal, or algebroid,
case).

Then we can consider it as given by an ideal in a regular local
ring, namely the kernel of the map defining it as a quotient of a
localization of a polynomial ring, or as a subring of a regular one-
dimensional semi-local ring (its normalization) O, which in the ana-
lytic or formal case corresponds to the parametrization.
It is a theorem that in the cases considered here, the normalization
O is a finitely generated O-module.
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2 What does one do with curves?

Real curves (often analytic) appear everywhere in mechanics as tra-
jectories, and complex curves appear everywhere in Mathematics as
soon as points depend on one parameter; for example given a family
of square complex matrices depending on a complex parameter, the
family of the eigenvalues lies on a complex curve. In order to study
a real analytic curve, it is often useful to look at its complexification.

If a complex algebraic group G acts algebraically on a variety
X, one may study the action by restricting it to one-parameter
subgroups C∗ ⊂ G and the the orbit of each point x ∈ X is a curve.
Its closure in X is in general singular.

More generally, the closure of a non singular curve will in general
have singularities.

We have seen also non singular algebraic curves which are them-
selves algebraic groups; elliptic curves. However, if we want to un-
derstand the totality of elliptic curves, we must also consider their
singular limits.

Curves also appear naturally in inductive steps in algebraic geo-
metry: non-singular surfaces are studied in large part through the
families of curves which they contain, and singular curves must ap-
pear in these families.

To study the geometry of a non singular surface S, it is natural
to project it to a non-singular space of the same dimension. The
set of points of S where the projection p : S → P2 is not a local
isomorphisme, the critical locus of the projection, is a curve (if it
is not empty) which contains much information about the geometry
of S. The critical locus may be a non singular curve, but its image
under projection p will in general be singular.

More generally, even if one is interested in non singular curves
only, their plane projections will in general be singular, having at
least ordinary double points or nodes
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In these lectures, I will mostly study different ways to transform
curves into other curves, by deformation either of the parametric
representation or of the equations, by taking the transforms of curves
in Ad

k under maps Z → Ad
k, and by projection (in the case of non

plane curves).
Since the passage from the implicit presentation to the para-

metrization uses some form of the implicit function theorem, I will
mostly work in the context of complex analytic functions, for which
there is an implicit function theorem which does not exist for poly-
nomials.
If one wishes to work over a field different from C, one could replace
convergent power series with formal power series with coefficients in
a field, keeping most of the algebra but losing a lot of geometry or
one could work in the henselizations of the polynomial ring and its
quotients, keeping just about everything.

Let us call analytic algebra any C-algebra which is a quotient of
a convergent power series ring C{z1, . . . , zd}. To any localization
Rm of a finitely generated local algebra R over the field of complex
numbers at one of its maximal ideals is associated in a unique way
(up to unique isomorphism) an analytic algebra Rh

m, which has the
property that any C-algebra morphism Rm → A from Rm to an
analytic algebra A factors in a unique manner Rm → Rh

m → A
where Rh

m → A is a morphism of analytic algebras.
The candidate for Rh is simple to see: write a presentation

R = C[T1, . . . , Tn]/I, where I is generated by finitely many poly-
nomials. The maximal ideal m of R is the image of a maximal
ideal m̃ of C[T1, . . . , Td]. By the nullstellensatz, the ideal m̃ cor-
responds to a point (a1, . . . , ad) of the affine space Ad(C). Set
Rh = C{T1 − a1, . . . , Td − ad}/Ih, where Ih is the ideal generated in
C{T1 − a1, . . . , Td − ad} by the polynomials which generate I.

In the case of curves, the first serious difficulty comes from the
fact that an irreducible polynomial P (x, y) ∈ C[x, y] may well be-
come reducible in C{x, y} = C[x, y]h(x,y). In other words, the ana-
lytization of a local integral C-algebra may not be integral.
Consider for example the nodal cubic with equation

y2 − x2 − x3 = 0;

it is an irreducible affine plane curve, but the image of its equation
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in C{x, y} by the natural injection C[x, y] ⊂ C{x, y} factors as

y2 − x2 − x3 = (y + x
√

1 + x)(y − x
√

1 + x).
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The interaction between the global invariants of a plane project-
ive curve and its singularities is also an important theme requiring
the local study of singularities:
- We know how to compute the class and the genus of a non singular
plane projective curve of degree d. Assune now that it is singular;
how does it affect the formulas for the class and genus?
- The single most important result about plane curves is Bézout’s
theorem, which is the generalization of the fundamental theorem of
algebra:
Given two plane projective curves C and C ′ of degrees d and d′ hav-
ing no common component, the number of their points of intersection
counted with multiplicity is the product dd′.

At the points of intersection where both curves are not regular
and meeting transversally, how does one properly count the inter-
section multiplicity? can one effectively count it, given the equa-
tions of the two curves? In fact, as we shall see, the best situation
to compute the intersection multiplicity is to have one curve given
parametrically and the other given implicitely, although if both are
given parametrically, there is a formula, due to Max Noether (see
[M]). What is the geometric meaning of intersection multiplicity?

We know that we can normalize an algebraic curve to obtain a non
singular algebraic curve, and it can be shown that the same is true
in complex analytic geometry. The parametrization of an analytic
curve mentioned above is in fact its normalization, provided we take
care that the powers of t appearing in the series are coprime; if this is
the case, the inclusion O ⊂ C{t} induces an isomorphism of fraction
fields and is therefore the normalization of O. The normalization,
however, is a priori difficult to compute from the equations of our
curve.

An algorithm to do precisely this, in fact to compute a paramet-
rization from an equation of a plane curve, was given by Newton; it
is based on the Newton polygon.
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3 Newton’s study of plane curve singularities

Let f(x, y) ∈ C[[x, y]] be a formal power series without constant
term. We seek series y(x) without constant term such that f(x, y(x)) =
0.

Let us first eliminate a marginal case; if f(0, y) = 0, it means that
f(x, y) is divisible by some power of x; let a be the maximum power
of x dividing f(x, y), and let us set f(x, y) = xaf ′(x, y). Geomet-
rically, the equality f(0, y) = 0 means that the curve f(x, y) = 0
contains the y-axis, and the equality above means that this axis
should be counted a times in the curve. This component may be
parametrized by x = 0, y = t and we are left with the problem of
parametrizing the rest of the curve, which is defined by f ′(x, y) = 0.
We now have f ′(0, y) �= 0, and we may thus reduce to the case
f(0, y) �= 0. From now on we shall assume that f(0, y) �= 0.
We may then write, since f(0, y) is a formal power series in y,
f(0, y) = yng(y), with g(0) �= 0.

The proof of the existence of parametrizations proceeds by in-
duction on the integer n. If n = 1, we have ∂f

∂y
(0, 0) �= 0, and by

the implicit function theorem there exists a unique formal power
series y(x) ∈ C[[x]] such that y(0) = 0 and f(x, y(x)) = 0. We now
assume that n > 1.
Considering series f(x, y) of the form yn−xq with n, q > 1 and (n, q) =
1 shows that one cannot hope to find series in powers of x. Newton’s
idea is to seek solutions which are fractional power series in x, that
is, he seeks series in x

1
m for some integer m, say φ(x

1
m ) ∈ C[[x

1
m ]]

such that f(x, φ(x
1
m )) = 0. More precisely he seeks solutions of the

form:

y = xν(c0+φ0(x
1
m )) with c0 �= 0, ν ∈ Q+, φ0 without constant term.

If we write

f(x, y) =
∑
i,j∈N

ai,jx
iyj with a0,0 = 0

and substitute, we get∑
i,j

ai,jx
i+νj(c0 + φ0(x

1
m ))j
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and we seek ν, c0 �= 0 and a series φ0(x
1
m ) such that this series is

zero. In particular, its lowest order terms in x must be zero. Since
φ0 has no constant term, if we denote by µ the minimum value of
i + νj for (i, j) such that ai,j �= 0, we have∑
i,j

ai,jx
i+νj(c0+φ0(x

1
m ))j = xµ

∑
i+νj=µ

ai,jc
j
0+xµh(x

1
m ) where h has no constant term.

So c0 must satisfy ∑
i+νj=µ

ai,jc
j
0 = 0

For this equation to have a non-zero root in C, it is necessary and
sufficient that the sum has more than one term.

Let us consider in the (i, j)-plane the set of points (i, j) such that
ai,j �= 0. It is a subset N (f) of the first quadrant

R2
0 = {(i, j) /i ≥ 0, j ≥ 0},

called the Newton cloud of the series f(x, y). Any two subset A and
B of Rd can be added coordinate-wise, to give the Minkowski sum
A+B = {a+b, a ∈ A, b ∈ B} of A and B. Let us consider the subset
N+(f) = N (f) + R2

0 of R2
0; its boundary is a sort of staircase with

possibly infinite vertical or horizontal parts. The Newton polygon
P(f) of f(x, y) is defined as the boundary of the convex hull of
N+(f). It is a broken line with infinite horizontal and vertical sides,
possibly different from the coordinate axis.

j axis

i axis

i+νj=µ

l

h
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Just above is a picture of a Newton polygon in the case where the
infinite sides do coincide with the coordinate axis, or equivalently
where the area bounded by the polygon is finite.

Recall that the convex hull of a subset of Rd can be defined as
the intersection of the half-spaces which contain it. A half-space is
the set of points situated on one side of an affine hyperplane. Thus,
the number

µ = minai,j �=0{i + νj}
is the minimal abscissa of the intersection points with the i-axis of
the lines with slope −1

ν
meeting N+(f). Let us denote by Lν the line

which gives this minimum; an example in drawn on the picture.
So the polynomial ∑

i+νj=µ

ai,jc
j
0

corresponds to the sum of the terms ai,jx
iyj such that (i, j) lies on

the intersection of the line Lν with the Newton polygon.
A necessary and sufficient condition for this polynomial to have more
than one term is that −1

ν
is the slope of one of the sides of the Newton

polygon. For simplicity of notation, let us call ν the inclination of
the line of slope −1

ν
. Let us denote by l

h
the inclination of the ”first

side” of the Newton polygon of f , that is, the side with the smallest
inclination. Let c0 be a non zero root of the corresponding equation,
and let us make the change of variables

x = xl
1

y = xh
1(c0 + y1)

The substitution in f(x, y) gives

f(xh
1 , x

�
1(c0 + y1)) =

∑
ai,jx

hi+�j
1 (c0 + y1)

j .

By definition of µ, for each ai,j �= 0, we have hi + �j ≥ µh, so we
may factor the series above as

xµh
1 f1(x1, y1) , where f1(x1, y1) =

∑
ai,jx

hi+�j−µh
1 (c0 + y1)

j .

We remark that

f1(0, y1) =
∑

i+νj=µ

ai,j(c0 + y1)
j ,

and since a0,k �= 0 by definition of n, the order in y1 of f1(0, y1) is
≤ n.
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Since c0 has been chosen as a root of the polynomial
∑

i+νj=µ ai,jc
j
0,

this order is ≥ 1. We remark that
The order in y1 of f1(0, y1) is equal to n if and only if c0 is a root
of multiplicity n of the polynomial

∑
i+νj=µ ai,jT

j = 0
But then we must have an equality∑

i+νj=µ

ai,jT
j = a0,n(T − c0)

n

which implies by the binomial formula and since C is a field of
characteristic zero, that the term in T n−1 is not zero; this is possible
only if ν is an integer and then the equality above shows that the
”first side of the Newton polygon” meets the horizontal axis at the
point (νn, 0), which corresponds to the monomial xνn, which has
the non zero coefficient (−1)na0,ncn

0 , so it is actually the only finite
side of the Newton polygon of f(x, y), which means that we may
write in this case

f(x, y) = a0,n(y − c0x
ν)n +

∑
i+νj>µ

ai,jx
iyj with ν ∈ N, µ = νn.

Making the change of variables

x = x1

y = y1 + c0x
ν
1

the series f(x, y) becomes

f ′(x, y) = a0,ky
n
1 +

∑
i+νj>µ

ai,jx
i
1(y1 + c0x

ν
1)

j

The monomials which appear are of the form xi+νl
1 yj−l

1 , so that they
all satisfy i+νl+ν(j−l) = i+νj > νn. This means that if the order
of f1(0, y1) is n, the Newton polygon of f1(x1, y1) still contains the
point (0, n) and the inclination ν1 of its first side is strictly greater
than ν .

The proof now proceeds as follows, :
a) If the order in y1 of f1(0, y1) is less than n, by the induction

hypothesis, there exist an integer m1 and a series φ1(x
1

m1
1 ) ∈ C[[x

1
m1
1 ]]

such that

f1(x1, φ1(x
1

m1
1 )) = 0
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By the definition of f1, this implies that

f(xh
1 , x

�
1(c0 + φ1(x

1
m1
1 )) = 0

If we set m = m1h and φ(x
1
m ) = x

l
h (c0 + φ1(x

1
m )) ∈ C[[x

1
m ]], we

have f(x, φ(x
1
m )) = 0 and the result in this case.

b) If the order in y1 of f(0, y1) is still equal to n, we saw that ν is an
integer and the inclination of the first side of the Newton polygon
of the function f1(x1, y1) obtained from f(x, y) as above is strictly
greater than ν.

