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Chapter I. Analytic functions of several complex variables and analytic
varieties

1. Analytic functions of one complex variable

Let D be an open set in the complex plane C and f a complex valued
function on D.

Definition 1.1. We say that f is analytic at a point a in D if there is a power
series >n>O c(z - a)', which converges at each point z in a neighborhood of a,
such that

-

f (z) = e(z- a)Th

in a neighborhood of a. We say that f is analytic in D if it is analytic at every
point of D.

Definition 1.2. We say that f is holomorphic at a point a in D if the limit

lim f(a+h)-f(a
h

exists. We say that f is holomorphic in D if it is holomorphic at every point of D.

The above limit, if it exists, is denoted by (a) and is called the derivative
of f at a. If f is holomorphic in D, then we may think of as a function on D.

Let z = x + /Jy with x and y the real and imaginary partrs, respectively.
We may think of f as a function of (x, y). We write f = u + /Iv with u and v
the real and imaginary partrs.

In general, we say that a function of real variables is (of class) Cr, if the par-
tial derivatives exist up to order r and are continuous. If all the partial derivatives
exist we say it is C°°.

Theorem 1.3. The following are equivalent:
(1) f is analytic in D,
(2) f is holomorphic in D,
(3) f is C' in (x, y) and satisfies the "Cauchy-Riemann equations" in D;

Dv
ax - Dy'

Du

	

Dv
Dy=	 Ox

Note that, if we introduce the orerators

a	 i/a			 a	 i/a-=-I---)			 and		=-(+Oz	 2 \ax	 ayj		 Dz	 2 ax	 ayj
Typeset by AMS-TEX
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we may write the Cauchy-Riemann equation as

Of	 0.

If this is the case, we have Oz
='f	 df	

3z-
We finish this section by recalling the Cauchy integral formula. Let f be an

analytic function in a neighborhood of a and y the boundary of a small disk about
a, oriented counterclockwise. Then we have

2Iz-a
=f(a).

2. Analytic functions of several complex variables

Let Ctm = {z (zi,...,z) z E C} be the product of n copies of C. For
an n-tuple ii = ('ii,..., v) of non-negative integers, we set z" = z" z, Iz'I =
Ill +... + ii and ii! = ... va!.

Let D be an open set in C and f a complex valued function on D.

Definition 2.1. We say that f is analytic at a point a in D if there is a power series

1:1,1>0 cv(z - a)v =	 - ai)thl .. . (z -

	

which converges
absolutely at each point z in a .neighborhood of a, such that

f(z)		 -

in a neighborhood of a. We say that f is analytic in D if it is analytic at every
point of D.

The following can be proved by a repeated use of the Cauchy integral for-
mula:

Theorem 2.2. The following conditions are equivalent
(1) f is analytic in D.
(2) f is continuous and is analytic in each variable z in D, for i = 1,. . . , n.

It is known that we may remove the continuity condition in (2) above (Har-
togs' theorem). From Theorems 1.3 and 2.2, we have

Theorem 2.3. The following are equivalent
(1) f is analytic in D.

(2) f is C1 and satisfies the Cauchy-Riemann equation	 0 in D, for i =

1,	 .,n.	
2
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In the sequel, we call analytic function also a holomorphic function and use
the words "analytic" and "holomorphic" interchangeably.

Note that, if f is holomorphic, for arbitrary ii, the partial derivative

!'L_ 01-If
az" -		 . . .

exists and is holomorphic in D. If f(z)	 c(z - a)'' is a power series expansion
of f, then each coefficient c is given by

1 ö
Cv =

V! azl~,
This series is called the Taylor series of f at a.

Let D be an open set in Ctm and f : D -* Ctm a map. We say that f is
holomorphic if, when we write f componentwise as f = (fl,..., f,), each f is
holomorphic. Let D and D' be two open sets in C and f : D - a map. We say
that f is biholomorphic, if f is bijective and if both f and f are holomorphic.

It is not difficult to see that the composition of holomorphic maps is holo-
morphic.

