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1 Introduction

These notes aim at providing a summary of mixed Hodge theory, starting
with the origin of weights on the cohomology of algebraic varieties in etale
cohomology and ending with the discussion of mixed Hodge modules. Big
parts of the text are extracted from the book [21] in preparation.

I spent the academic year 1974–1975 at the Institut des Hautes Études
Scientifiques in France. Many things were discussed there which occur in
these notes. Goresky and MacPherson already had the basic ideas of inter-
section homology. With Shi-Wei-Shu we had a mini-seminar on D-modules,
discussing the Bernstein polynomial. And of course, Deligne was there, the
founder of mixed Hodge theory, and John Morgan, who extended this theory
to homotopy groups.

On hindsight one can say that all ingredients of mixed Hodge modules
were present at the time. However, these ingredients seemed totally unrela-
ted, and it required the joint effort of many people to achieve the complete
picture of Hodge theory which we have now: Deligne, proving the Weil conjec-
tures, and providing a sheaf-theoretic framework for intersection homology;
Kashiwara and Mebkhout connecting D-modules and constructible sheaves,
Malgrange who discovered how to formulate the nearby and vanishing cycle
functors on the level of D-modules. But the great synthesis was accomplished
by Morihiko Saito in the years 1981-1988. His work is very complicated, but
the results are very powerful.
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These notes contain these ingredients of mixed Hodge modules, starting
with the notion of weights. Then pure and mixed Hodge structures are
defined. We proceed with perverse complexes, deal with the foundations of D-
module theory and formulate the Riemann-Hilbert correspondence. Finally
an axiomatic treatment of mixed Hodge modules is given.

I hope that these notes (and my talks) will be a useful introduction to
this fascinating but until now rather inaccessible topic. I presuppose a know-
ledge of algebraic geometry including sheaf theory; in the last three sections
knowledge of derived categories is very useful. See e.g. [10].

2 Weights in `-adic cohomology

Let X0 be an algebraic variety over a finite field k with q elements and let
X = X0 ×k k̄. The zeta function of X0 is given by

Z(X0, t) =
∏

i

det(1− F ∗t,H i
c(X, Q`))

(−1)i+1

(1)

where ` is a prime not dividing q and F is the Frobenius morphism on X,
given in coordinates by (x1, . . . , xn) 7→ (xq

1, . . . , x
q
n).

This definition involves the etale cohomology groups of X with values in
Q`. However, the zeta function can also be obtained by point counting:

t
d

dt
log Z(X0, t) =

∑
n>0

ant
n (2)

where an is the number of points of X0 with values in Fqn . The equality of
(1) and (2) is a consequence of the Lefschetz fixed point theorem in `-adic
cohomology, applied to the action of F n on X. Deligne showed [6, Thm.
(1.6)]

Theorem 1 Suppose that X0 is smooth projective. Then for each i, the
characteristic polynomial det(t−F ∗, H i

c(X, Q`)) has integer coefficients inde-
pendent of `. The complex roots α of this polynomial (the complex conjugates
of the eigenvalues of F ∗) have absolute value |α| = qi/2.

This result, one of the Weil Conjectures, can be reformulated as: the i-th
`-adic cohomology group of a smooth projective variety over a finite field is
pure of weight i as a module over the Galois group of the ground field.
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Next consider a complex algebraic variety X. It is defined by a finite
number of polynomial equations. The coefficients of these polynomials ge-
nerate a subalgebra R of C, of finite type over Z, and X is obtained from a
scheme X over R by extension of scalars to C.

Take a maximal ideal m of R, let k = R/m and let q = |k|. Write
Xm = X ×R k̄ and let Fm denote its Frobenius endomorphism.

Theorem 2 There exists non-zero f ∈ R such that for all m with f 6∈ m,
and all primes ` 6∈ m the eigenvalues of Fm on H i(Xm, Q`) are algebraic
integers, and for each eigenvalue α there exists an integer w(α) such that all

complex conjugates of α have absolute value q
w(α)

2 .
One has a natural identification of H i(X, Q)⊗Q` with H i(Xm, Q`), which

gives a rational structure to the latter vector space. If mWj denotes the sum of
the generalized eigenspaces corresponding to the eigenvalues α with w(α) ≤ j,
then the increasing filtration mW is defined over Q and its intersection W
with H i(X, Q) is independent of ` and m.

See [7, Thm. 14].

3 Mixed Hodge theory

Let us again consider a complex algebraic variety. The filtration W on the
cohomology of X obtained from Theorem 2 is Deligne’s weight filtration, and
is one of the main ingredients for his theory of mixed Hodge structures on the
cohomology of complex algebraic varieties. For the i-th cohomology group
of a smooth projective variety X the weight filtration is trivial:

Wi−1H
i(X) = 0, WiH

k(X) = H i(X)

which we rephrase as: H i(X) is pure of weight i.
The other ingredient of Deligne’s mixed Hodge theory is the Hodge filtra-

tion. This is not defined on the cohomology with rational coefficients, but
one needs to pass to complex coefficients to see it. For a smooth projective
variety we can choose a Kähler metric so that we are in the realm of com-
pact Kähler manifolds. The complex cohomology of such a compact Kähler
manifold admits a Hodge decomposition

H i(X, C) =
⊕

p+q=i

Hp,q(X) (3)
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where we consider the cohomology as de Rham cohomology, i.e. as the space
of (complex valued) closed differential forms modulo the exact forms.

The Kähler metric provides us with an adjoint d∗ of the operator d, and
the Laplacian δ is defined as δ = dd∗ + d∗d. A form ω is called harmonic if
δω = 0.