We now set ν0 = ν ∈ N and repeat the same analysis for f1,
defining a function f2(x2, y2). If again the order of f2(0, y2) is n, the
slope of the first side of the Newton polygon of f1(x1, y1) is an integer
ν1 > ν0 and after the change of variables x = x2, y = y2+c0x

ν0
2 +c1x

ν1

the slope of the Newton polygon has become greater than ν1.
There are two possibilities;

– either after a finite number of such steps we get a function fp(xp, yp)
such that f(0, yp) is of order < n, and by the induction hypothesis

we have a series φp(x
1

mp ) ∈ C[[x
1

mp ]] such that fp(x, φp(x
1

mp )) = 0,
and so a series

y = c0x
ν0 + c1x

ν1 + · · · + cp−1x
νp−1 + φp(x

1
mp )

such that f(x, y(x)) = 0;
Or the order remains indefinitely equal to n and we have an

infinite increasing sequence of integers

ν0 < ν1 < . . . < νp < . . .

and a formal power series

φ∞(x) = c0x
ν0 + c1x

ν1 + · · · + cpx
νp + · · · ∈ C[[x]]

such that the Newton polygon of the function f∞(x∞, y∞) obtained
from f(x, y) by the change of variables x = x∞ , y = y∞+φ∞(x) has
a Newton polygon containing the point (0, n) and with inclination
0. This means that f∞(x∞, y∞) is divisible by yn

∞, so we may write

f∞(x∞, y∞) = yn
∞g(x∞, y∞)

This implies that the order of g(0, y∞) is zero, so g(0, 0) �= 0. Geo-
metrically, our curve is the non singular curve y = φ∞(x) counted
n times. Indeed, for each integer p, we have

f(x, c0x
ν0 + c1x

ν1 + · · · + cpx
νp) = xν0+ν1+···+νpfp(x, 0),
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so that by Taylor’s expansion theorem, f(x, φ(x)) = 0. This com-
pletes in the formal case the proof of the existence of a fractional
power series such that f(x, y(x)) = 0.

In order to describe all the solutions of the equation f(x, y) = 0,
it is convenient to develop a little more the formalism of the Newton
polygon. Let P and P ′ be two Newton polygons; we can define their
sum P+P ′ as the boundary of the convex hull of the Minkowski sum
of the convex domains in R2

+ bounded by P and P ′ respectively. It
is easy to verify that the following equality holds for f, f ′ ∈ C[[x, y]]

P(ff ′) = P(f) + P(f ′).

Any Newton polygon has a length and an height which are the length
of the horizontal and vertical projections of its finite part, respect-
ively.

We say that a Newton polygon is elementary if it has only one
finite side. If it bounds a finite area, it is then uniquely determined
by its length and height. We use the following notation for such an
elementary Newton polygon.

= {——}hl

l

h
= {——}hl

l

h

We also need a little more algebra, beginning with the following
fundamental theorem:
One says that a holomorphic function f(x1, . . . , xd, y) defined on a
neighborhood of 0 in Cd×C is y-regular (of order n) if f(0, y) has a
zero of finite order n at 0 ∈ {0}×C. Geometrically this means that
if we consider the germ of hypersurface (W, 0) ⊂ Cd × C defined
by f(x1, . . . , xd, y) = 0 and the first projection p : W → Cd, then
for a small enough representative, if W is not empty (i.e., n ≥ 1),
the fiber p−1(0) is the single point 0. In other words, the fiber is
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a finite subset of {0} × C. The general idea of the avatars of the
Weierstrass preparation theorem is that finiteness of the fiber over
one point x in an analytic map implies finiteness of the fibers above
points sufficiently close to x.

Theorem 3.1. (Weierstrass preparation Theorem) If f(x1, . . . , xd, y)
is regular of order n in y, there exist a unique polynomial of the form

P (x1, . . . , xd, y) = yn + a1(x1, . . . , xd)y
n−1 + · · · + an(x1, . . . , xd)

with ai ∈ C{x1, . . . , xd} and a convergent series u(x1, . . . , xd) with
u(0) �= 0, i.e., invertible in C{x1, . . . , xd} such that we have the
equality of convergent series

f(x1, . . . , xd, y) = u(x1, . . . , xd, y)P (x1, . . . , xd, y).

The polynomial P is said to be distinguished in y, or to be a
Weierstrass polynomial.

If we start with any power series f , we have the same result but
in the ring of formal power series.
It can be shown that, given a function f , for almost every choice of
coordinates in Cn ×C, the function f is distinguished with respect
to the last coordinate.

It follows from the Weierstrass preparation theorem that provided
we have chosen coordinates such that f(0, y) �= 0, say f(0, y) =
aqy

q+· · · with aq �= 0, it is equivalent to seek solutions of f(x, y) = 0
and of P (x, y) = 0, where P (x, y) is the Weierstrass polynomial

u−1(x, y)f(x, y) = yq+a1(x)yq−1+· · ·+aq(x) = 0 with ai(x) ∈ C[[x]]

Now from an algebraic point of view, we must consider the field
of fractions C((x)) of the integral domain C[[x]]; the irreducible
polynomial Tm − x ∈ C((x))[T ] defines an algebraic extension of

degree m of C((x)), denoted by C((x
1
m )) which is a Galois extension

with Galois group equal to the group µm of m-th roots of unity in
C. The action of µm is exactly the change in determination of
x

1
m , determined by x

1
m �→ ωx

1
m for ω ∈ µm. A series of the form

y =
∑

aix
i
m such that the greatest common divisor of m and all the

exponents i which effectively appear is 1 gives m different series as
ω runs through µm.
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Suppose now that our function f is an irreducible element of C[[x, y]],
and that the order in y of f(0, y) is n < ∞. Then the construc-

tion described above provides a series y(x
1
m ) with m ≤ n such that

f(x, y(x
1
m )) = 0. In fact m = n since f is irreducible.The product

Πω∈µm(y − y(ωx
1
m ))

is a polynomial Q(x, y) ∈ C[[x]][y] which, by the algorithm of di-
vision of polynomials in C((x))[y], divides P (x, y); the rest of the
division of P by Q is a polynomial of degree < n−1 with n different
roots; it is zero.
We have therefore Q(x, y) = P (x, y) and m = n in this case.

We remark that the expansions y(ωx
1
n ) all have the same initial

exponent l
h
, here l

n
, and by the definition of Q(x, y), only monomials

xiyj with i
�
+ j

h
≥ µ

�
appear, and the monomial xh actually appears.

So we have verified:

Proposition.- The Newton polygon of an irreducible series is ele-
mentary, and of the form { p

n
}, where n is the order of f(0, y).

Now it is known that rings such as k[[x, y]], where k is a field,
or C{x, y} are factorial; each element has a decomposition f =
fa1

1 . . . far
r where fi is irreducible, which means that it cannot be

factored again as a product fi = gh in a non trivial way, that is,
without g or h being an invertible element in k[[x, y]], (= a series
with a non zero constant term).
My aim now is to prove the following

Theorem.- a) Let k be an algebraically closed field of characteristic
zero, and let f ∈ k[[x, y]] be a power series without constant term
such that f(0, y) �= 0. Consider the decomposition f = ufa1

1 . . . far
r

of f into irreducible Weierstrass polynomials fai
i , with a factor u

which is invertible in k[[x, y]]. For each index i, 1 ≤ i ≤ r, there
are power series without constant term xi(t), yi(t) ∈ k[[t]] such that
f(xi(t), yi(t)) ≡ 0; we may choose xi(t) = tmi where mi is the degree
of the Weierstrass polynomial fi, and yi(t) is then uniquely determ-
ined. Moreover if we then write yi(t) = cit

li + . . . with ci ∈ k∗, then
the Newton polygon of f in the coordinates (x, y) is the sum

N (f) =
r∑
1

{ aimi

aili
}.
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Here we have to allow the case where for some i, yi(t) ≡ 0, that is
li = ∞.
b) If k = C and f ∈ C{x, y} is a convergent power series, the series
xi(t) and yi(t) are also convergent.
Remark: if we do not assume f(0, y) �= 0, a similar result holds, but
we may no longer apply Weiertrass’ theorem and we have to allow
expansions of the form x = 0, y = t and the corresponding Newton
polygons appears as summands in N (f).

The geometric interpretation of this result is that if we take any
reduced analytic plane curve f = uf1 . . . fr with fi irreducible, i.e.,
all ai = 1, the curve defined by f = 0 is a sufficiently small neigh-
borhood of the origin is the analytic image of a representative of a
complex-analytic map-germ

r⊔
i=1

(C, 0)i −→ (C2, 0)

which we can explicitely build by using Newton’s method.

Remark 3.2. The Newton polygon depends upon the coordinates.
One usually chooses the coordinates (x, y) in such a way that the
degree of the Weierstrass polynomial is equal to the order of the
equation f(x, y). I leave it as an exercize to show that if one writes
the series f as a sum of homogeneous polynomials

f(x, y) = fn(x, y) + fn+1(x, y) + · · · ,

where fi is homogeneous of degree i, this condition is equivalent to:
fn(0, y) �= 0.

Conversely, given two power series x(t), y(t) ∈ k[[t]] without con-
stant term, one may eliminate t between them to produce an equa-
tion f(x, y) = 0 with the property that f(x(t), y(t) = 0. Indeed,
by using the ”natural” elimination process (see[T1]) we may do this
in such a way that eliminating t beween x(tq), y(tq) produces the
equation f q(x, y), so that we may even represent parametrically a
non-reduced equation.

There are several ways to prove this theorem; one is to prove
the convergence first, either directly by providing bounds for the
coefficient of the series produced by Newton’s method, which works
but is inelegant, or by considering the analytic curve f(tm, y) = 0,
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and proving that it is a ramified analytic covering of the t-axis; it is
also the union of m non singular curves, so each of them is analytic,
and this proves the convergence of the series. (see [L], II.6).

These proofs give no basis for generalizations to higher dimension,
so I chose to present a geometric method of constructing the analytic
map

r⊔
i=1

(C, 0)i −→ (C2, 0).

This method was perfected by Hironaka and is the basis for his
method of resolution in all dimensions over a field of characteristic
zero.

Remark 3.3. In the study of analytic functions of one variable near
one of their zeroes, a basic fact is that given two monomials xa, xb,
one must divide the other in C{x}, C[[x]], or even C[x]. This allows
us to write any series f(x) = xau(x) with u(0) �= 0, in C{x}, and
the local behavior of f is determined by the integer a. It is no longer
true that given two monomials in (x, y), one must divide the other;
the typical example is the pair of monomials yn, xq. In particular,
the ideal of C{x, y} generated by all the monomials appearing in

the expansion f(x, y) =
∑

aijx
iyj is no longer principal. However,

since C{x, y} is a nœtherian ring, this ideal is finitely generated.
If we plot the quadrant Rij = (i, j) + R2

+ for each monomial xiyi

appearing in our series, and observe that the integral points in this
quadrant correspond to the monomials which are multiples of xiyj,
we have a graphic way of representing the generators of the ideal
generated by all the monomials appearing in the series f : Consider
the union of all the Rij for (i, j)/aij �= 0; its boundary is a sort of
staircase. Our generators correspond to the insteps of the staircase.
The convex hull of the union is the Newton polygon.
Note finally that from the viewpoint of considering lines Lν : i+jν =
c as above, and where they meet the staircase, it is the convex hull
which is relevant.
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j

i

(i,j)(i,j)

Remark 3.4. The Newton-Puiseux theorem is strictly a character-
istic zero fact. It implies in particular that if a fractional power
series is a solution of an algebraic equation with coefficients in C[x]
or C{x} or C[[x]], the denominators of the exponents of x appearing
in that power series are bounded. Let k be a field of characteristic
p, and consider the series where the exponents have unbounded de-
nominators:

y =
∞∑
i=1

x
1− 1

pi ;

it is a solution of the algebraic equation

yp − xp−1(1 + y),

as one can check directly. It is an Artin-Schreier equation.

Exercise 3.5. Find where the proof of Newton’s theorem uses char-
acteristic zero.
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4 Puiseux exponents

Let f(x, y) ∈ C{x, y} be such that f(0, y) = ynu(y) with u ∈
C{y}, o(0) �= 0. As we have just seen, it is equivalent to find
solutions y(x) for f and to find roots of the Weierstass polynomial

P (x, y) = yn + a1(x)yn−1 + · · · + an(x)

corresponding to f .
If the element f(x, y) ∈ C{x, y} is irreducible, so is the Weierstrass
polynomial in C{x}[y].
Newton’s theorem tells us that such an irreducible polynomial has
all its roots of the form

y =
∞∑
i=1

aiω
ix

i
n

where ω runs through the n-th roots of unity in C.
This is equivalent to the statement that an analytically irredu-

cible curve as above can be parametrized in the following manner:

x = tn

y =
∑∞

i=1 ait
i

In particular, this shows that the polynomial P determines a Galois
extension of the field of fractions C{{x}} of C{x}, and of the field
of fractions C((x)) of C[[x]], with Galois group µn.
A direct consequence of this is the:

Theorem 4.1. (Newton-Puiseux Theorem). The algebraic closure

of the field C{{x}} (resp. C((x)) ) is the field
⋃

n≥1 C{{x 1
n}} (resp.⋃

n≥1 C((x
1
n )) )
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This result is the algebraic counterpart of the fact that the fun-
damental group of a punctured disk is Z. It can be shown that the
connected coverings of a punctured disk correspond to irreducible
curves as above, and that in this correspondence, the Galois group
of the covering, which is of the form Z/kZ since the fundamental
group of the disk is Z, corresponds to the Galois group of the ex-
tension of the field C{{x}} or of the field C((x)) defined as above
by the curve.