For a holomorphic map f = (fl,..., f,) from an open set D in C into
Cm, we set

ôfi

	

8f




	D(f1.	fm) - i 8Z
-	

	9jrn	 afm

and call it the Jacobian matrix of f with respect to z.

Definition 2.4. We say that a point a in D is a regular point of f, if the rank of
the Jacobian matrix (O(fi,. . . , . , z,)) (a), evaluated at a, is maximal
possible, i.e., min(n, m). Otherwise we say that a is a critical (or singular) point of
f.

When n = m, the determinant of the Jacobian matrix is called the Jacobian
of f with respect to z. Thus, in this case, a is a regular point of f if and only if
det(O(f1,...,f)/a(z1,...,z))(a) ˆO. Ifwedenote byu and v thereal andthe
imaginary parts of f, we compute	

8(ui,vi,...,u,v) -(2.5)	 det	
	~

det a(fl'..., f")
~

2	
xfl, y)

-

	

	O(zi,.. . , z)

The following two theorems show how a holomorphic map looks like in a
neighborhood of a regular point. Without loss of generality, we may only consider
maps f from a neighborhood of the origin 0 in C into Ctm with f(0) = 0.
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Theorem 2.6 (Inverse mapping theorem). Let f be a holomorphic map from
a neighborhood of 0 in C into Ctm with f(0) = 0. If 0 is a regular point of f, then
there are open neighborhoods U and V of0 such that f is a biholomorphic map from
U onto V.

This theorem follows from (2.5), the inverse mapping theorem in the real
case and the Cauchy-Riemann equation. From this theorem, we get the following
theorem as in the real variable case.

Theorem 2.7 (Implicit function theorem). Let f be a holomorphic map from
a neighborhood of the origin 0 in C into Ctm with f(0) = 0. We assume that 0 is
a regular point of f.
(I) Suppose n rn. Thus the rank of the Jacobian matrix is m and, by renumbering
the functions and the variables, if necessary, we may assume that

det1m)(0) 0.a(zi,.. .,Zm)

In this case, there exist neighborhoods U and V of 0 in Ctm and a biholomorphic
map h from U onto V with h(0) = 0 such that

(foh)(zi,...,zm,...,zn)(zi,...,zm)

for (z1,.. .,z) in a neighborhood of 0.
(II) Suppose n m. Thus the rank of the Jacobian matrix is n and we may assume
that




det"'(0) 0.

In this case, there exist neighborhoods U and V of 0 in Cm and a biholomorphic
map h from U onto V with h(0) = 0 such that

(hof)(zi,...,z)=(zi,...,z,0,...,0)

for (zi,.. .,z) in a neighborhood of 0.
(III) Suppose n > m. Thus the rank of the Jacobian matrix is m and we may
assume as in (I) that

det1fm)(0) o.
,Zm)

In this case, there is a holomorphic map g from a neighborhood of 0 in Cm into
Cm with g(0) = 0 such that

f(gi(zmi,...,zn),...,gm(zmi,...,zm),zmi,...,zn)=0
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for (zm+i,.. . ,z,) in a neighborhood of 0.

Remark 2.8. In the case (I) above, f is a submersion in a neighborhood of 0, in the
case (II), f is an embedding in a neighborhood of 0 and in the case (III), we may
solve the equation

for zr,.. . , z as functions gi,.. . ,g,, of (zm+i, . . . , z,) in a neighborhood of 0 and
the set f_1(0) is the graph of the map g = (g1, . .

The following theorem can be proved as in the one variable case.

Theorem 2.9 (Uniqueness of analytic continuation). Let D be an open con-
nected subset of C and let f and g be holomorphic functions in D. If there is a
non-empty open set U in D such that f = g on U, then f = g on D.

The following can be proved using the corresponding result in the case of
one variable.

Theorem 2.10 (Maximum principle). Let D be a connected open set in C
and let f be a holomorphic function in D. If there is a point a in D such that
If(a) I > If(z) for all z in a neighborhood of a, then f is a constant function on D.