Each cohomology class is represented by a unique harmonic form. On the
other hand, complex valued differential forms on X admit a decomposition
according to type (a form is of type (p, q) if in local holomorphic coordinates
it is given by an expression containing p factors dzi and q factors dz̄j). A
cohomology class is called of type (p, q) if its harmonic representative is of
type (p, q). The Kähler identities imply that a form is harmonic if and only
if all of its (p, q)-components are, hence we have the Hodge decomposition.
One can show that a cohomology class is of type (p, q) if and only if it can be
represented by a closed form of type (p, q). Hence the Hodge decomposition
does not depend on the choice of Kähler metric.

The Hodge filtration on H i(X, C) is defined in this case by

F pH i(X, C) =
⊕
r≥p

Hr,i−r . (4)

Note that it is a decreasing filtration and that one needs the de Rham complex
(differential forms) to define it. It reflects the analytic structure in contrast
with the weight filtration, which is rather reflecting the topology.

Two reasons to work with the Hodge filtration rather than with the Hodge
decomposition is that the Hodge filtration has better behaviour in families
of varieties (it varies holomorphically) and that it has a good generalization
to arbitrary complex algebraic varieties.

The Hodge decomposition of the cohomology of a compact Kähler mani-
fold gives rise to the following concept.

Definition 1 A pure weight i (rational) Hodge structure on a finite dimen-
sional rational vector space V consists of a direct sum decomposition

VC =
⊕

p+q=i

V p,q, with V p,q = V q,p

on its complexification VC = V ⊗ C. The numbers

hp,q(V ) := dim V p,q
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are the Hodge numbers of the Hodge structure. The polynomial

Phn(V ) =
∑
p,q∈Z

hp,q(V )upvq (5)

=
∑

hp,i−p(V )upvi−p ∈ Z[u, v, u−1, v−1]

its associated Hodge number polynomial. The corresponding Hodge filtration
is given by

F p(V ) =
⊕
r≥p

V r,i−r.

The classical example of a weight i Hodge structure is furnished by the
rank i (singular) cohomology group H i(X) (with Q-coefficients) of a compact
Kähler manifold X.

Various multilinear algebra operations can be applied to Hodge structu-
res. Suppose that V and W are two real vector spaces with a Hodge structure
of weight k and ` respectively. Then:

1. V ⊗W has a Hodge structure of weight k + ` given by

F p(V ⊗W )C =
∑
m

Fm(VC)⊗ F p−m(WC) ⊂ VC ⊗C WC

and with Hodge number polynomial given by

Phn(V ⊗W ) = Phn(V )Phn(W ). (6)

2. On Hom(V, W ) we have a Hodge structure of weight `− k:

F p Hom(V, W )C = {f : VC → WC | fF n(VC) ⊂ F n+p(WC) ∀n}

with Hodge number polynomial

Phn(Hom(V, W ))(u, v) = Phn(V )(u−1, v−1)Phn(W )(u, v). (7)

In particular, taking W = Q with WC = W 0,0 we get a Hodge structure
of weight −k on the dual V ∗ of V with Hodge number polynomial

Phn(V
∗)(u, v) = Phn(V )(u−1, v−1). (8)
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The Hodge structure Q(`) of Tate is the Q-vector space (2πi)`Q ⊂ C with
Hodge structure of pure type (−`,−`). This Hodge structure can be used to
reduce weights of a given pure Hodge structure V to 0 or 1 by Tate twisting :
if V has weight 2`, V (`) := V ⊗Q(`) is a Hodge structure of weight 0 and if
V has weight 2` + 1, its twist V (`) has weight 1. Note also

ehn(V (`)) = ehn(V )(uv)−`. (9)

Definition 2 Let HS be the category of pure Q-Hodge structures (of va-
rying weights). The Grothendieck ring K0(HS) is the free group on the
isomorphism classes [V ] of Hodge structures V modulo the subgroup gene-
rated by [V ]− [V ′]− [V ′′] where

0→ V ′ → V → V ′′ → 0

is an exact sequence of pure Hodge structures where the complexified maps
preserve the Hodge decompositions.

Because the Hodge number polynomial (5) is clearly additive and by (6)
behaves well on products, we have:

Lemma 3 The Hodge number polynomial defines a ring homomorphism

Phn : K0(HS)→ Z[u, v, u−1, v−1].

Pure Hodge structures in algebraic geometry arise as the cohomology
groups of smooth projective varieties: for such X the cohomology group
Hk(X, Q) carries a Hodge structure of weight k. We put

χHdg(X) :=
∑

(−1)k[Hk(X)] ∈ K0(HS);

ehn(X) := Phn(χHdg(X)) =
∑

(−1)kPhn(H
k(X)) ∈ Z[u, v, u−1, v−1]

which we call the Hodge-Grothendieck class and the Hodge-Euler polynomial
of X respectively.

Lemma 4 Suppose that X is a smooth projective variety and Y ⊂ X is a
smooth closed subvariety. Let π : Z → X be the blowing-up with center Y
and let E = π−1(Y ) be the exceptional divisor. Then

χHdg(X)− χHdg(Y ) = χHdg(Z)− χHdg(E);

ehn(X)− ehn(Y ) = ehn(Z)− ehn(E).
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Proof: By [12, p. 605]

0→ Hk(X)→ Hk(Z)⊕Hk(Y )→ Hk(E)→ 0

is exact.

We recall the definition of the naive Grothendieck group K0(V ar) of (com-
plex) varieties. It is the quotient of the free abelian group on isomorphism
classes [X] of algebraic varieties over C with relations [X] = [X − Y ] + [Y ]
for Y ⊂ X a closed subvariety.

Theorem 5 The group K0(V ar) is isomorphic to the free abelian group ge-
nerated by the isomorphism classes of smooth complex projective varieties
subject to the relations [∅] = 0 and [Z] − [E] = [X] − [Y ] where X, Y, Z, E
are as in Lemma 4.