Let
f(x, y) = 0 with f(x, y) ∈ C{x, y}

be an equation for a branch (X, 0) ⊂ (C2, 0), which means that the
series f is an irreducible element of C{x, y}.

As we saw, we may assume thanks to the Weierstrass preparation
theorem that f is of the form

f(x, y) = yn + a1(x)yn−1 + · · · + an(x)

where n is the intersection multiplicity at 0 of the branch C with
the axis x = 0.

As we saw, after possibly a change of coordinates to achieve that
x = 0 is transversal to it at 0,the branch X can be parametrized
near 0 as follows

x(t) = tn

y(t) = amtm + am+1t
m+1 + · · · + ajt

j + · · · with m ≥ n

Let us now consider the following grouping of the terms of the series
y(t): set β0 = n and let β1 be the smallest exponent appearing
in y(t) which is not divisible by β0. If no such exponent exists, it
means that y is a power series in x, so that our branch is analytically
isomorphic to C, hence non singular. Let us suppose that this is not
the case, and set e1 = (n, β1), the greatest common divisor of these
two integers. Now define β2 as the smallest exponent appearing in
y(t) which is not divisible by e1. Define e2 = (e1, β2); we have e2 <
e1, and we continue in this manner. Having defined ei = (ei−1, βi),
we define βi+1 as the smallest exponent appearing in y(t) which is
not divisible by ei. Since the sequence of integers

n > e1 > e2 > · · · > ei > · · ·



Bernard Teissier, CIMPA-Lebanese Summer School, 2004 21

is strictly decreasing, there is an integer g such that eg = 1. At this
point, we have structured our parametric representation as follows:

x(t) = tn

y(t) = antn + a2nt2n + · · · + akntkn + aβ1tβ1 + aβ1+e1tβ1+e1 + · · · + aβ1+k1e1tβ1+k1e1

+aβ2tβ2 + aβ2+e2tβ2+e2 + · · · + aβq tβq + aβq+eq−1tβq+eq−1 + · · ·
+aβg tβg + aβg+1t

βg+1 + · · ·

where by construction the coefficients of the tβi ; i ≥ 1 are not zero.
Let us define integers ni and mi by the equalities

ei−1 = niei, βi = miei for 1 ≤ i ≤ g

and note that we may rewrite the expansion of y into powers of t as
an expansion of y into fractional powers of x as follows:

y = anx + a2nx2 + · · · + aknxk + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · · + aβ1+k1e1x

m1+k1
n1

+aβ2x
m2

n1n2 + aβ2+e2x
m2+1
n1n2 + · · · + aβq x

mq
n1n2···nq + aβq+eq−1x

mq+1
n1n2···nq + · · ·

+aβg x
mg

n1n2···ng + aβg+1x
mg+1

n1n2···ng + · · ·

The set of pairs of coprime integers (mi, ni) are sometimes also called
the Puiseux characteristic pairs. Their datum is obviously equival-
ent to that of the characteristic exponents βi. The sequence of
integers B(X) = (β0, β1, . . . , βg), where β0 = n, may be character-
ized algebraically as follows: let µn denote the group of n-th roots
of unity. For ω ∈ µn let us compute the order in t of the series

y(t) − y(ωt). If we write ω = e
2πik

n , we have

y(ωt) = anω
ntn + · · · + aβ1ω

β1tβ1 + · · ·
and we see that multiplying t by ω does not affect the terms in tjn.
The term in tβ1 is unchanged if and only if ωβ1 = 1, that is kβ1

n
is an

integer, i.e., kβ1 = ln or km1 = ln1 with the notations introduced
above. Since n1 and m1 are coprime, this means that k is a multiple
of n1, which is equivalent to saying that ω belongs to the subgroup
µ n

n1
of µn consisting of n

n1
= n2 · · ·ng-th roots of unity. If this is the

case, then the coefficients of all the terms of the form tβ1+je1 in the
Puiseux expansion are also unchanged when t is multiplied by ω,
and the first term which may change is aβ2t

β2 . An argument similar
to the previous one shows that if ω ∈ µ n

n1
, then ωβ2 = 1 if and only

if ω ∈ µ n
n1n2

, and so on.

Finally, if we denote by v the order in t of an element of C{t},
we see that

v(y(t) − y(ωt)) = βi if and only if ω ∈ µ n
n1···ni−1

\ µ n
n1···ni

for 1 ≤ i ≤ g
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This provides an algebraic characterization, and a sequence of cyclic
subextensions

C{x} ⊂ C{x 1
n1 } ⊂ C{x 1

n1n2 } ⊂ · · · ⊂ C{x 1
n1n2···ni } ⊂ · · · ⊂ C{x 1

n }

corresponding to the nested subgroups µ n
n1···ni

of th group µn.

This shows that the sequence (β0, β1, . . . βg) depends only upon
the ring inclusion C{x} ⊂ OX,0.

We shall see later in a different way that this sequence does not
depend upon the choice of coordinates (x, y) in which we write the
Puiseux expansion as long as the curve x = 0 is transversal to X.If
this is not the case, one still obtains other characteristic exponents,
which are related to the transversal ones by the inversion formula
which I leave as an exercise (or see [PP] and [GP]).
For example consider the curve with equation y3 − x2 = 0.
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5 From parametrizations to equations

We have just seen an algorithm to produce local parametrizations of
the branches of a complex analytic plane curve from its equation. To
go in the other direction is to eliminate for each parametrized branch
the variable t between the equations x−x(t) = 0, y− y(t) = 0, and
then make the product of the equations obtained.
Elimination is in general computationally arduous. Is this special
case, we have a direct method as follows: write our parametrization
in the form x = tn, y = ξ(t) =

∑
i ait

i. The product

Πω∈µn(y − ξ(ωt))

is invariant under the action of µn by t �→ ωt; it is a series f(tn, y)) =
f(x, y) which has the property that f(x, y) = 0 is an equation for
our curve. However this method does not work for curves in 3-
dimensional space, or in positive characteristic. Here is my favourite
method (see [T5]) to compute images, explained in this special case.

5.1 Fitting ideals

Let M be a finitely generated module over a commutative nœtherian
ring A; then we have a presentation, which is an exact sequence of
A-modules

Aq → Ap → M → 0

The map A-linear map Aq → Ap is represented, in the canonical
basis, by a matrix with entries in A. For each integer j, consider
the ideal Fj(M) of A generated by the (p − j) × (p − j) minors
of that matrix. Note that if j ≥ p, then Fj(M) = A (the empty
determinant is equal to 1), and if p − j > q, then Fj(M) = 0 (the
ideal generated by the empty set is (0)).
It is not very difficult to check that Fj(M) depends only on the
A-module M , and not on the choice of presentation. Moreover, if
A → B is a morphism of commutative rings, the sequence

Bq → Bp → M ⊗A B → 0

is a presentation of the B-module B ⊗A M , with the same matrix;
therefore Fj(M ⊗A B) = Fj(M).B. One says that The formation of
Fitting ideals commutes with base change.

The most important feature of Fitting ideals, is as follows:
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Proposition 5.1. A maximal ideal m of A contains Fj(M) if and
only if

dimA/mM ⊗A A/m > j.

Proof. Tensoring with A/m the presentation of M gives for each
maximal ideal of A an exact sequence of A/m-vector spaces

(A/m)q → (A/m)p → M ⊗A A/m → 0.

the dimension of the cokernel is > j if and only if the rank of the
matrix describing the map (A/m)q → (A/m)p is < p − j, which
means that all the p− j minors are 0 modulo m, which means that
Fj(M) ⊂ m. �

Let me explain what this has to do with elimination: suppose
that we have a branch parametrized by x(t), y(t). This gives a map
C{x, y} → C{t}. Observe that this map of C-algebras gives C{t}
the structure of a finitely generated C{x, y}-module. Indeed, since
x �→ tn say, it is even a finitely generated C{x}-module, generated
by (1, t, . . . , tn−1).
We can therefore write a presentation of C{t} as C{x, y}-module:

C{x, y}q → C{x, y}p → C{t} → 0.

Now it is a theorem of commutative algebra that since C{x, y} is a 2-
dimensional regular local ring, for every finitely generated C{x, y}-
module M , if we begin to write a free resolution by writing M as
a quotient of a finitely generated free C{x, y}-module, C{x, y}p →
M , then writing the kernel of that map as a quotient of a finitely
generated free C{x, y}-module, and so on, this has to stop after 2
steps. This means that the kernel above is already free, so that in
fact, in our case, we have an exact sequence

0 → C{x, y}q φ→ C{x, y}p → C{t} → 0.

This immediately implies that we have q ≤ p. On the other hand,
the C{x, y}-module C{t} must be a torsion module, which means
that it must be annihilated by some element of C{x, y}; intuitively
this means that the image of our parametrization has an equation:
an element f ∈ C{x, y} such that fC{t} = f(x(t), y(t)) = 0. If this
was not the case, there would be an ideal T ⊂ C{t} consisting of
the elements which are annihilated by multiplication by some non
zero element of C{x, y}. If we assume that T �= C{x, y} and remark
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that by construction our map of algebras C{x, y} → C{t} induces
an injection C{x, y} ⊂ C{t}/T , then either T �= 0 and we have
an injection of C{x, y} in a finite-dimensional vector space over C,
which is absurd, or T = 0 and we have an injection C{x, y} ⊂ C{t},
but since C{t} is a finitely generated C{x, y}-module, the two rings
should have the same dimension, by the third axiom of dimension
theory (see [Ei], 8.1), which is absurd. So C{t} is a torsion C{x, y}-
module, which implies that the map induced by φ after tensorization
of our exact sequence by the field of fractions C{{x, y}} of C{x, y}
is surjective, hence q ≥ p and finally q = p.

Now we know that q must be equal to p, and that we have an exact
sequence

0 → C{x, y}p φ−→ C{x, y}p → C{t} → 0.

Proposition 5.2. The 0-th Fitting ideal of the C{x, y}-module C{t}
is principal and generated by the determinant of the matrix encoding
the homomorphism φ in the canonical basis.

Example 5.3. consider the parametrization x = t2, y = t3; it makes
C{t} into a C{x, y}-module generated by (e0 = 1, e1 = t). The
relations are −ye0 + xe1, x

2e0 − ye1. In this case, p = 2 and the
matrix φ has entries (−y x

x2 −y

)

Exercise 5.4. : 1) For any integer k, consider the curve paramet-
rized by x = t2k, y = t3k. Show that the Fitting ideal is generated
by (y2 − x3)k.
2) Consider the curve in C3 parametrized by x = t3, y = t4, z = 0.
In this case, the C{x, y, z}-module C{t} is generated by 1, t, t2. Of
course we can no longer hope to have q = p in its presentation, but
one can compute a presentation ( see [T5], 3.5.2)

C{x, y, z}6 → C{x, y, z}3 → C{t} → 0.

and find that the Fitting ideal

F0(C{t}) = (y3 − x4, z3, zx2, zy2, z2y, z2x)C{x, y, z}
It defines the plane curve y3 − x4 = 0, z = 0, plus a 0-dimensional
(embedded) component sticking out of the z = 0 plane.
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Now we must prove that the generator of the 0-th Fitting ideal is
an acceptable equation of the image of our parametrization.

Given our map π : C{x, y} → C{t} corresponding to the curve
parametrization, we could say that the equation of the parametrized
curve is given simply by the kernel K of this map of algebras. We
are going to prove that the kernel K and the Fitting ideal have
the same radical, and so define the same underlying set, but they
are not equal in general, and the formation of the kernel does not
commute with base extension while the formation of the Fitting
ideal does. First, we must check that, with the notations of the
definition of Fitting ideals, we have F0(M).M = 0, which means
that the Fitting ideal is contained in the kernel. In our case, where
q = p, it follows directly from Cramer’s rule if you interpret the
statement as: detφ.C{x, y}p ∈ Image(φ). Note that this is true in
the general situation of a finitely generated A-module; the Fitting
ideal is contained in the annihilator of M . Secondly we must prove
that K is contained in the radical of F0(M). Take a non zero element
h ∈ K; we have hM = 0, so that applying the rule of base extension
to the map A → A[h−1], with A = C{x, y} in this case, we get
F0(M)A[h−1] = A[h−1], and since F0(M) is finitely generated, this
implies that there exists an integer s such that hs ∈ F0(M), and the
result.
So we have proved the inclusions

F0(M) ⊆ K ⊆
√

F0(M).

5.2 A proof of Bézout’s theorem (after [T5], §1)

We begin with a Fitting definition of the resultant of two polyno-
mials in one variable. Let A be a commutative ring and

P = p0 + p1X + · · · + pnX
n

Q = q0 + q1X + · · · + qmXm

be two polynomials in A[X] Let us assume that pn and qm are in-
vertible in A. The natural ring in which to treat the resultant is

A = Z[p0, . . . , pn, q0, . . . , qm, p−1
n , q−1

m ],

considering the two polynomials

P = p0 + p1X + · · · + pnX
n

Q = q0 + q1X + · · · + qmXm
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now with coefficients in A. The difference is that now the pi, qj have
become indeterminates.