3. Germs of holomorphic functions

We list , for example, [CR] and [Mat] as references for this section. Let
H be the set of functions holomorphic in some neighborhood of 0. We define a
relation r'-i in H as follows. For two elements f and g in H, f r' g if there is a
neighborhood U of 0 such that the restrictions of f and g to U are identical. Then
it is easily checked that is an equivalence relation in H. The equivalence class of
a functionf is called the germ of f at 0, which we also denote by f, if there is no
fear of confusion. We let O be the quotient set ofH by this equivalence relation.
The set O has the structure of a commutative ring with respect to the operations
induced from the addition and the multiplication of functions. It has the unity
which is the equivalence class of the function constantly equal to 1.

If we denote by C{zi,... , z,} the set of power series which converge abso-
lutely in some neighborhood of 0, this set also has the structure of a ring. Since,
as in the one variable case, f '- g if and only if f and g have the same power series
expansion, we may identify O, with C{zi,.. . , z,}.

In what follows we denote by R a commutative ring with unity 1. A zero
divisor in R is an element a in R such that there is an element b 0 in R with
ab = 0. A ring R 0 is an integral domain if there are no non-zero zero divisors,
i.e, if ab = 0, for a, b E R, then a = 0 or b = 0. As a consequence of Theorem
2.9, the ring O is an integral domain. Thus we may form the quotient field of O,,
which we denote by M. Each element in M can be expressed as f/g and two
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expressions f/g and f /g' stand for the same element if and only if fg' = f'g. We
call an element of M a germ of rneromorphic function at 0 in C.

We say that an element u in a ring R is a unit if there is an element v in R
such that uv = 1. it is not difficult to see that a germ u in O is a unit if and only
if it is the germ of a function u with u(0) 0.

We say that an ideal I in a ring R is maximal if I R and if there are no
ideals J with I J R. This is equivalent to saying that the quotient R/I is a
field. Let m denote the set of non-units in On. Then it is an ideal in O. Moreover,
we have the following proposition.

Proposition 3.1. The ideal in is the unique maximal ideal in O.

A ring with a unique maximal ideal is called a local ring.
We analyze the structure of the ring O by induction on n. First, for a

germ f in O, we write f =	 We say that the order off is k, if a = 0
for all u with lvi < k and a0 0 for some u0 with jvo = k. We define the order
of the germ 0 to be +00. We say that the order of f in Z is k, if the order of
f(0,.. . , 0, zn), as a power series in Zn, is k. In this case, if k is finite, we also say
that f is regular in Zn (of order k). Then we have;

Lemma 3.2. If the order of f is k, then we may find a suitable coordinate system
n) of Ctm such that the order off in( is k.

We consider the ring On-i [Zn] of polynomials in Z with coefficients in On-1

O_1[Z] ={f(z) =a0 +aiZ + +akZ a

Definition 3.3. A Weierstrass polynomial in Z of degree k is an element h of
On-11Z'] of the form

h=ao+aiZ+ak_iZ+Z,

where k is a positive integer and a0, a,,...,ai are non-units in On-i.

Note that in the above, h(0, . . . , 0, Zn) = Z. Hence the order of h in Z is
k. In general, any germ f in O is written as

f(Z)=ao+a1Z+'""+akz+...

with a E Otm1" The order off in Z is k if and only if a0,a1,.. . aj_ are non-
units in On-, and ak is a unit in On-,. In this case, a1(ao + a1Z +. . . + akz) is
a Weierstrass polynomial in Z of degree k. The Weierstrass preparation theorem
stated below shows that such an f is essentially equal to a Weierstrass polynomial
of degree k.
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Theorem 3.4 (Weierstrass division theorem). If h is a Weierstrass polynomial
in z of degree k, then for any germ f in U,-,, there exist uniquely determined
elements q in 0,-, and r in On_i [zn] with deg r < k such that

f = qh +

Moreover, if f is in On-1 [z], so is q. Thus we also have a division theorem in the
ring On- i[z].

Theorem 3.5 (Weierstrass preparation theorem). Let f be a germ in 0,-,
which is regular in z of order k. Then there is a unique Weierstrass polynomial h
in Z of degree k such that f = uh with u a unit in 0.