Proof: See [2, Theorem 3.1].

Remark 6 In particular, for every complex variety X there exist projective
smooth varieties X1, . . . , Xr, Y1, . . . , Ys such that

[X] =
∑

i

[Xi]−
∑

j

[Yj] in K0(V ar).

For compact X, the construction of cubical hyperresolutions (XI)∅ 6=I⊂A of
X from [13] leads to such an expression:

[X] =
∑

∅ 6=I⊂A

(−1)]I−1[XI ].

Corollary 7 The Hodge Euler polynomial extends to a group homomorphism

ehn : K0(V ar)→ Z[u, v, u−1, v−1]

However, one cannot expect a pure Hodge structure on the cohomology of
singular or non-compact algebraic varieties. For example, if a vector space V
carries a Hodge structure of odd weight, then its dimension must be even. So
if X is an algebraic variety such that H1(X, Q) carries is Hodge structure of
weight one, then the first Betti number of X had better be even. However, if
X is an irreducible algebraic curve with one node, then the first Betti number
is odd.
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Deligne’s first discovery is, that the graded parts for the weight filtration

GrW
m H i(X, Q)

underly pure Hodge structures of weight k. His second discovery is, that the
Hodge filtrations

F •GrW
m H i(X, C)

on all the graded quotients are induced by a canonical Hodge filtration F • on
H i(X, C). The data of the weight and Hodge filtrations on the cohomology
of X constitute what has been called a mixed Hodge structure, constructed
by Deligne in [4], [5].

We let V be a finite dimensional Q-vector space.

Definition 3 A mixed Hodge structure on V consists of two filtrations, an
increasing filtration on V , the weight filtration W• and a decreasing filtration
F • on VC = V ⊗ C, the Hodge filtration which has the additional property
that it induces a pure Hodge structure of weight k on each graded piece

GrW
k (V ) = Wk/Wk−1.

Mixed Hodge structures form an abelian category. Every morphism of mixed
Hodge structures is strictly compatible with the Hodge and weight filtrations.
As a consequence, an exact sequence of mixed Hodge structures remains exact
if at each place one applies the functor V 7→ GrW

k (V ).
Deligne’s main result is [4] [5]:

Theorem 8 Homology, cohomology, Borel-Moore homology and cohomology
groups with compact supports of algebraic varieties carry functorial mixed
Hodge structures. Virtually all natural maps like cup product and Poincaré
morphisms are morphisms of mixed Hodge sructures.

The weight filtration on these groups has the following properties:

1. If X is compact, then WiH
i(X) = H i(X).

2. If X is smooth, then Wi−1H
i(X) = 0.

Moreover, the mixed Hodge structures on Hi(X) and on H i(X) are dual to
each other, and the same holds for H i

c(X) and HBM
i (X).

It is clear that the Grothendieck ring of the category of mixed Hodge
structures is the same as for Hodge structures. Moreover, Lemma 4 has the
following generalization to the context of singular varieties:
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Lemma 9 Let f : X̃ → X be a proper modification with discriminant D.
Put E = f−1(D). Let g : f|E : E → D and let i : D → X and ĩ : E → X̃
denote the inclusions. Then one has a long exact sequence of mixed Hodge
structures

. . .→ Hk(X)→ Hk(X̃)⊕Hk(D)→ Hk(E)→ Hk+1(X)→ . . .

It is called the Mayer-Vietoris sequence for the discriminant square associated
to f . One has

χHdg(X̃) = χHdg(X) + χHdg(E)− χHdg(D).

Here the discriminant D is the minimal closed subset of X with the property
that f is an isomorphism when restricted to the inverse image complement
of D.

4 From groups to sheaves

In this section we describe Deligne’s construction of the Hodge and weight
filtrations on the cohomology of smooth algebraic varieties.

Let U be a smooth complex algebraic variety. By [20] U is Zariski open
in some compact algebraic variety X, which by [14] one can assume to be
to be smooth and for which D = X − U locally looks like the crossing
of coordinate hyperplanes. It is called a normal crossing divisor. If the
irreducible components Dk of D are smooth, we say that D has simple or
strict normal crossings.

Definition 4 We say that X is a good compactification of U = X −D if X
is smooth and D is a simple normal crossing divisor.

We return for the moment to the situation where D ⊂ X is a hypersurface
(possibly with singularities and reducible) inside a smooth n-dimensional
complex manifold X and we set

j : U = X −D ↪→ X

Recall that a holomorphic differential form ω on U is said to have logarithmic
singularities along D if ω and dω have at most a pole of order one along D.

9



It follows that these holomorphic differential forms constitute a subcomplex
Ω•

X(log D) ⊂ j∗Ω
•
U .

Suppose now that D has simple normal crossings, p ∈ D and V ⊂ X is
an open neighbourhood with coordinates (z, . . . , zn) in which D has equation
z1 · · · zk = 0. On can show [12, p. 449]

Ω1
X(log D)p = OX,p

dz1

z1

⊕ · · ·OX,p
dzk

zk

⊕OX,pdzk+1 ⊕ · · · ⊕ OX,pdzn,

Ωp
X(log D)p =

p∧
Ω1

X(log D)p.

An essential ingredient in the proof of the following theorem is the residue
map which is defined as follows. We set Xk = {zk = 0} and we let D′ be the
divisor on Xk traced out by D. Then writing ω = η ∧ (dzk/zk) + η′ with η,
η′ not containing dzk, the residue map can be defined as

res : Ωp
X(log D)→ Ωp−1

Xk
(log D′)

ω 7→ η
∣∣
Xk

.

As a special case we have the Poincaré residues Rk : Ω1
X(log D)→ OXk

.