Given any ring A and two polynomials P, Q as above with coeffi-
cients in A and highest coefficients invertible in A, there is a unique
homomorphism ev : A → A such that ev(P) = P, ev(Q) = Q; it
sends the indeterminate pi (resp. qj) to the coefficient of X i in P
(resp. Xj in Q).
The A-module A[X]/P is a free A-module of rank n, and multi-
plication by Q (which is injective since the pi, qj are indeterminates,
gives us an exact sequence

0 → A[X]/P φ→ A[X]/P → A[X]/(P ,Q) → 0.

This allows us to compute the 0-th Fitting ideal of the A-module
A[X]/(P ,Q) as the determinant of the matrix of φ.

Definition 5.5. A universal resultant R(P ,Q) of the universal
polynomials P and Q is a generator with coprime integer coeffi-
cients of the 0th Fitting ideal of the A-module A[X]/(P ,Q).

Given a ring A and two polynomials as above, the resultant of P
and Q is the image ev(R(P ,Q) ∈ A. It may be the zero element.

Note that the ring A has a grading given by degpi = n− i, degqj =
m − j. If we give X the degree 1, the polynomials P and Q are
homogeneous of degree n and m respectively for the corresponding
grading of A[X].

In order to deal with graded free modules, it is convenient to
introduce the following notation: If A is a graded ring, for any
integer e, denote by A(e) the free graded A-module of rank one
consisting of the ring A where the degree of an element of degree
i in A is of degree i + e in A(e). Any free graded A-module is a
sum of A(ei). The proof of Bézout’s theorem relies on the Fitting
definition of the resultant and the following two lemmas:

Lemma 5.6. Let A be a graded ring; for any homogeneous homo-
morphism of degree zero between free graded A-modules

Ψ:

p⊕
i=1

A(ei) →
p⊕

j=1

A(fj),
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setting M = cokerΨ, the Fitting ideals Fk(M) are homogeneous and
moreover

degF0(M) = deg(detΨ) =

p∑
i=1

ei −
p∑

j=1

fj.

Proof. To say that the morphism is of degree zero means that it
sends an homogeneous element to an homogeneous element of the
same degree. This implies that the entries of the matrix of Ψ satisfy

degΨij = ei − fj,

and this suffices to make the minors homogeneous; let us check it
for the determinant.

Each term in its expansion is a product ψi1j1 . . . ψipjp where each
i and j appear exactly once. It is homogeneous of degree

∑
eik −

∑
fjk

=

p∑
i=1

ei −
q∑

j=1

fj.

�
We can now compute the degree of R(P ,Q) ∈ A. If we use the

presentation given above, we find that the homomorphism φ is of
degree zero if we give each X i in the first copy of A[X]/P the degree
i + m and keep Xj of degree j in the second.

Thus we find

Lemma 5.7. We have the equality

degR(P ,Q) =
n∑

i=1

(m + i) −
n∑

j=1

j = mn.

Remark 5.8. 1) There are other presentations for the A-module
A[X]/(P ,Q). For example

0 → A[X]/(Xn) ⊕A[X]/(Xm) → A[X]/(P.Q) → A[X]/(P,Q) → 0

(a, b) �→ aQ + bP
or

0 → A[X]/(P.Q) → A[X]/(Xn) ⊕A[X]/(Xm) → A[X]/(P,Q) → 0

a �→ (a, a) (a, b) �→ (a − b)

The first of these two gives the usual Sylvester determinant, of size
m+n. The second follows from from the chinese remainder theorem.
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2) The total degree of a polynomial defining an affine plane curve is
equal to the degree of the homogeneous polynomial in three variables
defining the projective plane curve defining the closure of the affine
curve in projective space; it is the degree of the curve.

The other lemma is of the same nature and shows that the Fitting
ideal locally computes the image of an intersection of two curve with
a multiplicity equal to the intersection multiplicity of the two curves.

Lemma 5.9. Let R be a discrete valuation ring containing a rep-
resentative of its residue field k, and let v be its valuation. Let

Ψ: Rp → Rp

be an homomorphism of free R-modules whose cokernel M is of finite
length, i.e., a finite-dimensional vector space over k. Then we have
the equality

v(detΨ) = dimkM.

Proof. A discrete valuation ring is a principal ideal domain. By the
main theorem on principal ideal domains we can find bases for both
Rp such that the matrix representing Ψ is diagonal, with entries
a1, . . . , ap on the diagonal, say. Then clearly v(detΨ) =

∑p
i=1 v(ai)

and dimkM =
∑p

i=1 dimkR/aiR. Thus it suffices to consider the
case where p = 1. Then we have a = uπs where π is a generator
of the maximal ideal of R, and u is invertible in R. Then v(a) = s
while R/aR is the k-vector space freely generated by the images of
1, π . . . , πs−1. �

This applies to R = C{t} or R = C[t](t), the valuation being the
t-adic order.

Now let us begin the proof of Bézout’s theorem.
Let A be the graded ring C[x1, x2] and let P, Q ∈ C[x0, x1, x2] be
two homogeneous polynomials defining the curves C and D in the
complex projective plane, of respective degrees m and n. We can
write

P =
∑n

i=1 pi(x1, x2)x
i
0 degpi = n − i

Q =
∑m

j=1 qj(x1, x2)x
j
0 degqj = m − j.

After a change of coordinates, we may assume that the constants
pn and qm are non zero, hence invertible in A. Geometrically this
means that the point with homogeneous coordinates (1, 0, 0) does
not lie on either of the curves C and D.
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As we saw above, there exists a homogeneous morphism of degree
zero ev : A → A such that ev(P) = P, ev(Q) = Q, and if the
resultant R(P, Q) is not zero, it is of degree mn by Lemma 5.7. I
leave it as an exercise to check, using the factoriality of polynomial
rings over C, that R(P, Q) = 0 if and only if C and D have a
common component.

Let us now consider the projection π : P2(C) \ (1, 0, 0) → P1(C)
given by (x0, x1, x2) �→ (x1, x2). It induces a well defined projection
on C and on D since meither of them contains (1, 0, 0). For each
point x ∈ P1(C) there are finitely many points y ∈ C ∩ D such
that π(y) = x. By the definition of the resultant and the fact
that the formation of the Fitting ideal commutes in particular with
localization, we have the following equality:

R(P, Q)OP1,x = F0

( ⊕
π(y)=x

OP2,y/(P, Q)OP2,y

)
.

It then follows from lemma 5.9 that we have the equality

vx(R(P, Q)) =
∑

π(y)=x

dimCOP2,y/(P, Q)OP2,y.

Since, if we assume that C and D have no common component,
the resultant R(P, Q) is a homogeneous polynomial of degree mn in
(x1, x2), it follows from the fundamental theorem of algebra applied
to the homogeneous polynomial R that

mn =
∑
x∈P1

vx(R(P, Q)) =
∑

y∈C∩D

dimCOP2,y/(P, Q)OP2,y.

This is Bézout’s theorem if we agree that the intersection multipli-
city of C and D at y is equal to

(C, D)y = dimCOP2,y/(P, Q)OP2,y.

We shall see later that there are many reasons to do that.
Finally we get

Theorem 5.10. (Bézout) For closed algebraic curves in P2(C)
without common component, we have

degC.degD =
∑

y∈C∩D

(C, D)y.
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6 Resolution of plane curves

Let us consider the projective space Pn(C) as the space of lines
through the origin in Cn+1. If we choose coordinates x0, . . . , xn

on Cn+1 the projective space is covered by affine charts Ui, the
points of which correspond to the lines contained in the open set
xi �= 0. It is customary to take homogeneous coordinates (u0 :
· · · : un) on the projective space, corresponding to the lines given
parametrically by xi = uit, or by the equations xiuj − xjui = 0,
where it is enough to take the n equations for which j = i+1 and i <
n. The term ”homogeneous coordinates ” means that for any λ ∈ k∗
the coordinates (u0 : · · · : un) and (λu0 : · · · : λun) define the same
point.

Now consider the subvariety Z of the product space Cn+1 × Pn

defined by these n equations. It is a nonsingular algebraic variety
of dimension n + 1 and the first projection induces an algebraic
morphism B0 : Z → Cn+1.

The fiber B−1
0 (0) is the entire projective space Pn(k) since when

all xi are zero, all the equations between the uj vanish,while the
fiber B−1

0 (x) for a point x �= 0 consists of a unique point because
then the coordinates xi determine uniquely the ratios of the uj which
means a point of Pn(k). Blowing up a point ”replaces the observer
at the point by what he sees”, because the observer essentially sees
a projective space (in fact a sphere, if we think of a real observer,
but this is just a metaphor).

A basic properties of blowing up is that it separates lines: in
fact consider the algebraic map δ : Cn+1 \ {0} → Pn which to a
point outside the origin associates the line joining the origin to this
point. Of course we cannot extend the definition of this map through
the origin; The graph of δ however, is an algebraic subvariety of
(Cn+1 \ {0}) × Pn, and we may take the closure (for the strong
topology if k = C, or for the Zariski topology) of this graph. It is a
good exercise to check that this closure coincides with Z as defined
above. A point of B−1

0 (0) is precisely a direction of line, so the map
δ ◦B0 can be defined there as the map which to this point associates
the direction: in Z we have separated all the lines meeting at the
origin.

Let us consider in more detail the case n = 1. Then Z is a
surface covered by two affine charts corresponding to the charts of
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the projective space: for convenience of notation set u0 = u, u1 =
v, x0 = x, x1 = y so that Z is defined by vx − uy = 0. On the
open set U of Z where u �= 0 we may taxe as coordinates x1 =
x, y1 = v

u
and then the map induced by B0 on U is described in

these coordinates by
x ◦ B0 = x1

y ◦ B0 = x1y1

and similarly on the open set V defined by v �= 0, we take as co-
ordinates x1 = u

v
, y1 = y and the map B0 is described by

x ◦ B0 = x1y1

y ◦ B0 = y1

Remark that in the first chart the projective space B−1
0 (0) is defined

by x1 = 0 and in the second by y1 = 0 (remember that they are
coordinates on two distinct charts, and on the intersection of the
two charts they define the same subspace). It is a crucial prop-
erty of blowing up that it transforms the blown-up subspace (here
the origin) into a subspace defined locally by one equation (called
a divisor); it is a good exercise to check that this is the case in
any dimension. The space B−1

0 (0) is called the exceptionnal divisor.
We are now able to study the effect on a function f(x, y) (formal
or convergent) of its composition with the map B0. Consider the
expansion of f as a sum of homogeneous polynomials

f(x, y) = fm(x, y) + fm+1(x, y) + · · · + fm+k(x, y) + · · · ,

where fj is homogeneous of degree j. In the chart U , we may write

f ◦ B0 = f(x1, x1y1) =
xm

1

(
fm(1, y1) + x1fm+1(1, y1) + · · · + xk

1fm+k(1, y1) + · · · )
and there is a similar expansion in the other chart. Now if we look
at the zero set of f ◦ B0 we see that in each chart it contains the
exceptionnal divisor counted m times. If we remove this exception-
nal divisor as many times as possible, i.e., divide f ◦ B0 by xm

1 in
the first chart and by ym

1 in the second, we obtain the equation of a
curve on the surface Z, either formal or defined near B−1

0 (0), which
no longer contains the exceptionnal divisor. This curve is called the
strict transform of the original curve. We also say that the equation
obtained in this way is the strict transform of f). In the first chart
it is x−m

1 f(x1, x1y1), and in the second y−m
1 f(x1y1, y1).
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By construction, the strict transform meets the exceptionnal di-
visor only in finitely many points; let us determine them: in the
first chart they are given by fm(1, y1) = 0 and in the second, by
fm(1, y1) = 0. By construction of the projective space the points
we seek are therefore the points in the projective line defined by the
homogeneous equation fm(u, v) = 0. The homogeneous polynomial
fm of lowest degree appearing in f(x, y) is called the initial form
and fm(x, y) = 0 is a union of m lines (counted with multiplicity)
called the tangent cone of f at the point 0. So we see that the strict
transform of f meets the exceptionnal divisor at the points in this
projective space corresponding to the lines which are in the tangent
cone at 0 of our curve.

In particular, if our curve has two components with tangent cones
meeting only at the origin, their strict transforms are disjoint. Con-
sider for example f(x, y) = (y2 − x3)(y3 − x2).

In order to analyze in more detail what goes on, we have to
assume that k is algebraically closed, which we will do from now on
, and introduce the concept of intersection number of two curves
at a point. The simplest definition (but not the most useful for
computations) is the following:
Let f, h ∈ k[[x, y]] be series without constant term and without
common irreducible factor. Let (f, h) denote the ideal generated by
f and h in k[[x, y]]. Then the dimension

dimk[[x, y]]/(f, h)

is finite and is by definition the intersection number of the two curves
at 0. If k = C and f, h are in C{x, y}, then the dimension above is
also

dimC{x, y}/(f, h)

where now (f, h) is the ideal generated in C{x, y}.
To prove the finiteness we first remark that it is sufficient to

prove it after replacing k by its algebraic closure and then we may
use the Hilbert nullstellensatz which tells us that since f = 0, h = 0
meet only at the origin, the ideal (f, h) contains a power of the
maximal ideal m = (x, y) say mN . This implies the finiteness since
k[[x, y]]/(f, h) is then a quotient vector space of k[[x, y]]/mN and
also shows that we may without changing the ideal assume that
f, h are polynomials of degree < N , so that for example if f, h
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are convergent power series the vector spaces C{x, y}/(f, h) and
C[[x, y]]/(f, h) are equal.