Next we discuss some important properties of the ring 0,-, which follow
from the above theorems. First we recall some more terms from algebra. Let R
be an integral domain. An element a in R is irreducible if a is not a unit and if
the identity a = bc for elements b and c in R implies that either b or c is a unit.
Note that 0 is not irreducible. We say that R is a unique factorization domain, or
simply a UFD, if every element a in R which is not U or a unit can be expressed as
a product of irreducible elements in R and the expression is unique up to the order
and multiplications by units. It is known that if R is a UFD, so is the polynomial
ring R[X] in the variable X (Gauss' Theorem).

Theorem 3.6. The ring 0,-, is a unique factorization domain.

Let R be a UFD. For elements a and b in R, there is always the greatest
common divisor gcd(a, b), which is unique up to multiplication by units. We say
that a and b are relatively prime if gcd(a, b) is a unit. For a point z in C, let
be the ring of germs of holomorphic functions at z, which is naturally isomorphic
with 0,--,. Using Theorem 3.5, we can also prove that if f and g are relatively prime
in 0,2, then they are relatively prime in O,, for all z sufficiently close to 0.

We say that a ring R is a Noetherian ring if every ideal in R has a finite
number of generators, namely, if I is an ideal in R, there exist a finite number of
elements a,,..., a,- in I such that every element a in I is written as a = xa
with x E R. It is known that if R is Noetherian, so is R[X] (Hilbert basis theorem)..

Theorem 3.7. The ring On is a Noetherian ring.

The following is a consequence of the "Riemann extension theorem", which
is proved using the Weierstrass preparation theorem.

Theorem 3.8. Let D be an open set in C and f a function holomorphic and not
identically 0 in D. We set V = { z e D f (z) = 0}. IfD is connected, then D \ V
is also connected.
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4. Complex manifolds and analytic varieties

References for this section will be [CH] and [Ko]. The notion of complex
manifold is obtained by replacing C°° maps by holomorphic maps in the definition
of a C manifold;

Definition 4.1. Let Mbe a Hausdorif topological space with countable basis. We
say that M is a complex manifold if it admits an open covering U = {Ua}cxEJ with
the following properties
(1) for each a, there is a homeomorphism y from Uc, onto an open set Dcx in C,
for some n,
(2) for each pair (a, /3), the map	 o	 is biholomorphic from	 (U,, fl U) onto

ç°cx(Ua fl Un).

The natural number n, which is uniquely determined on each connected
component of M, is called the (complex) dimension of the component. If all the
components have dimension n, we say the dimension of M is n.

Let U = {Ucx}cxEI be an open covering as above. We call (Un, SOc) a (holo-
morphic) local coordinate system on M. For a point p in Ua, we call Ucx a coordinate
neighborhood of p and

cocx(p) = (z(p),. . Zn'W)
the local coordinates of p (with respect to cx). Sometimes we identify Ucx with
Dcx by the homeomorphism cx and identify p with the point (z' (p),. . . , z (p)) in
Dcx C C. In this case we call (z.	 z) a coordinate system on Ucx. The collec-
tion {(Ucx, Pcx)}cxEI of pairs (Ua, cpa) as above is called a system of (holomorphic)
coordinate neighborhoods on M.

Examples 4.2. 1. A (non-empty) open subset in CTh is an n dimensional complex
manifold.

2. The complex projective space CIP. We introduce a relation in C41 \ {O}
by setting, for ( = ((o, . . . , () and (' = ((s..... (,) in C41 \ {O}, ( i-' ('if and
only if (' = t( for some non-zero complex number t. Obviously, is an equivalence
relation and the equivalence class of ((0,..., () is denoted by [(0,..., (,]. We may
give a complex structure on the quotient set M (C \{O})/ '- as follows. First,
we give the quotient topology on M. The space M is covered by n + 1 open sets.
U, i 0, 1,. . . , n, defined by

U={[(o,...,(]EMI(0}.

Then the map çoj : Uj -p C defined by

Wi Q(0 " , Ca]) = ((/(i,. Cj1/(i, (i+1/(i.. . ,
8






is a homeomorphism. Moreover, it is not difficult to check that for each pair (i, i)
the map çoj o j' is a biholomorphic map from ço(U fl U) onto	 fl Uj).
Thus M becomes a (connected) complex manifold of dimension n, which we denote
by CIP and call the n dimensional complex projective space. We call [(o,... ,
homogeneous coordinates on CP'. Note that CIP1 is the Riemann sphere.