Theorem 10 Let U be a complex algebraic manifold and let X be a good
compactification, i.e. D = X − U is a divisor with simple normal crossings.
Then the following is true.

1. Hk(U ; C) = Hk(X, Ω•
X(log D));

2. The trivial filtration F on the complex Ω•
X(log D) given by

F pΩ•
X(log D) = [0→ · · · → Ωp

X(log D)→ Ωp+1
X (log D)→ · · · ]

together with the filtration W defined by

WmΩp
X(log D) =


0 for m < 0
Ωp

X(log D) for m ≥ p
Ωp−m

X ∧ Ωm
X(log D) if 0 ≤ m ≤ p.

induce in cohomology two filtrations

F pHk(U,C) = Im
(
Hk(X, F pΩ•

X(log D))→ Hk(U ; C)
)
,

WmHk(U ; C) = Im
(
Hk(X, Wm−kΩ

•
X(log D))→ Hk(U ; C)

)
.

which put a mixed Hodge structure on Hk(U).
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A few words about the symbol H occurring in this theorem. It stands for
hypercohomology, of which we give here a simple treatment.

Let F be a sheaf on a topological space X. We view it as the presheaf
U 7→ F(U) := Γ(U,F), where Γ is the functor “taking global continuous
sections”. If instead, we consider

∏
x∈U Fx, the “discontinuous sections”

over U we obtain a presheaf C0
GdmF which is in fact a sheaf. By definition

it comes equipped with an injective homomorphism F ↪→ C0
GdmF . Following

[9, II.4.3] one inductively defines

Z0F = F
ZpF := Cp−1

GdmF/Zp−1F
Cp

GdmF := C0
Gdm

(
Cp−1

GdmF/Zp−1F
)
.

 (Godement’s resolution)

The sheaves Cp
GdmF are flabby, i.e. any section over an open set extends to

the entire space X. The natural maps

d : Cp
GdmF →→ Z

p+1F ↪→ Cp+1
GdmF

fit into an exact complex whose global sections by definition yields the coho-
mology groups of F :

Hp(X,F) := Hp(Γ(X, C•GdmF)).

From the definition of the Godement resolution it follows that any morphism
of sheaves f : F → G induces a morphism of complexes C•Gdm(f) between the
respective Godement resolutions. Moreover, for two such morphisms f and
g, we have:

C•Gdm(f ◦ g) = C•Gdm(f) ◦ C•Gdm(g).

If f : F → G is a morphism of sheaves on X, the induced morphism C•Gdm(f)
induce maps Hq(f) : Hq(X,F) → Hq(X,G) which therefore behave functo-
rially.

Secondly, any exact sequence of sheaves of R-modules

0→ F ′ → F → F ′′ → 0

induces short exact complexes on the level of their Godement resolutions and
hence long exact sequences

. . . Hq(X,F ′)→ Hq(X,F)→ Hq(X,F ′′)→ Hq+1(X,F ′) . . . .
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Next, we pass to a bounded below complex of sheaves F• on X. For every
Fp take its Godement resolution C•GdmFp. The derivatives dp : Fp → Fp+1

induce maps of complexes dp : C•GdmFp → C•GdmFp+1 and by functoriality,
dp+1◦dp = 0 so that we have a double complex C•GdmF•. Since the Godement
sheaves are flabby, the associated simple complex s(C•GdmF•) gives a flabby
resolution of F•.

The hypercohomology groups Hk(X,F•) are now defined as the cohomo-
logy groups of the complex of global sections of s(C•GdmF•).

5 Intersection homology and perverse shea-

ves

Consider the cohomology of a possibly singular projective variety X which
is irreducible of dimension d. Suppose that the cup product pairing

H i(X, Q)⊗H2d−i(X, Q)→ H2d(X, Q) ' Q(−d)

is a perfect pairing. This pairing is compatible with the filtration W . On
the other hand, H i(X) has weights ≤ i and H2d−i(X) has weights ≤ 2d − i
because X is compact. This implies that the image of Wi−1H

i(X)⊗H2d−i(X)
under cup product is contained in W2d−1H

2d(X) = 0. Hence we obtain that
Wi−1H

i(X) = 0 i.e. H i(X) is pure of weight i. So we see that purity is a
consequence of Poincaré duality.

The search for purity is therefore intimately connected with the search for
Poincaré duality. In this direction, the main development of the previous de-
cades is the discovery of intersection homology by Goresky and MacPherson
[11]. Its definition involves the choice of a perversity, but for complex analytic
spaces, which admit a stratification with only even-dimensional strata, there
is a canonical “middle” perversity which is commonly used. Intersection ho-
mology has as its input furthermore a local system V of rational or complex
vector spaces on a dense open subset of the regular part of X. From these
data a sheaf complex πV is constructed, the minimal perverse extension of
V. Assuming X compact of dimension dX , we have

IHq(X, V) = HdX−q(X, πV).

The characterization of πV involves the notion of perverse sheaf on X, which
we now introduce.
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Definition 5 Let R be a commutative ring with 1 and let F be a sheaf of
R-modules of finite rank on a Whitney-stratifiable analytic space X. We say
that F is (analytically) constructible if X admits an analytic stratification
such that F restricts to a locally constant sheaf on any of the strata. We
say that a bounded complex F• of sheaves of R-modules is (analytically)
cohomologically constructible if the sheaves Hq(F•) have finite rank and are
analytically constructible. We set

Db
c (X; R) :=


derived category of bounded
cohomologically constructible complexes
of sheaves of R-modules on X

 (10)

On this category one has the Verdier duality functor DX .

Definition 6 1. A bounded analytically cohomologically constructible com-
plex F• of sheaves of R-vector spaces is perverse if the following two
conditions hold:

dimC Supp Hj(F•) ≤ −j ∀j < dX (support condition);
dimC Supp Hj(D(F•)) ≤ −j ∀j < dX (cosupport condition).