The definition of intersection multiplicity at the point 0, of the
two curves f = 0, h = 0, say in the analytic case is then(

f, h
)
0

= dimCC{x, y}/(f, h).

Note that we use large parentheses for the intersection number, small
ones for the ideal generated by f, g.

In any case this definition of the intersection multiplicity has the
advantage to suggest the following intuitive interpretation :
Consider a 1-parameter deformation of one of the two functions, say
f + ε; it is possible to show that if f, h converge in a nice neighbor-
hood U of 0, for small enough ε, then the two curves h = 0, f +ε = 0
meet in U transversally at points which are non-singular on each.
Moreover, these points tend to 0 as ε tends to 0, and the number of
these points is dimC{x, y}/(f, h). So this number may be thought of
as the number of ordinary intersections (i.e., transverse intersection
of non-singular curves) which are concentrated at 0.

There is another way to present this intersection number, which
is very useful for computations:
Suppose that h(x, y) = uhe1

1 . . . her
r with u(0) �= 0. For each i, 1 ≤

i ≤ r, let us parametrize the curve hi(x, y) = 0 by x(ti), y(ti). Now
substitute these power series in f(x, y); we get a series in ti, the
order of which we denote by Ii. Then we have

Ii = dimC{x, y}/(f, hi) ,

and (
f, h

)
0

=
r∑
1

eiIi.

Remark: Given a germ of curve f = 0, where f = fm+fm+2+· · · ,
its multiplicity at the origin may be defined as the smallest degree
m of a monomial appearing in the series f . A better definition is
to say that the multiplicity is the intersection number

(
f, �

)
0

for a
sufficiently general linear form �. In fact, we have

m ≤ (
f, �

)
0

with equality if and only if the line �(x, y) = 0 is not in the tangent
cone defined by fm(x, y) = 0.
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Indeed, we may parametrize the line � = 0 by x = αt, y = βt;
then we substitute in f :

f(αt, βt) = fm(α, β)tm + fm+1(α, β)tm+1 + · · ·
is of order ≥ m, and of order m exactly if and only if fm(α, β) �= 0.

It is convenient, given a curve f(x, y) and a point z in the plane,
to define the multiplicity of f at z as follows: take coordinates
(x′, y, ) centered at z, which means that they vanish at z; if z = (a, b)
we may take x′ = x−a, y′ = y− b. Then expand f in those coordin-
ates (of course we assume that z is in the domain of convergence of
f).

We get f ′(x′, y′) = f(a + x′, b + y′). Then we compute the lowest
degree terms appearing in the expansion of f ′ and denote this by
mz(f) or, if X is the curve f(x, y) = 0, by mz(X). We see that
mz(f) = 0 unless f(z) = 0, and that if � is a line through z, we have
mz(X) ≤ (

X, �
)

z
with equality except if � is in the tangent cone of

X at z.
Let us apply this, in our blowing up as described above, to the

line x1 = 0 (the exceptionnal divisor) and the strict transform
f1(x1, y1) = 0, at a point x′ with coordinates x1 = 0, y1 = t1) where
fm(1, t1) = 0 i.e., a point of intersection of the strict transform with
the exceptionnal divisor. We have

f1 = fm(1, y1) + x1fm+1(1, y1) + · · ·
and if we denote by ex′ the multiplicity of t1 as a root of the poly-
nomial fm(1, Y ), it follows from what we saw above that we have

ex′ ≥ mx′(f1)

with equality unless the curve f1(x1, y1) = 0 is tangent to the ex-
ceptionnal divisor at the point x′, in the sense that the tangent at
x′ to the exceptionnal divisor is in the tangent cone of f1 = 0 at
the point x′. Since the multiplicity of f1 is zero at points where
fm(1, y1) does not vanish, we see that if we look at all the points x′

in the blown up surface Z which are mapped to our origin by the
projection Z → C2, which we denote by x′ → 0, we have∑

x′→0

mx′(f1) ≤
∑
x′→0

ex′ = m ,

so that in particular, if there is a point x′ of the strict transform X ′

of X which is mapped to 0 and is of multiplicity m on f1 = 0, then
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it is the only point of X ′ mapped to 0 and X ′ is transversal to the
exceptionnal divisor at x′. This fact and its generalizations play a
crucial role in Hironaka’s proof of the resolution of singularities.

In order to show that the situation which we have just described
cannot persist indefinitely in a sequence of blowing ups, we have
to use the intersection number in another manner, according to
Hironaka:

Given a germ of a plane curve (X, x) with r branches (Xi, x)1≤i≤r

and a nonsingular curve W through the point x, define the contact
exponent of W with X at x as follows:

δx(W, X) = minr
i=1

((
Xi, W

)
x

mx(Xi)

)

and the contact exponent of X at x as follows1

δx(X) = maxW δx(W, X),

where W runs through the set of germs at x of non-singular curves.

Lemma.-Let f(x, y) = 0 be an equation for X. If the coordinates
(x, y) are chosen in such a way that x = 0 is not tangent to X at
x and W is defined by y = 0, the rational number δx(W, X) is the
inclination of the first side of the Newton polygon of f(x, y).

By definition of δx(W, X) is enough to prove that for an irre-
ducible f , the inclination of the only side of it Newton polygon is(

X,W
)

x

mx(X)
, but if we parametrize X by x = tm, y = tq + · · · , we

find that the transversality condition implies m ≤ q, and we have(
X, W

)
x

= q; the result follows.

Lemma.- Assume that W is the curve y = 0 and that f(x, y) is in
Weierstrass form, i.e.,

f(x, y) = yn + a1(x)yn−1 + · · · + an(x) ai(x) ∈ C{x},
then the inclination of the first side of its Newton polygon is

δx(W, X) = min1≤i≤n−1
ν0(ai)

i
.

1This δx(X) is not related to the δ invariant of a singularity which measures the diminution
of genus due to the presence of the singularity, and which is denoted in the same way. These
are the classical notations, however.
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Here as usual ν0(a(x)) denotes the order of vanishing at the origin
of the series a(x).

Indeed, the point (0, n) is a vertex of the first side of the New-
ton polygon, and the lemma is just the observation that if we write
ai(x) = αix

ci + · · · , the other vertices of the Newton polygon are
among the points (ci, n − i), which follows directly from the defini-
tion.

A nonsingular curve W such that δx(W, X) = δx(X) is said to
have maximal contact at x. non singular curves with maximal con-
tact are the nonsingular curves which it is hardest to separate from
X by a succession of blowing ups (in the sense of separating strict
transforms), and so when they eventually separate, something nice
should happen; indeed once they separate, there is no point of mul-
tiplicity mx(X) in the iterated strict transform mapping to x. As
one says, ”the multiplicity has dropped”. Hironaka’s approach to
resolution uses the existence of varieties with maximal contact to
build an induction on the dimension.

The next step is to prove the existence of curves with maximal
contact.

Assume that a non singular curve W defined by y = 0 does not
have maximal contact with X at x. We way assume that the curve
x = 0 is transversal to f(x, y) = 0, which means that f(0, y) =
a0,mym + · · · , where m is the multiplicity of f at 0. By a change of

variable y = (a0,m)
1
m y′, which does not change the contacts, we may

assume that a0,m = 1. To say that δx(W, X) < δx(X) means that
there is a series A(x) such that the contact of the curve f(x, y) = 0
with y − A(x) = 0 is greater than its contact with y = 0. By
a change of the coordinate x which does not affect the contacts,
we may assume that A(x) = ξxd for some integer d and ξ ∈ C∗.
Let us now compute the power series expansion in the coordinates
x′ = x, y′ = y − A(x);

f ′(x, y′) =
∑

i
δ
+j≥m

ai,jx
i(y′ + ξxd)j =

∑
k
δ′ +�≥m

a′
k,�x

ky′�.

By expanding the powers of y′+ξxd we get, for each (i, j), and k ≤ j
the inequality i+kd

δ
+ j − k ≥ m but we know that i

δ
+ j ≥ m. From

this follows the inequality d ≥ δ.
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Isolating the terms which lie on the first side of the Newton polygon,
we get:

(∗)
∑

i
δ
+j=m

ai,jx
iyj +

∑
i
δ
+j>m

ai,jx
iyj =

∑
k
δ′ +�≥m

a′
k,�x

ky′�,

and the slope of the first side of the Newton polygon of the right-
hand side is δ′ > δ. Let us first assume that δ = 1. Remark that all
the terms xky′� with k

δ′ +� ≥ m except y′m are in the ideal (x, y′)m+1.
Therefore we must have the equality∑

i
δ
+j=m

ai,jx
iyj = y′m mod.(x, y)m+1

so that the left hand side is the m-th power of y− ξxd. This implies
that d = 1 = δ since the left hand side is homogeneous.

If δ > 1 we follow the same method. Since we know that d ≥ δ, it
is easy to check that the ideal of k[[x, y]] generated by the monomials
xky′� , k

δ′ +� ≥ m , k �= 0 is contained in the ideal I generated by the

monomials xiyj , i
δ
+ j > m. Looking at the equation (∗) modulo I

gives us ∑
i
δ
+j=m

ai,jx
iyj = y′m mod.I

which again by homogeneity shows that d = δ and the sum on the
left hand side is (y − ξxd)m.

Note that this argument also works if δx(X) = ∞. So there are
two possibilities:

1) We have δx(W, X) < δx(X); in this case the sum of the terms of
f(x, y) lying on the first side of the Newton polygon is of the form
(y − ξxd)m.
2) The sum of the terms of f(x, y) lying on the first side of the
Newton polygon is not of the form (y − ξxd)m.
In the first case, as we have seen, d = δx(W, X). We make the
change of variables x′ = x; y′ = y − ξxd and in the new coordinates
x′, y′, if W ′ is the curve y′ = 0, we have δx(W

′, X) > δx(W, X). This
follows easily from the computation we have just made; an effect of
the change of variables is that all the terms lying on the first side of
the Newton polygon, of inclination d, are transformed into the single
term monomial y′m. So the inclination of the new Newton polygon
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has to be > d; but we know this inclination to be δx(W
′, X). If we

have not reached δx(X), we continue the same procedure, and after
possibly infinitely many steps, i.e., after a change of variables of the
form

x′ = x ; y′ = y − ξ1x
d1 − ξ2x

d2 − · · · − ξrx
dr − · · ·

we reach the stage where the sum of terms on the first side of the
Newton polygon is not a m − th power, so δx(Ws, X) = δx(X),
with s possibly infinite. Since the denominators of the δx(W, X)’s
are bounded, the series is infinite only in the case where δx(X) =
∞. At least formally this series converges, since we have d1 >
d2 > · · · > dr > . . . , but we can omit the proof of convergence
if we work in C{x, y} since the equality δx(X) = ∞ means that
in some coordinates f(x, y) is of the form u(x, y)ym where u is an
invertible element in k[[x, y]]; indeed for any other case, we see from
the definition that δx(X) < ∞. But the Weierstrass preparation
theorem tells us that if such a presentation exists with formal power
series, it also exists with convergent power series, so that the series
defining our final coordinates converges.

So in all cases, we can find a nonsingular curve W which has
maximal contact with X at x, i.e., such that δx(W, X) = δx(X).
Remark that all the discussion above is valid on a germ of a non

singular surface, since it is analytically isomorphic to the plane.
The definition of the blowing up is independant of the choice of
coordinates, and makes sense on any nonsingular surface.

The next step is to study the behavior of the contact under blow-
ing up of the origin. I will leave the proof of this as an exercise, since
it is a direct application of what we have just seen and the definition
of blowing up:

Theorem 6.1. (Hironaka) Let m be an integer, let f(x, y) = 0
define a germ of a plane curve, (X, 0) ⊂ (C, 0) of multiplicity m
and let (W, 0) ⊂ (C, 0) be a non singular curve with maximal contact
with X at 0. If, after blowing up the point 0 by the map B0 : Z → C2,
there is a point x′ ∈ X ′ of multiplicity m in the strict transform
X ′ ⊂ Z of X, then
1) The point x′ is the only point of X ′ mapped to 0 by B0,
2) The strict transform W ′ of W by B0 contains the point x′, and
W ′ has maximal contact with X ′ at x′,
3) We have the equality δx′(W ′, X ′) = δx(W, X) − 1.
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Corollary 6.2. The maximal length of a sequence of infinitely near
points of multiplicity m on the strict transforms of X, each mapping
to its predecessor in successive blowing ups

· · · → Z(r) → Z(r−1) → · · · → Z(2) → Z(1) → C2

is equal to the integral part [δx(X)].

This suffices to show that unless the curve is of the form ym = 0,
the multiplicity of its strict transform in the sequence of blowing
ups obtained by blowing up at each step the points of maximal
multiplicity drops after a finite number of steps. By induction on the
multiplicity, this proves the resolution of the singularity of X at 0 by
a finite number of blowing ups of points on non singular surfaces.We

should remark that the map X ′ → X of the strict transform of X
to X is defined by itself, without any reference to an embedding
(X, 0) ⊂ (C2, 0) (see [K]).

We have proved a local result, but if now we consider any algeb-
raic or analytic curve, it has finitely many singular points, and the
local resolution processes at each point are independant, so we have:

Theorem 6.3. Given an algebraic or analytic plane curve X there
exists a finite sequence of point blowing ups such that in the composed
map X ′ → X the curve X ′ has no singularities.