From the construction, the projective space Cl1 is interpreted as the
set of complex lines through 0 (one dimensional subspaces) in C. Likewise the
Grassrnannian C(n) is defined to be the set of p dimensional subspaces of Cm. It
admits also naturally the structure of a compact complex manifold of dimension
p(n - p) (cf. [Gil] Ch.1, 5).
3. If M and M' are complex manifolds of dimensions n and n', respectively, the
product M x M' has naturally the structure of a complex manifold of dimension
n + n'.

Exercise 4.3. Let S21 = {((o() E C Io2+"+Kn2 = 1} be the
2n + 1 dimensional unit sphere and it the restriction of the canonical surjection
C1 \ {0} -f CIPTh to S21. Show that IV is surjective (thus CIP is compact) and
find the inverse image ir'(p) for each point p in CIP.

A complex valued function f on an open set U in a complex manifold M is
said to be holomorphic if, for each local coordinate system (Ua, ), the function
f o ' is holomorphic on W, (U fl U). Also, a map f : M -p M' from a complex
manifold M into another M' is said to be holomorphic if, for local coordinate
systems (Ua, ) on M and (VA, ) on M', the map f p1 is holomorphic
on fl f (V))). A biholomorphic map is a bijective holomorphic map f such
that f is also holomorphic.

IfM is a complex manifold of dimension n, since we may identify C with
R2 and a holomorphic map is of class C, M has the structure of a C°° manifold
of real dimension 2n. If (zi,.. . , z) is a coordinate system on a neighborhood U
of a point p in M, then writing z = x2 + \/iyj with x and yj the real and the
imaginary parts of z, we see that (x 1) yi,... , x, y) is a C°° coordinate system on
U. Let Ta,pM denote the tangent space of M at p as a C°° manifold. We may
think of the vectors

and
8z	 2 \ 0x	 Dy ,/	 9z	 2	 8x2	 ayi

as being in the complexification	 M =	 M	 C of TR, M. It is not difficult
to see that, if we denote by TM and TM the subspaces of the C-vector space
M spanned, respectively, by 8/azi,.. . , 3/az and		8/3, then they

do not depend on the choice of the coordinates (zi,.. . , zn). Thus we have:	
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Proposition 4.4. For a complex manifold M we have a decomposition

TJ,M =TMTM.

We call TM and TM, respectively, the holomorphic and antiholomorphic
parts of

	

M.
There is an important class of subsets in a complex manifold, namely, ana-

lytic varieties.

Definition 4.5. Let D be an open subset of a complex manifoldM and V a subset
of D. We say that V is an (analytic) variety in D if, for any point p in D, there
exist a neighborhood U of p and a finite number of holomorphic functions fl,..., f
on U such that

v flU = {q eU f, (q) = = f(q) = O}.
We call

(ft,..
. , fr) a system of local defining functions of V and

f
= =

Jr = 0
local equations for V near p.

A variety in D is sometimes called a subvariety of D. Note that a variety in
D is a closed subset of D. If V is a closed subset of D, it is a variety in D if (and only
if) each point o in V admits a neighborhood U with the properties in Definition
4.5. A non-empty variety which is locally defined by a single (not identically zero)

holomorphic function is called a hypersurface (cf. Theorem 5.11 below).
The first part of the following is obvious from the uniqueness of analytic

continuation and the second part follows from Theorem 3.8.

Theorem 4.6. Let V be a variety in a connected open set D. If it is a proper
subset of D, it does not have interior points. Moreover, D \ V is connected.

Definition 4.7. Let V be a variety. A point p in V is called a regular point of V if
there is a system of local defining functions

(fl,
.. . , fr) of V in a neighborhood of

p such that p is a regular point of the map f = (fl, . .. , fr). We say p is a singular
point of V if it is not a regular point.