2. In the derived category, perverse complexes make up a subcategory

PervR(X) ⊂ Db
c (X; R)

Then PervR(X) is an abelian category.
Note that a local system V on a complex manifold, considered as a com-

plex concentrated in degree zero, is not perverse, because its Verdier dual is
V∨[2dX ]. However, V[dX ] is perverse.

Definition 7 Let X be a complex variety of pure dimension dX and V a
local system over a dense open subset of X. With π the middle perversity,
the (analytic) intersection complex for V is the unique perverse complex πV•

on X which restricts to V[dX ] on U and has no sub- or quotients object in
PervR(X) supported on X − U .

We have

Lemma 11

HdX−q(X, πV•) = IHBM
q (X, V) = IH2dX−q(X, V),

HdX−q
c (X, πV•) = IHq(X, V) = IH2dX−q

c (X, V).
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Remark 12

1) Note that the intersection (co)homology is nonzero only in the interval
[0, 2dX ] as it should.

2) The complex QX [dX ] is perverse on any complete intersection variety X.
However, it need not be the minimal extension of its restriction to the regular
locus.

6 D-modules

Let X be an n-dimensional complex manifold. A germ at x ∈ X of a
holomorphic vectorfield on X is the same thing as a C-linear derivation
D : OX,x → OX,x. As such it is an example of a germ of a differential
operator of order 1. Germs of functions acting by multiplication on the left
give germs of differential operators of order 0. Together they generate a sub-
algebra of germs of C-linear endomorphisms of OX,x. This is the germ at x
of the sheaf of differential operators on X, denoted by

DX ⊂ HomCX
(OX ,OX).

The order filtration F ord
m , m = 0, 1, . . . is defined recursively as follows. One

sets F ord
0 DX = OX and for any open set U ⊂ X, one sets

F ord
m DX(U) = {P ∈ DX(U) | Pf − fP ∈ F ord

m−1DX(U)∀f ∈ OX(U)}. (11)

This defines a presheaf on X which then needs to be sheafified to obtain
F ord

m DX . To see this concretely, let (U, (z1, . . . , zn)) be a holomorphic chart.
Putting ∂i = ∂/∂zi, i = 1, . . . , n and using multi-index notation I = (i1, . . . , in),
|I| =

∑
k ik, sections P of F ord

m DX over U can be uniquely written as

P =
∑
|I|≤m

PI∂
I , PI ∈ OX(U), ∂I = ∂i1

1 · · · ∂in
n .

This shows that the sheaves of m-th order operators are locally free of finite
rank and that

GrF ord

m DX
∼= Symm(T (X)).

In this way we may compare the non-commutative algebra DX with its com-
mutative graded, the symmetric algebra on T (X):

GrDX :=
∞⊕

m=0

GrF ord

m DX
∼= Sym(T (X)). (12)
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We observe:

Lemma 13 The sheaf GrDX can be identified with the sheaf of holomorphic
functions

σ : T∨X → C

which restrict polynomially to each cotangent space.

A sheafM of left DX-modules is called a DX-module, or, if no confusion
is possible, a D-module. So M admits a left multiplication with germs of
vector fields, or, in other words, we obtain a Lie-algebra representation

ρ : T (X)→ HomC(M,M). (13)

Definition 8 A DX-moduleM is coherent if it is first of all locally finitely
generated, i.e. every point has a neighbourhood U over which there exists a
surjection

Dp
U →M|U → 0,

and secondly if every homomorphism Dq
U → M|U has a kernel which is

locally finitely generated.

From the fact that OX is coherent it is not hard to see [3, II.§3] that DX

is coherent (as a left-DX-module) and from this one deduces the following
lemma.

Lemma 14 A D-module is coherent if and only if it is locally finitely pre-
sented: locally over an open subset U ⊂ X we have an exact sequence of
D(U)-modules

D(U)p → D(U)p →M(U)→ 0.

Examples

1. The structure sheaf OX is a left DX-module, generated globally by the
section 1. In local coordinates (z1, . . . , zn) on an open set U ⊂ X the
kernel of the sheaf homomorphism ev : DX → OX given by P 7→ P (1)
is generated by the vector fields ∂1, . . . , ∂n. Hence OX is a DX-module
locally of finite presentation, and therefore a coherent DX-module. A
coordinate invariant description of ker(ev) can be given as follows. The
sheaf T (X) of germs of holomorphic tangent vectors is locally free of
rank n over OX . Hence the tensor product DX ⊗OX

T (X) is a locally
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free left DX–module. The map P ⊗ θ 7→ Pθ defines a homomorphism
of left DX-modules DX ⊗ T (X)→ DX and it represents ker(ev). This
shows that OX is a coherent DX-module.

2. Every locally free DX-module is coherent.

3. Every OX-coherent DX-module M is locally free as an OX-module.
To see this, it suffices to show that Mx is a free OX,x-module for any
x ∈ X. Let mx denote the maximal ideal of OX,x and choose elements
e1, . . . , er inMx which map to a C-basis of the fibre

M(x) :=Mx/mxMx.

By Nakayama’s lemma, Mx is generated by e1, . . . , er. These gene-
rators form a free basis. Indeed, if not there would be a relation∑r

i=1 fiei = 0 such that not all the fi are zero. Let k to be the mi-
nimum of the orders of vanishing at x of fi. We call it the order of
the relation. For simplicity, assume that f1 realizes this minimum. We
cannot have k = 0, since in that case the classes of the ei in M(x)
become dependent. But if k > 0, we can reduce order of the relation:
choose i such that in local coordinates, ∂if1 vanishes to order k at x.
Then, writing ∂iej =

∑
k bjkek, we find

0 = ∂i
( s∑

j=1

fjej

)
=

(
∂if1 +

s∑
k=1

fkbk1

)
e1 +

s∑
j=2

(
∂ifj +

s∑
k=1

flbkj

)
ej

which is a relation of lower order. This contradiction indeed shows that
M is locally free as an OX-module.