Actually we can get, by the same method, a better result, known
as embedded resolution and originally due to Max Nœther, as follows:

Theorem 6.4. Given a curve X on a non singular surface S, there
exists a finite sequence of blowing ups of points

S(r) → · · · → S(1) → S

such that if we denote by π : S(r) = S ′ → S their compositum, then
the inverse image of the singular points of X (the exceptionnal di-
visor) is a union of non singular curves ( each isomorphic to P1(C))
meeting transversally on the non singular surface S ′, and the strict
transform X ′ of X by π is a non singular curve meeting transversally
these curves.

In analytic terms, if f(x, y) = 0 is a local equation for X in S,
then f ◦ π is, at every point x′ of S ′, of the form (f ◦ π)x′ = uavb

for suitable local coordinates of S ′ at x′. Of course a and b will be
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zero unless we have x′ ∈ π−1(X).The induced map π : X ′ → X is a

resolution of singularities of X. If we fix a singular point x ∈ X, let
r be the number of analytically irreducible components of the germ
(X, x). The number of points in π−1(x) is equal to r and for a small
enough representative Xx of the germ (X, x), the part π−1(Xx) of
X ′ lying over Xx consists of r non singular curves Di, each marked
with one of the points of π−1(x). The image by π of each of these
non singular curves Di is one of the irreducible components of Xx.

If we choose for each non singular curve Di a coordinate ti van-
ishing at the only point zi of Di lying over x, then Di is described
parametrically, in local coordinates (u, v) on S ′ centered at zi, by
convergent power series u(ti), v(ti), because of the implicit function
theorem. Since the map π : S ′ → S is a composition of algebraic
maps, x ◦ π and y ◦ π are at worst convergent power series in (u, v),
so when we restrict them to Di, we get convergent power series in ti.
This shows that each branch of our curve has a convergent paramet-
rization, and from this we deduce that the formal parametrization
constructed by Newton’s method converges.

Note that this convergence argument works equally well with
the first resolution theorem. The new fact in the resolution result
above with respect to the resolution theorem is the transversality
of the strict transform with the exceptionnal divisor, which is not
part of the resolution theorem as we have stated it above. The
proof of this improvement is not difficult: it amounts to resolving
singularities, by a sequence of points blowing up, of the union of
the strict transform and the exceptional divisor of the map which
resolves the singularities of X.
As an example, given an integer m > 1, after one blowing up the
strict transform of a curve with equation ym − xm+1 = 0, is non
singular, but it is not transversal to the exceptionnal divisor.

It is the first example of a fundamental fact of analytic or algeb-
raic geometry: you can make spaces (in fact, their strict transforms)
transversal by well chosen sequences of blowing ups.
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7 Resolution of space curves

7.1 Integral dependance

To prove a resolution theorem for space curves, one meets the diffi-
culty that their equations may be complicated (for example to define
a curve in Cn one may need more that n − 1 equations; those for
which n− 1 equations suffice are called complete intersections , and
also that rather different looking sets of equations may generate the
same ideal in C{x1, . . . , xn} and therefore define the same curve. In
the proofs above we have used constructions which depend heavily
on the equation. Moreover, even to show that a germ of a complex
curve in Cd has a finite number of irreducible components, which
are analytic germs, is not completely trivial (see [L ], II.5). There
are two possibilities: we can conceptualize and abstract the proof
for plane curves to make it less dependent on the equation, or try
to reduce to the plane curve case. As it happens, the two methods
are not so different, at least for one of the ways of abstracting the
ideas.
To reduce to the plane curve case, the natural idea is to project
the space curve X to a plane curve X1. One can then show that a
resolution of X1 has to map to X, and that this map is a resolution
of the singularities of X!.

The key idea is that of normalization. The Italian geometers
called normal a projective variety Z ∈ Pn having the property that
any map Z ′ → Z presenting Z as a ”general” projection by a linear
map Pn′ \L → Pn of an algebraic variety Z ′ ⊂ Pn′

had to be an iso-
morphism. A typical non normal surface in P3 is therefore a general
projection of a non singular surface in P4; such a projection has a
curve of double points, on which are finitely many more complicated
singular points, the ”pinch points”. Here the meaning of ”general”
has to be made precise;
The variety Z is normal if any map π : Z ′ → Z which
a) is finite-to-one and
b) induces an isomorphisme Z ′ \π−1(U) → U , over the complement
U of a closed algebraic or analytic subset of Z of smaller dimension,
is an isomorphism.

The resolution theorem we saw above shows that a singular curve
in P2 cannot be normal.
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The concept of normalization was ”localized” and transfigured into
a concept of commutative algebra, as follows: Recall that the total
ring of quotients of a ring A is the ring of equivalence classes of
couples (a, b) of elements of A, where b is not a zero divisor in A
with addition (a, b) + (a′, b′) = (ab′ + ba′, bb′) and component wise
multiplication, the equivalence being (a, b) ≡ (a′, b′) when ab′−ba′ =
0. The map a �→ (a, 1) induces an injection of A in F and we
indentify A with its image in F . If A is an integral domain, F is its
field of fractions.

Definition Let A be a commutative ring without nilpotent ele-
ments, and let F be its total ring of quotients.
Definition.- An element h ∈ F is integral over A if it satisfies an
equation

hk + a1h
k−1 + · · · + ak = 0 with ai ∈ A.

Example.- Consider the germ of plane curve X in C2 defined by

the equation yp−xq = 0. The quotient O of the ring C{x, y} by the
ideal generated by yp − xq is the ring of germs of analytic functions
on the germ X (the restrictions to X of two analytic functions on
C2 coincide if and only if their difference is in the ideal). The ring
O is an integral domain; let K be its field of fractions. If we keep
the notations x, y, etc.. for the restrictions to X of functions on C2,
we have y

x
∈ F . I claim that if p ≤ q, it is integral over O; indeed,

we have the relation
(
y

x
)p − xq−p = 0 .

We can remark that the function y
x

is defined and analytic on the
strict transform of X by the blowing up of the origin for any suf-
ficiently small representative of the germ X. We remark also that
the condition p ≤ q is equivalent to saying that the meromorphic
function y

x
remains bounded on X for any small representative.

Proposition.- Given a ring A without nilpotent elements, let F be
its total ring of fractions; the set of elements of F integral over A
is a ring for the operations induced by those of F .

This ring is called the normalization of A (or the integral closure
of A in F ) and often denoted by A. Of course we have A ⊂ A; a ring
such that A = A is said to be integrally closed. Is is not difficult to
check that A is integrally closed.
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If A is nœtherian and integrally closed, any injective map A → B
to a subring B of the total ring of fractions of A which makes B
into a finite A-module is an isomorphism; this is the translation of
the original definition of normality. To prove it, check that if h is
an element of B, the powers of h cannot all be linearly independant
over A, so h satisfies an integral dependance relation, and if A is
normal, it is in A!

An important theorem is that if A is an analytic algebra, i.e.,
a quotient of a convergent power series ring by some ideal, then A
is a finite sum of integrally closed analytic algebras, and moreover
that the injection A → A makes A into a finitely generated A-
module. Taking a common denominator (in F ) for a finite set of
generators of the A-module A, we see that the (”conductor”) ideal
C = {d ∈ A, d.A ⊂ A} is not zero.
Another important fact is that if the analytic algebra of germs of
functions on a curve at a point is normal, the point is non singular
on the curve, and the analytic algebra is isomorphic to a convergent
power series ring in one variable C{t}. ([L ], VI.3, Thm.2)

7.2 The δ invariant of a plane curve singularity

Let O be the analytic algebra of a germ of curve (X, 0), plane or
not, and let O be its normalization. Since it is an O-module of finite
type with the same total ring of quotients, a version of the Hilbert
Nullstellensatz shows that the quotient vector space over C is finite
dimensional. So we may define an invariant to measure how far O
is from being integrally closed, i.e., regular:

δX = dimC
O
O

In the case of plane curves, this invariant has a geometrical inter-
pretation, (see [T4], [T6]) which I will describe only in the case of a
branch, for simplicity:
Let tn, y(t) be a parametrization of our branch X. Consider the
product of the normalization of X with itself, with coordinates (t′t′)
and the two curves in (C2, 0) = (X × X, 0) defined by

tn − t′n

t − t′
= 0

y(t) − y(t′)
t − t′

= 0
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The intersection number of these two curves at the origin is equal
to 2δX ; if now we perturb slightly the parametrization of X by
tn + αvt, y(t) + βvt with two ”general ” complex numbers α, β, we
can see that the two curves now have deformed equations and for
small v they now meet transversally in 2δX points in X × X. this
means that the curve defined parametrically by tn + vαt, y(t) + vβt
has δX ordinary double points (two branches meeting transversally),
which tend to 0 as v tends to 0. So we can view δX as the number of
ordinary double points which have coalesced to form the singularity
of X at the origin. Of course, for an ordinary double point δ = 1.

In fact this geometric intrpretation follows from the fact that the δ
invariant plays a key role in understanding which deformations of
curves come from deforming the parametrization.

If a germ of plane curve is given parametrically by x(t), y(t), we
can define (one parameter) deformations of the parametrization as
follows:

x(t; v) = x(t) +
∑

i ai(v)ti, ai ∈ C{v}, ai(0) = 0
y(t; v) = y(t) +

∑
j bj(v)tj, bj ∈ C{v}, bj(0) = 0.

If on the other hand our curve is given implicitely by an equation
f(x, y) = 0, then we can define a deformation as

f(x, y; v) = f(x, y) +
∑

(i,j) �=(0,0)

gij(v)xiyj gij ∈ C{v}, gij(0) = 0.

The elimination process can be performed over C{v} to show that
a deformation of the parametrization always give a deformation of
the equation (again this follows from the fact that the formation of
Fitting ideals commutes with base extension).
Is the converse true in the sense that any deformation of the equation
can be represented by a deformation of the parametrization? The
answer is NO!

In order to understand what happens, we must reinterpret the
problem. To say that a family of curves is obtained by deforming
a parametrization is to say that they all have “the same normaliza-
tion” in some sense. Thus we are led to study how the normaliza-
tions vary in an analytic family of reduced plane curves.

Definition 7.1. Let (C, 0) be a germ of a reduced analytic curve,
or let C be a closed reduced analytic curve in a suitable open poly-
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cylinder of Cd, or an affine curve, with ring OC . Then its δ invariant

is defined by δ0(C) = dimC

(OC,0

OC,0

)
, or δ(C) = dimC

(OC

OC

)
.

Since normalization of a sheaf of algebras form a sheaf, we have

δ(C) =
∑
x∈C

δx(C)

where the sum on the right is finite since δ is nonzero only at singular
points.

Now let f : (S, 0) → (C, 0) be a germ of a flat morphism such that
f−1(0) is a germ of a reduced analytic curve. Here flatness means
that no element of OS,0) is annihilated by multiplication by an ele-
ment of C{v} where v is a local coordinate on (C, 0).
Let n : S → S be the normalization of the surface S (a small rep-
resentative of the germ), and let

p = f ◦ n : (S, n−1(0)) → (S, 0).

Let us denote p−1(0) by (S)0, and to write δ((S)0) =
∑

x∈n−1(0) δ((S)0, x).

similarly, write δ(S0) for δ(f−1(0), 0) and δ(Sy) for δ(f−1(y) when
y ∈ C \ {0} in a small enbough representative of f , so that all the
singular points of f−1(y) tend to 0 when y → 0, and 0 is the only
singular point of f−1(0). Note that δ(Sy) =

∑
z∈Sy

δ(Sy, z).
Then we have

Proposition 7.2. ([T6])
a) The morphism p = f ◦ n : (S, n−1(0)) → (C, 0) is a multigerm of
a flat mapping.
b) We have the equality

δ((S)0) = δ(S0) − δ(Sy),

for y �= 0 sufficiently small.

To say that the normalizations of the various fibers f−1(y) glue
up into a non singular surface is therefor equivalent to saying that
p−1(0) is non singular and this is equivalent to saying that “the δ
invariant of the fibers Sy is constant as y varies in C near 0.

Note that the fiber f−1(y) will in general have several singular
points, at which it is not necessarily analytically irreducible even if
f−1(0) is irreducible.
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This explains what happens when we deform the parametrization by
x(t)+αvt, y(t)+βvt; since it is a deformation of the parametrization,
the sum of the δ invariants must be the same for all values of v,
while for v �= 0 the curve has only ordinary double points, whose δ
invariant is one.