4. Let MX denote the sheaf of germs of meromorphic functions on X.
This is a DX-module which is not locally of finite type.

6.1 Good Filtrations and Characteristic Varieties

Let X be a complex manifold of dimension n andM be a DX-module.

Definition 9 A filtration on M is an increasing and exhaustive (M =⋃
p FpM) sequence of submodules (FpM)p∈Z such that F ord

r DX [FpM] ⊂
Fp+rM ∀r, s ∈ Z. It is called a good filtration if moreover
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1. locally on X this filtration is bounded below (in the sense that locally
FpM = 0 for p ∈ Z small enough) and above (in the sense that locally
for r ∈ Z large enough we have F ord

r DX [FpM] = Fp+rM;

2. each FpM is a coherent OX-module.

A filtered D-module is a D-module equipped with a good filtration.

For every coherent DX-module M such a good filtration exists locally on
X: starting from a local presentation

⊕aDX
v→

⊕bDX
u→ M → 0 one

can put FpM := u(⊕bF ord
p DX) for p ≥ 0 while FpM = 0 for p < 0. Then

F ord
r DX [FpM] = Fp+rM for all r, p ∈ Z. Conversely, if M locally possesses

a good filtration,M is coherent.
To test if a given filtration is good, the following Lemma is useful (see [3,

II.4]. To state it, recall (12) that GrDX is the graded module associated to
DX with respect to the order filtration. Similarly, we set

GrFM =
⊕

k

Grk
FM.

Lemma 15 Let (M, F ) be a DX-module equipped with a filtration. Then F
is good precisely when GrFM is coherent as a GrDX-module.

It is also important (and easy to show) that any two good filtrations F and
G on a given DX-module M are locally commensurable in the sense that
there exist two integers a and b such that locally for all p ∈ Z we have
Fp−aM⊂ GpM⊂ Fp+bM. Using this, one proves

Proposition 16 Let I(M, F ) be the annihilator of GrFM, i.e. the ideal of
GrDX consisting of w with wm̄ = 0 for all m̄ ∈ GrFM. Put

√
I(M, F ) = {a ∈ Gr(DX) | ∃k ∈ N, ak ∈ I(M, F )}.

Then
√
I(M, F ) does not depend on the choice of the good filtration F on

M.

Since locally good filtrations F exist, we deduce from this that there exists
a globally defined sheaf of ideals

√
I(M) ⊂ Gr(DX) which locally coincides

with
√
I(M, F ). Recall (Lemma 13) that Gr(DX) consists of the sheaf of

functions on the total space T∨X of the cotangent bundle of X which are
polynomial on each fibre T∨

x X. The ideal
√
I(M) thus defines a subvariety
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of T∨X, the characteristic variety ofM, which in each fibre T∨
x X is a cone.

It will be denoted

Char(M) :=
⋃
x∈X

V (
√
Ix) ⊂ T (X)∨. (14)

We finally remark that if we have a good filtration F onM, the characteristic
variety can also be seen as the support of the ideal GrF (M) ⊂ Gr(DX) (inside
the cotangent bundle).

Examples

1. Let M = OX . Then a good filtration is given by FpM = 0 for p < 0
and FpM = M for p ≥ 0. The same procedure works if M is a DX-
module which is coherent as an OX-module. The characteristic variety
of such a DX-module is the zero section of the cotangent bundle. Con-
versely, suppose that the characteristic variety ofM consists of the zero
section. Then for local coordinates (z1, . . . , zn) on U ⊂ X, considering
the differentials dzj as local functions wj on the total space of the co-
tangent bundle, (z1, . . . , zn, w1, . . . , wn) give a set of local coordinates
on T∨(U) ' U ×Cn. Then

√
I(M) is generated by (w1, . . . , wn). This

means that GrFM is killed by a power of the ideal (w1, . . . , wn) and
hence is a finitely generated OU -module. Hence M is itself a finitely
generated OX-module i.e. M is a coherent OX-module and hence free.

2. Let D ⊂ X be a submanifold of codimension one. Recall that

OX(∗D) :=
⋃
m

OX(mD),

the sheaf of meromorphic functions on X, holomorphic on X −D and
having a pole along D. Let M = OX(∗D)/OX and put FpM = 0 for
p < 0 and FpM = OX(pD)/OX if p ≥ 0. This defines a good filtration
on M. If ND|X = OX(D)/OX is the normal bundle of D in X, then
GrF

p (M) = 0 for p ≤ 0 and GrF
p (M) ' N⊗p

D|X for p > 0. Let (z1, . . . , zn)

be local coordinates on X such that D is given by z1 = 0. Let δ(z1)
be the class of z−1

1 modulo OX . Then δ(z1) locally generates GrF (M)
over Gr(DX) ' OX [w1, . . . , wn]. The annihilator ideal of this generator
is generated by z1, w2, . . . , wn. Hence Char(M) is the conormal bundle
of D in X, i.e. the subspace of T∨(X) consisting of pairs (x, α) such
that the covector α vanishes on tangent vectors to D.
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3. Let
0→M′ →M→M′′ → 0

be an exact sequence of DX-modules. If two of these are coherent, the
third one is coherent too. In that case, we have

Char(M) = Char(M ′) ∪ Char(M ′′).

Applying this to the defining sequence for OX(∗D)/OX it follows that
the characteristic variety of OX(∗D) is the union of the zero section
and the conormal bundle of D.