7.3 projections of space curves

So this abstract idea, normalization, provides us with a proof of the
resolution of singularities of space curves: given (C, 0) ∈ (Cd, 0), the
normalization O → O of the (reduced) analytic algebra of germs of
functions on C is an analytic algebra which is a product Πr

i=1C{ti}
of a finite number of convergent power series rings in one variable.
If x1, . . . , xd generate the maximal ideal of O, we get r d-uples of
convergent power series expansions xj(ti), which are our Newton
series in this case. They geometrically correspond to a map

r⊔
i=1

(C, 0)i → (C, 0)

which is our resolution of singularities. However, normalization is
geometrically subtle in general, and the finiteness of normalization is
a subtle theorem; in addition, we may seek a more geometric proof,
as follows

We now turn to the definition of plane projections of a space curve.
Let (C, 0) ∈ (Cd, 0) be a germ of a (reduced) space curve defined
by an ideal I ⊂ C{x1, . . . , xd}. Let us choose a linear projection
p : Cd → C2. Let M denote the space of all such projections; think
of it as a set of d×2 matrices of rank 2. We endow M with the topo-
logy (complex or Zariski) induced by that of the space of matrices.
We wish to consider only the projections such that p|C : C → p(C)
is finite to one. If that is not the case, the kernel of p, which is a
linear subspace of codimension 2 of Cd, contains one of the irredu-
cible components of the curve C; the intersection is analytic, so it
is either of dimension 0 or 1. By looking at the equations of C, it is
not too difficult to check that the projections which do not contain
a component of C form a dense open set of M . The fact that they
are those which induce a finite map C → p(C) is a consequence of
the Weierstrass preparation theorem.
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Assume now that the map C → p(C) is finite. Again by the
Weiertrass theorem, it means that the map of analytic algebras
C{x, y} → O defined by f �→ (f ◦ p)|C makes O a C{x, y}-module
of finite type. Since C{x, y} is nœtherian, as we saw in a preceding
section, it means we have a presentation by an exact sequence of
C{x, y}-modules:

C{x, y}q → C{x, y}p → O → 0

An argument which we have seen above shows that since C is of
dimension 1, we must have q = p, so the first map is described by a
square matrix with entries in C{x, y}. Let φ(x, y) be the determin-
ant of that matrix. This determinant is, up to an invertible factor,
independant of the choice of the presentation. Then the image p(C)
is the plane curve with equation φ(x, y) = 0.

On the other hand, let us say that a linear plane projection p : Cd →
C2 is general for the curve C ⊂ Cd at the point 0 ∈ C if it has the
following property:
For any sequence of couples of points (ai, bi) ∈ (C \ {0})× (C \ {0})
tending to 0, the limit direction of the secant line ai, bi (for any
subsequence) is not contained in the kernel of p.

We will see in the next paragraph that all general projections of a
given germ (C, 0) of space curve are topologically indistinguishable
as germs of plane curves in C2. In [T2] it is shown that if p is general
for (C, 0), then the inclusion of the ring O1 = OX1,0 of the image
X1 = p(X) as defined above into the ring O = OC,0 (induced by
the composition of functions with p) induces an isomorphism of the
total rings of fractions of these two rings, and because O is a finite
O1-module, every element of O is integral over O1, as we saw above.
Therefore O is contained in the normalization O1 of O1.
Therefore O1 is also the normalization of O, and it is a finite O-
module for general reasons (see [K]; it suffices to know that the
integral closure of O1 is a finite O1-module). Now we can use the
universal property of blowing ups: in O1 all ideals become principal
and generated by a non zero divisor in each C{ti}. By the universal
property of blowing up ([L ], VII.5) if we blow up the origin in O, the
resulting algebra is still contained in O1, and as we repeat blowing
up points, we get an increasing sequence of O-algebras contained
in O1, all having the same total ring of fractions. Since O1 is a
finite O-module, this sequence stabilizes after finitely many steps.
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We have to show that this limit algebra is O1. But if this were not
the case, the maximal ideal of one of the component local algebras
would not be principal, so we could blow it up and get a strictly
bigger algebra, contradicting the stability.
In conclusion, we have shown that any space curve singularity can

also be desingularized by a finite sequence of point blowing ups.
One can also prove embedded resolution for space curves; it is not

much more difficult than in the plane curve case.

8 The semigroup of a branch

There is another natural object associated to the inclusion O → O;
again I will decribe it only in the case of a branch.

Let O be the analytic algebra of a germ of analytically irreducible
curve X, and let O be its normalization; we have an injection O →
O which makes O an O-module of finite type and O is a subalgebra
of the fraction field of O. Since O is isomorphic to C{t}, the order
in t of the series defines a mapping ν : C{t} \ 0 → N which satisfies
i) ν(a(t)b(t)) = ν(a(t)) + ν(b(t)) and
ii) ν(a(t) + b(t)) ≥ min(ν(a(t)), ν(b(t))) with equality if ν(a(t)) �=
ν(b(t));
in other words, ν is a valuation of the ring C{t}.

We consider the valuations of the elements of the subring O, i.e.,
the image Γ of O\{0} by ν; in view of i), it is a semigroup contained
in N. The fact that O is a finite O-module implies that N \ Γ is
finite, and in fact we have for the δ invariant of C the equality

δX = #(N \ Γ)

Now we seek a minimal set of generators of Γ as a semigroup:
Let β0 be the smallest non zero element in Γ, let β1 be the smallest
element of Γ which is nor a multiple of β0, let β2 be the smallest
element of Γ which is not a combination with non negative integral
coefficients of β0 and β1, i.e., is not in the semigroup

〈
β0, β1

〉
, and

so on. Finally, since N \ Γ is finite, we find in this way a minimal
set of generators:

Γ =
〈
β0, β1, . . . , βg

〉
This set is uniquely determined by the semigroup Γ, and of course
determines it.
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By a theorem of Apéry and Zariski (see [Z]), if (X, 0) is a plane
branch, the datum of these generators, or of the semigroup, is equi-
valent to the datum of the Puiseux characteristic of (X, 0), or of its
topological type.

Let us take the notations introduced for the Puiseux pairs; it is
easy to check that if we set β0 = n, the multiplicity, then β0 = β0 =
n, β1 = β1. After that is becomes more complicated. Zariski ([Z],
Th. 3.9) proved the following formula for q = 2, . . . , g:

βq = (n1−1)n2 . . . nq−1β1+(n2−1)n3 . . . nq−1β3+· · ·+(nq−1−1)βq−1+βq,

which can be summarized in the following recursive formula:

βq = nq−1βq−1 − βq−1 + βq

The proof relies on a formula of Max Noether which computes the

contact exponent (C,D)0
m0(D)

of two analytic branches at the origin in

terms of the coincidence of their Puiseux expansions in fractional
powers of x.
This fact leads to a very interesting constatation:
consider the Puiseux expansion of a root y(x) of the Weierstass
polynomial defining an analytically irreducible plane curve near the
origin, assuming that x = 0 is not in the tangent cone of that curve:

y = anx + a2nx2 + · · · + aknxk + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · · + aβ1+k1e1x

m1+k1
n1

+aβ2x
m2

n1n2 + aβ2+e2x
m2+1
n1n2 + · · · + aβq x

mq
n1n2···nq + aβq+eq−1x

mq+1
n1n2···nq + · · ·

+aβg x
mg

n1n2···ng + aβg+1x
mg+1

n1n2···ng + · · ·
and the following series

ξ0 = x,

ξ1 = anx + a2nx2 + · · · + aknxk

ξ2 = anx + a2nx2 + · · · + aknxk + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · · + aβ1+k1e1x

m1+k1
n1

...

ξg = y − (aβg x
mg

n1n2···ng + aβg+1x
mg+1

n1n2···ng + · · · )
That is, the sequence of truncations of the Puiseux series just before
the appearance of a new Puiseux exponent. Each ξj, 0 ≤ j ≤ g is
a root of a Weierstrass polynomial Qj defining a branch Cj. Note
that we have Q0 = x and that Q1 = y if y = 0 has maximal contact
with C.

Proposition 8.1. (Apéry-Zariski) We have the equalities

βj = (C, Cj)0.
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In fact, this equality remains true if we replace the expansions ξj

by any series which coincide with the series y(x) until just before the
j-th Puiseux exponent; see [PP]. It follows easily from this that the
datum of the semigroup is equivalent to the datum of the multiplicity
n and the Puiseux exponents βi of the curve.

The semigroups coming from plane branches are characterized
among all semigroups of analytically irreducible germs of curves by
the following two properties:

1) niβi ∈
〈
β0, . . . , βi−1

〉

2) niβi < βi+1

That the semigroups of plane branches have these properties follows
from the induction formula and the inequalities βi < βi+1. The
converse can be proved by the construction outlined below (see [Z],
appendix).

Conversely, given a semigroup Γ in N with finite complement,
we can associate to it an analytic (in fact algebraic) curve, called
the monomial curve associated to Γ. If Γ =

〈
β0, β1, . . . , βg

〉
, the

monomial curve CΓ is described parametrically by

u0 = tβ0

u1 = tβ1

.

.

.

ug = tβg

On the other hand, the relations 1) above mean that there exist

natural numbers �
(j)
i such that we have

n1β1 = �
(1)
0 β0

n2β2 = �
(2)
0 β0 + �

(2)
1 β1

.

.

njβj = �
(j)
0 β0 + · · · + �

(j)
j−1βj−1

.

.

.

ngβg = �
(g)
0 β0 + · · · + �

(g)
g−1βg−1
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These relations translate into equations for the curve CΓ ⊂ Cg+1;

since ui = tβi , our curve satisfies the g equations

uni
j − u

�
(j)
0

0 u
�
(j)
1

1 . . . u
�
(j)
j−1

j−1 = 0, 1 ≤ j ≤ g,

and it can be shown that they actually define CΓ ⊂ Cg+1, so that if
Γ is the semigroup of a plane branch, CΓ is a complete intersection.

Remark that if we give to ui the weight βi, the i-th equation is
homogeneous of degree niβi.

The connection between a plane curve X having semigroup Γ
and the monomial curve is much more precise and interesting than
the formal relation we have just seen; by small deformations of the
monomial curve one obtains all the branches with the same semig-
roup. In fact the best way to understand all branches with semig-
roup Γ is to consider the not necessarily plane curve CΓ (CΓ is plane
if and only if C has only one characteristic exponent).

By definition of Γ, there are elements ξq ∈ O with ν(ξq) = βq.
We can write these elements in C{t} as

ξq = tβq +
∑
j>βq

γq,jt
j.

Let us consider the one-parameter family of parametrizations

u0 = tm

u1 = tβ1 +
∑

j>β1
vj−β1γ1,jt

j

.

.

ug = tβg +
∑

j>βg
vj−βgγg,jt

j

The reader can check that for v �= 0, the curve thus described is
isomorphic to our original curve C. (hint: make the change of para-

meter t = vt′ and the change of coordinates uj = v−βjv′
j, and re-

member the definition of the ξj). For v = 0, we have the parametric
description of the monomial curve.

So we have in fact described a map

C × C → Cg+1 × C

which induces the identity on the second factors (with coordinate
v). The image of this map is a surface, which is the total space of a
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deformation of the monomial curve, all of its fibers except the one
for v = 0 being isomorphic to our plane curve C.

So the monomial curve is a specialization, in this family, of our
plane curve. In this specialization the multiplicity and the semig-
roup remain constant; in a rather precise sense it is an equisingular
specialization, or one may say that the plane curve is an equisingular
deformation of the monomial curve with the same semigroup.

The same phenomenon can be also observed in the language of
equations rather than parametrizations. Let us consider a one para-
meter family of equations for curves in Cg+1, of the form

un1
1 − u

�
(1)
0

0 − vu2 = 0

un2
2 − u

�
(2)
0

0 u
�
(2)
1

1 − vu3 = 0
.
.

u
ng−1

g−1 − u
�
(g−1)
0

0 u
�
(g−1)
1

1 . . . u
�
(g−1)
g−2

g−2 − vug = 0

u
ng
g − u

�
(g)
0

0 u
�
(g)
1

1 . . . u
�
(g)
g−1

g−1 = 0

For v = o we get the equations of the monomial curve, and for
v �= 0 we get a curve which has semigroup Γ; this is a general heur-
istic principle of equisingularity: we have added to each equation of
the monomial curve, homogeneous of degree niβi, a perturbation of
degree βi+1 > niβi, and this should not change the equisingularity
class (the perturbation is ”small” compared to the equation).

Notice that for each fixed v �= 0 the curve described by the above
equations is a plane curve: for simplicity take v = 1; then use the

first equation to compute u2 = un1
1 −u

�
(1)
0

0 , substitute this in the next
equation, and use this to compute u3 as a function of u0, u1, and so
on. Finally the last equation gives us the equation of a plane curve
of the form

“
· · · `

(un1
1 − u

�
(1)
0

0 )
n2

− u
�
(2)
0

0 u
�
(2)
1

1

´n3

− · · ·
”ng

− u
�
(g)
0

0 u
�
(g)
1

1 (un1
1 − u

�
(1)
0

0 )
�
(g)
2 · · · = 0

The first consequence (see the appendix to [Z]) is that we can pro-
duce explicitely the equation of a plane curve with given charac-
teristic exponents: compute the semigroup and its generators, and
then write the equation above.

A more important fact is that one can show (see [loc. cit) that
any plane curve with a given semigroup appears up to isomorphism
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as a fiber in a deformation depending on a finite number of paramet-
ers: it is a deformation of the monomial curve obtained by adding
to the j-th equation a polynomial in the ui’s of order > njβj, and
these polynomials can in principle be explicitely computed.

In fact it is shown in [G-T] that we can in this manner produce
equations for all branches having the same semigroup (or equisin-
gularity type) up to an analytic isomorphism.
Finally, all the plane branches with the same semigroup have ”the
same” process of resolution of singularities: you have to blow up
points according to the same rules, the multiplicities of the strict
transforms are the same, and so on. So the resolution of the plane
curve described above shows the structure of the resolutions of all
the curves with the same semigroup. First you resolve the curve

un1
1 − u

�
(1)
0

0 = 0; when its strict transform is non singular (after a
number of blowing ups which depends on the continued fraction

expansion of the ratio
�
(1)
0

n1
, you take it as a coordinate axis: then

you have one parenthesis less in the equation above (the point is
that the form of the equation does not change), and you proceed
like this. After g such steps the branch is resolved.