4. The order filtration on DX is a good filtration. We see that I(M, F ) is
the zero ideal, so the characteristic variety ofM is the whole cotangent
bundle.

6.2 Basics on Holonomic D-Modules

The tangent bundle T (X) is a symplectic manifold: its tangent bundle carries
a canonical symplectic form. A linear subspace A of a vector space endowed
with an alterating nondegenerate bilinear form is called isotropic if A ⊂ A⊥

and involutive if A ⊃ A⊥. If A = A⊥ then A is called Lagrangean. These
definitions have their analogs for subspaces C ⊂ T (X): it is called isotropic
iff each tangent space to C at a regular point is isotropic, and similarly for
involutive and Lagrangean.

It is a deep theorem that for a coherent DX-moduleM the characteristic
variety Char(M) ⊂ T (X)∨ is involutive. See [17]. Hence the following
definition makes sense.

Definition 10 A coherent DX-module is holonomic if its characteristic va-
riety is Lagrangian, or, equivalently if

dim Char(M) = dX .

In that case Char(M) consists of the union of closures of normal bundles to
regular loci of irreducible subvarieties of X.

Definition 11 A coherent DX-module M is called regular if it has global
good filtration whose annihilator ideal is equal to its radical, i.e. such that
the components of the characteristic variety have multiplicity one.
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6.3 De Rham functor and Riemann-Hilbert correspon-
dence

For a coherent DX-moduleM we define its de Rham complex as

DRX(M) =
[(
M→ Ω1

X ⊗OX
M→ · · · → ΩdX

X ⊗OX
M

)]
[dX ], (15)

where the derivatives in the complex are given in local coordinates by

d(ω ⊗m) = dω ⊗m−
n∑

i=1

(dzi ∧ ω)⊗ ∂im.

The link between D-modules and perverse complexes is given by Kashiwara’s
theorem, one of the central ingredients of the Riemann-Hilbert Correspon-
dence: [15]

Theorem 17 Let X be a complex analytic manifold. The de Rham complex
of a holonomic DX-module is a perverse complex.

We let Db
rh(DX) denote the derived category of bounded complexes of DX-

modules whose cohomology sheaves are regular holonomic. The de Rham
complex can equally be defined for complexes of DX-modules and we have
the celebrated

Theorem 18 (Riemann-Hilbert correspondence (II)) Let X be a com-
plex algebraic manifold. The de Rham functor establishes an equivalence of
categories

Db
rh(DX)←→ Db

c (CX).

It induces an equivalence of categories

{regular holonomic DX-modules} ←→ {perverse complexes on X},

i. e. the cohomology sheaves of a regular holonomic complex M• is concen-
trated in degree 0 if and only if DRX(M•) is perverse.

See [18, 19, 16].
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7 Mixed Hodge modules

7.1 Motivating example

Let X be a projective manifold of dimension n and let Y ⊂ X be a smooth
hypersurface. We are going to define some sheaf data on X whose ingre-
dients are a perverse sheaves and a D-module, both filtered, which together
determine the mixed Hodge structure on the cohomology of U = X−Y . Let
j : U → X and i : Y → X denote the inclusion maps.

First we consider the derived direct image K• = Rj∗QU [n]. Its cohomolo-
gy sheaves are given by H−n(K•) = QX and H−n+1(K•) = i∗QY (−1) where
(−1) refers to a Tate twist. As QU [n] is self-dual the Verdier dual of K•

is j!Q[n] and we see that K• is an object of PervX(Q). It carries a weight
filtration, given by

0 ⊂ WnK
• = τ≤−nK

• ⊂ Wn+1K
• = K•.

This will take care of the rational structure, and the weight filtration which
is defined over Q.

On the other hand we have the logarithmic de Rham complex Ω•
X(log Y )

with its filtrations W and F . Consider the DX-moduleM = OX(∗Y ) whose
sections are meromorphic functions on X with only poles along Y . It has the
submodule WmM = OX , and we put Wm−1M = 0, Wm+1M = M. This
filtration is a filtration by DX-modules.

Lemma 19 We have an isomorphism of filtered objects in PervX(C):

(K•, W )⊗ CX
∼= DR(M, W ).

Using this isomorphism we obtain the rational structure plus the weight
filtration on the cohomology of U .

We also have a good filtration by OX-submodules given by FpM =
OX(pX). It induces a filtration on the de Rham complex, which in turn
gives the Hodge filtration on the cohomology of U .

This is the simplest non-trivial example of a mixed Hodge module I know.
The ingredients for a mixed Hodge module on a smooth projective variety X
are:

1. an object K• of PervX(Q) equipped with an increasing filtration W ;
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2. a regular holonomic DX-module M equipped with two filtrations: its
weight filtration, which is a filtration by DX-submodules, and a Hodge
filtration, which is a good filtration in the usual sense.

3. an isomorphism of filtered objects in PervX(C):

(K•, W )⊗ CX
∼= DR(M, W ).

One needs to formulate the right conditions which guarantee that the hy-
percohomology of such objects produce mixed Hodge structures. This for-
midable task was accomplished by Morihiko Saito in the eighties of the past
century [22, 23].

7.2 Axioms for mixed Hodge modules

The definition of mixed Hodge modules is very involved. For this reason it is
more suitable to start with an axiomatic introduction. This makes it possible
to deduce important results rather painlessly, such as the existence of pure
Hodge structures on the intersection cohomology groups.

It is not really necessary to understand the intricacies of the construction
of mixed Hodge modules in order to be able to relate mixed Hodge modules to
mixed Hodge structures. The reason is first of all that mixed Hodge modules
on points are just mixed Hodge structures. Secondly, any mixed Hodge
module has an underlying perverse complex, and, this is crucial, the Verdier
duality operator and the basic direct image and inverse image functors can
be extended to the level of the mixed Hodge module.

We recall that for any complex algebraic variety X the derived category
of bounded complexes of cohomologically constructible complexes of sheaves
of Q-vector spaces on X is denoted Db

c (X; Q) and that it contains as a full
subcategory the category PervX(Q) of perverse Q-complexes. The Verdier
duality operator D is an involution on Db

c (X; Q) preserving PervX(Q).
Associated to a morphism f : X → Y between complex algebraic va-

rieties, there are pairs of adjoint functors (f−1, Rf∗) and (f !, Rf!) between
the respective derived categories of cohomologically constructible complexes
which are interchanged by Verdier duality. We can now state the axioms:

A) For each complex algebraic variety X there exists an abelian category
MHM(X), the category of mixed Hodge modules on X, together with
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a faithful functor

ratX : DbMHM(X)→ Db
c (X; Q)

which sends MHM(X) to PervX(Q). We say that ratXM is the under-
lying perverse complex of M . Moreover, we say that

M ∈ MHM(X) is supported on Z ⇐⇒ ratXM is supported on Z.

B) The category of mixed Hodge modules supported on a point is the ca-
tegory of polarizable rational mixed Hodge structures; the functor rat
associates to the mixed Hodge structure the underlying rational vector
space.

C) Each object M in MHM(X) admits a weight filtration W such that

• the object GrW
k M is semisimple in MHM(X);

• the functors M 7→ WkM , M 7→ GrW
k M are exact;

• if X is a point the W -filtration is the usual weight filtration for
the mixed Hodge structure.

Since MHM(X) is an abelian category, the cohomology groups of any
complex of mixed Hodge modules on X is again a mixed Hodge module
on X. With this in mind, we say that for a complex M• ∈ DbMHM(X)
the weight satisfies

weight[M•]

{
≤ n,
≥ n

⇐⇒ GrW
i Hj(M•) = 0

{
for i > j + n
for i < j + n.

D) The duality functor DX of Verdier lifts to MHM(X) as an involution,
also denoted DX , in the sense that DX ◦ ratX = ratX ◦ DX .

E) For each morphism f : X → Y between complex algebraic varieties,
there are induced functors f∗, f! : DbMHM(X)→ DbMHM(Y ), f ∗, f ! :
DbMHM(Y ) → DbMHM(X) exchanged under DX and which lift the
functors with the same symbol on the level of perverse complexes.

F) The functors f!, f
∗ do not increase weights in the sense that if M• has

weights ≤ n, the same is true for f!M
• and f ∗M•.
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G) The functors f !, f∗ do not decrease weights in the sense that if M• has
weights ≥ n, the same is true for f !M• and f∗M

•.

By way of terminology, we say that M• ∈ DbMHM(X) is pure of weight n
if it has weight ≥ n and weight ≤ n. We say that a morphism preserves
weights, if it neither decreases or increases weights. Since for a proper map
f∗ = f! axioms F) and G) entail:

H) Proper maps between complex algebraic varieties preserve pure com-
plexes.

7.3 First Consequences of the Axioms

From axiom A) and B) we see that there is a unique element

QHdg ∈ MHM(pt ), rat(QHdg) = Q(0), (16)

the unique Hodge structure on Q of type (0, 0). The next lemma explains
how the various cohomology groups can be expressed using direct and inverse
functors. On the level of mixed Hodge modules this then naturally leads to
mixed Hodge structures.

Lemma 20 Let aX : X → pt be the constant map to the point. Then we
have:

Hk(X; Q) = Hk(pt, (aX)∗a
∗
XQ)

H−k(X; Q) = Hk(pt, (aX)!a
!
XQ)

HBM
−k (X; Q) = Hk(pt, (aX)∗a

!
XQ)).

Moreover, if i : Z ↪→ X is a closed subvariety, we have

Hk
Z(X; Q) = Hk(pt, (aX)∗i∗i

!a∗XQ).

Motivated by Lemma 20, using axiom D) and E) we do the same for the
complex of mixed Hodge modules QHdg (16):

QHdg

X
:= a∗XQHdg ∈ DbMHM(X)

DQHdg
X

:= a!
XQHdg ∈ DbMHM(X).

}
(17)

By axiom E), applying the direct image functors associated to aX produces
complexes of mixed Hodge modules on the point p, hence, by axiom B), their
cohomology groups have mixed Hodge structures. We deduce:
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Corollary 21 Let X be a complex algebraic variety and i : Z ↪→ X a sub-
variety. The complexes of mixed Hodge modules (aX)∗QHdg

X
, (aX)!DQHdg

X
,

(aX)∗DQHdg

X
, respectively i∗i

!QHdg

X
put mixed Hodge structures on cohomo-

logy, homology, Borel-Moore homology, and cohomology with support in Z
respectively.

These mixed Hodge structures coincide with the ones constructed by Deligne.
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différentiels et microdifférentiels. Sém. Bourbaki 522 (1977–1978),
Lect. Notes in Math. 710, 277-289, Springer Verlag, Berlin etc. (1979).
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[19] Mebkhout, Z. Une autre équivalence de catégories. Compositio Math.
51 (1984), no. 1, 63–88.

[20] Nagata, M.: Imbedding of an abstract variety in a complete variety, J.
Math. Kyoto Univ. 2(1962), 1–10.

[21] Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge Structures, Book in
preparation.

[22] Saito, M.: Modules de Hodge polarisables. Publ. Publ. Res. Inst. Math.
Sci. Kyoto Univ. 24 (1988), 849–995.

[23] Saito, M.: Mixed Hodge Modules, Publ. Res. Inst. Math. Sci. Kyoto
Univ. 26 (1990), 221–333.

26