There is however another way to use the structure given by the
description of our branch as a deformation of the monomial curve to
get embedded resolution; it is the subject of the next paragraph.

9 Resolution of binomials

Let a1, a2 be two integral vectors in the first quadrant of Ř2, and
assume that their determinant is ±1. Then they are primitive vec-
tors and they generate the integral lattice Ž2 of Ř2. Consider the
cone

σ = 〈a1, a2〉
of their positive linear combinations. It is a rational convex cone (=
a convex cone which is the intersection of finitely many half spaces
determined by hyperplanes with rational -even integral- equations).
Because it is generated by integral vectors which form a basis of the
integral lattice Z2, we say tha it is a regular cone. Since it is convex
it has a convex dual which is a rational convex cone in R2:

σ̌ = {m ∈ R2/m(�) ≥ 0 ∀ � ∈ σ}.
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The cone σ̌ is also generated by two vectors with determinant ±1,
which therefore generate the integral lattice Z2 of R2. If we interpret
each integral point of σ̌ as a (Laurent) monomial (here “Laurent”
means that negative exponents are allowed) in variables (u1, u2),
the algebra C[σ̌ ∩ Z2] is a polynomial algebra in two variables, say
C[y1, y2].

Since σ is contained in the first quadrant, its dual σ̌ contains
the dual of the first quadrant, which is the first quadrant of R2. If
we remark that the integral points of the first quadrant correspond
exactly to the polynomial algebra C[u1, u2], we see that there is
therefore an inclusion

C[u1, u2] ⊂ C[y1, y2]

and it is an interesting exercise to check that it is given by

u1 �→ y
a1
1

1 y
a2
1

2

u2 �→ y
a1
2

1 y
a2
2

2

where aj
i is the i-th coordinate of the vector aj.

The transform of a monomial um = um1
1 um2

2 is, if we write m =
(m1, m2):

um1
1 um2

2 �→ y
〈a1,m〉
1 y

〈a2,m〉
2 ,

so that the transform of a binomial um − λmnu
n is

um − λmnu
n �→ y

〈a1,m〉
1 y

〈a2,m〉
2 − λmny

〈a1,n〉
1 y

〈a2,n〉
2 .

Now the key observation is that if 〈a1, m−n〉 and 〈a2, m−n〉 are both
non zero, they have the same sign, which means that the two vectors
a1 and a2 are in the same half space determined the hyperplane
Hm−n dual to the vector m − n, or equivalently that the cone σ
is compatible with Hm−n in the sense that σ ∩ Hm−n is a face of
σ, then we can factor the transform of the binomial. Assume that
〈ai, m − n〉 ≥ 0. We have non negative exponents in the identity

y
〈a1,m〉
1 y

〈a2,m〉
2 − λmny

〈a1,n〉
1 y

〈a2,n〉
2 =

y
〈a1,n〉
1 y

〈a2,n〉
2

(
y
〈a1,m−n〉
1 y

〈a2,m−n〉
2 − λmn

)
.

Now we have an exceptional divisor defined by

y
〈a1,n〉
1 y

〈a2,n〉
2 = 0
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and a strict transform defined by

y
〈a1,m−n〉
1 y

〈a2,m−n〉
2 − λmn = 0

The next observation is that the strict transform is non singular,
and meets the exceptional divisor if and only if σ∩Hm−n is an edge
of σ, i.e., is not {0}. Say that a2 is in Hm−n; the strict transform is
then

y
〈a1,m−n〉
1 − λmn = 0.

Now if we assume that the binomial um − λmnu
n is irreducible in

C[u1, u2], which is equivalent since C is algebraically closed to the
fact that the vector m−n is primitive, in the sense that it is not an
integral multiple of an integral vector, then it is not difficult to check
(see [T1], Proposition 6.2) that 〈a1, m − n〉 = 1, so that finally our
strict transform in this case is y1 − λmn = 0, which is indeed non
singular and transversal to the exceptional divisor.
Actually the same proof works if the binomial is reducible but there
are then several points above the origin in the strict transform of
the curve.
The next observation is that in two variables our binomial has to be
of the form um

1 − λun
2 unless the curve contains a coordinate axis,

which we exclude in the irreducible case. By a change of variable
we may assume λ = 1 and by irreducibility, we have (m, n) = 1.
Now to study the strict transform under one of our monomial maps
π(σ) we have seen that the only interesting case is when one of the
generating vectors of σ, say a1, is the vector (n, m). Let us assume
that n < m. Set a2 = (a, b) and say that am − bn = 1 (we know it

has to be ±1). The transform of a monomial ui
1u

j
2 is yni+mj

1 yai+bj
2 .

From this follows that if we consider a curve with equation

(∗) um
1 − un

2 +
∑

ni+mj>mn

aiju
i
1u

j
2 = 0

it transforms into

ymn
1 yam

2

(
y2 − 1 +

∑
ni+mj>mn

aijy
ni+mj−mn
1 yai+bj−am

2

)

and one checks that all exponents are positive. The strict transform
of our curve is still non singular in a neighborhood of the exceptional
divisor, and transversal to the exceptional divisor at the point y1 =
0, y2 = 1.
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If we consider the other cone σ′ having the vector (n, m) as an
edge, we find that the point where the strict transform meets the
exceptional divisor lies in the open set of the corresponding chart
Z(σ′) which is identified with an open set of Z(σ); we are looking
at the same object in two charts. This shows that the toric maps
which provides an embedded resolution for the binomial um

1 −un
2 = 0

in fact also gives an embedded resolution for all the curves of the
type (∗), where one deforms the binomial by adding terms of higher
weight, where the weight of u1 is n and the weight of u2 is m.
Now by a general combinatorial result (see [Ew]), for any integer
d ≥ 2, given a finite collection of hyperplanes whose equation has
integral coefficients in the first quadrant Rd

≥0 of Rd, it is possible

to find a regular fan with support Rd
≥0, that is a finite collection

Σ of regular rational cones such as our σ above (but now with d
generating vectors of determinant ±1) and its faces, whose union
is Rd

≥0, and such that if σ ∈ Σ its faces are also in Σ, and for any
σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face of each. To each σ of
dimension d corresponds a polynomial ring C[σ̌ ∩Zd] and therefore
an affine space Ad(C) with a birational map

π(σ) : Ad(C) → Ad(C)

generalizing the map

u1 �→ y
a1
1

1 y
a2
1

2

u2 �→ y
a1
2

1 y
a2
2

2

which we have seen above in the case d = 2.
The sources of all these maps can be glued up together (see [Ew])
to form a nonsingular algebraic rational variety Z(Σ) in such a way
that the maps π(σ) glue up into a proper and birational (hence
surjective) map

π(Σ) : Z(Σ) → Ad(C).

Coming back to the case d = 2 and a binomial, this gives us the
existence of a regular fan (= a fan made of regular cones) with
support R2

≥0, and compatible with the line Hm−n, which means that
this line in R2

≥0 is the common edge of two cones of the fan.
In fact in this case there is a minimal such fan, obtained as follows:
Consider the set H− of integral points of R2

≥0 which are below the
line Hm−n, and the set H+ of the integral points which are above.
The boundaries of the convex hulls of H− and H+ contain parts of
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coordinates axes, and they meet at the extremity of the primitive
integral vector contained in Hm−n. Drawing lines connecting the
origin to all the integral points which are on these boundaries defines
a fan which has the required properties and is the coarsest such fan.
It is closely connected with the continued fraction expansion of the
slope of the line Hm−n.
To this fan Σ is associated a proper birational map

π(Σ) : Z(Σ) → A2(C)

which is an isomorphism outside of the origin and provides an em-
bedded resolution of singularities for all plane branches which have
an equation of the form

un
2 − um

1 +
∑

i
m

+ j
n

>1

aiju
i
1u

j
2 = 0.

as one verifies by checking in each of the charts Z(σ) � A2(C).
Since we saw that every plane branch is similarly a deformation of
the monomial curve with the same semi-group, which is defined by
g binomial equations in variables u0, . . . , ug, adding to each bino-
mial only monomials of higher weight, one is ready to believe that
similarly, a regular fan in Rg+1

≥0 which is compatible with the g hy-
perplanes corresponding to the g binomials will provide a toric map

π(Σ) : Z(Σ) → Ag+1(C)

which is an embedded resolution not only for the monomial curve,
but also for our original plane curve re-embedded in Ag+1(C) as was
explained above. This is described in detail in [G-T] and generalized
in [GP] to a much larger class of singularities.

This method of embedded resolution is quite different from the
resolution by point blowing ups explained above, but it assumes
that one knows the existence of a parametrization. The connection
between the toric map and the sequence of point blowing ups is
rather subtle (see [GP]); in the case g = 1 it is equivalent to the
relation between finding approximations of a rational number by
the reduced fractions of its continued fraction expansion and finding
approximations by Farey series.
So the deformation to the monomial curve also explains to us how
to resolve the singularities, and it is perhaps the best description.
Can we generalize it to higher dimensions?
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10 Relation with topology

I refer to the lectures of Lê and to [B-K] for the Burau-Zariski to-
pological interpretation of the characteristic sequence

(β0, β1, . . . βg)

as a characteristic of the iterated torus knot that one obtains upon
intersecting the branch X with a sufficiently small sphere in C2

centered at the origin.
Given a germ of a reduced plane curve X, it has a decomposi-

tion X =
⋃r

i=1 Xi into branches; each branch has its characteristic
sequence B(Xi), and as numerical characters of X, we have also the
intersection numbers (Xi, Xj)0 of distinct branches at 0.

If we remember that these intersection numbers are equal to the
linking numbers in S3 of the knots corresponding to Xi and Xj and
are therefore topological characters of the link X ∩S3

ε , since Milnor
proved (see Lê’s lectures) that the curve X is homeomorphic to the
cone with vertex 0 drawn on this link, we expect that the collection
of the characteristic sequences of the branches and their intersection
numbers may be a topological invariant of the curve X.

Let us define the local topological type of a germ of subspace of
CN as follows:
Definition.- Two subspaces X1 and X2 of CN are topologically
equivalent at 0 if there exist neighbourhoods U and V of 0 in CN

and an homeomorphism ψ : U → V such that ψ(X1 ∩U) = X2 ∩ V .
Two germs at 0 of subspaces are topologically equivalent if they
have representatives which are topologically equivalent at 0.

Theorem 10.1. (Zariski, Lejeune-Jalabert). Two germs of plane
curves X = ∪i∈IXi and X ′ = ∪i∈I′X

′
i are topologically equivalent if

and only if there exists a bijection φ : I → I ′ between their branches
which preserves characteristics and intersection numbers, that is,
satisfies

B(X ′
φ(i)) = B(Xi) for i ∈ I, (X ′

φ(i), X
′
φ(j))0 = (Xi, Xj)0 for i �= j.
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Topological equivalence is less strict a relation than analytic (or
even C1) equivalence.

Let X1 and X2 each consist of four lines through the origin in C2.
According to the previous theorem, these two germs are topologic-
ally equivalent. However, if there was a germ et 0 of a C1 (and in
particular analytic) isomorphism of C2 to itself, sending X1 to X2,
its tangent linear map at 0 would have to send X1 onto X2. But two
quadruplets of lines through 0 are linearly equivalent if and only if
they have the same cross-ratio. If the slopes of the lines of X1 are
a1, b1, c1, d1, and similarly for X2, the cross ratios are(a1 − a3

a1 − a4

)(a2 − a4

a2 − a3

)
and the numbers obtained by permutation. It is therefore easy to
find examples where X1 and X2 are not C1-equivalent.

In particular, in an analytic family of curves such as the surface
in C3 with equation

(y − x)(y + x)(y − 2x)(y + tx) = 0

for small values of t, the fibers are all analytically inequivalent but
topologically equivalent.

Theorem 10.2. Given two reduced germs of plane curves (X, 0) ⊂
(C2, 0) and (X ′, 0) ⊂ (C2, 0) the following conditions are equivalent:
1) X and X ′ are topologically equivalent,
2) There exists an integer d, a germ of curve (C, 0) ⊂ (Cd, 0) and
two linear projections p, p′ : Cd → C2, both general for C at 0, and
such that p(C) = X, p′(C) = X ′,
3) There exists a one-parameter family of germs of plane curves that
is a germ along {0} × U of a surface in C2 × U , where U is a disk
in C, say with equation f(x, y, u) = 0 and v, v′ ∈ U such that the
germs of plane curve f(x, y, v) = 0, f(x, y, v′) = 0 are isomorphic
to X, X ′ respectively and all the germs f(x, y, t) = 0 have the same
topological type for t ∈ U .
4) There exists a bijection from the set of branches of (X, 0) to the
set of branches of (X ′, 0) which preserves characteristic (Puiseux)
exponents and intersection numbers.
5) The minimal embeded resolution processes of (X, 0) and (X ′, 0)
are ”the same” in the sense that one blows up at each step points
with the same multiplicity.
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In fact, the theory of Lipschitz saturation, summarized in [T4],
shows that, given the topological type of a germ of plane curve
(X, 0), there exists a germ of a space curve (Xs, 0) ⊂ (CN , 0), unique
up to isomorphism, such that the germs of plane curves having the
same topological type as (X, 0) are exactly, up to isomorphism, the
images of (Xs, 0) by the linear projections (CN , 0) → (C2, 0) which
are general for (Xs, 0).
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