Note that if p is a regular point of V, by the inverse mapping theorem, we

may assume without loss of generality that r n in the above.

Exercises 4.8. In what follows, let p be a regular point of a variety V.

(1) Show that, if (fl, . . . , fr) is a system as in 4.7, then there is a neighborhood U
of p such that V fl U has the structure of a complex manifold of dimension n - r so
that the inclusion map t: V fl U -* U is holomorphic.
(2) Show that, in this situation, the differential t : TV -* TU = TM is injective.
Thus we may identify TV with a subspace of TM. We call the quotient space
TM/TPV the (holomorphic) normal space of V in M at p.
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(3) Let (zi,. . . , z) be a coordinate system in a neighborhood of p in M. We identify
TM with Ctm =	 (,)} by taking (O/8zi,. . . , 9/Oz) as its basis. Show that,
in Ctm, TV is given by	

~7 azj (p)	 0,	 i=1,	,r.

For a variety V, we denote by Reg(V) and Sing(V), respectively, the sets
of regular and singular points of V. By 4.8, Reg(V) is a complex manifold. It is
shown that Sing(V) is again an analytic variety (cf. Ch.III, Proposition 5.3 and
Remark 5.4). Hence Sing(V) is a closed set in V and Reg(V) is an open set in V.
An analytic set V in D is said to be a (closed) submanifold of D if V = Reg(V). In
this case, it is a locally closed submanifold of M.

Examples 4.9. 1. LetM be C2 with coordinates (z1, z2). We set f(zi, Z2) = Z1Z2
and V = { (zi, z2) f(zi, z2) = 0}. Thus V consists of two "complex lines" (z1 and
z2 "axes") intersecting in C2 at one point (the origin 0). By definition we see that
V\{0} C Reg(V), while by looking at the neighborhood structure of 0, we see that
0 is a singular point of V (cf. Exercise 4.10, (1) below). This can be also checked
by studying the behavior of the tangent spaces of the regular part. See also Ch.III,
Proposition 5.3. Thus Reg(V) = V\ {0}, which has two connected components
each being a one dimensional complex manifold biholomorphic to C' = C \ {0}.
2. Again let M be C2. We set f(zi, Z2) = z - z and let V be the variety defined
by f. By definition we see that V \ {0} C Reg(V), while 0 is a singular point of
V (cf. Exercise 4.10, (2)). Thus Reg(V) = V \ {0}, which has one component
biholomorphic to C*. Note that V is homeomorphic to C.

3. LetM be C3 with coordinates (z1, z2, z3). We set f(z1, z2, z3) = z1z -z and let
V be the variety defined by f. Then Reg(V) is a two dimensional complex manifold
and Sing(V) is the z1-axis. The set V is called the Whitney umbrella.

4. Let M be C3. We set f(z1, z2, z3) = z - z?z - z and let V be the variety
defined by f. Then Reg(V) is a two dimensional complex manifold and Sing(V) is
the z3-axis.

Exercises 4.10. (1) Let S3 = { (z1, z2) z12 + z22 = 1 } be the three dimensional
unit sphere in C2 = K.". Show that, in Example 4.9, 1, the intersection K = V fl S3
consists of two circles which are unknotted but link with each other.

(2) Show that, in Example 4.9, 2, K = V fl 3 is the "torus knot of type (2, 3)".

(3) In Example 4.9, 2, find an explicit (holomorphic) homeomorphism from C onto
V.
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(4) Let V be the variety in C4 = {(z1, z2, z3, z4)} defined by the three equations

Z1Z4 - Z2Z3 = 0,	 z - z1z3 = 0 and z - Z2Z4 = 0.

Find Reg(V) and Sing(V). What is the dimension of each connected component of
Reg(V) ?

Consider the n dimensional complex projective space CE" with homoge-
neous coordinates [("o,. . . , (,] and let, for each j = 1,.. . , r, Jj((o,. . . , ) be a
homogeneous polynomial in ((o,.. . , () of degree d3. Then the set

V={[(o,...,(]ECFjPj((o,...,)=0,j=1,...,r}

is a well-defined subset of CIP and is, moreover, a variety in CP. In fact, in
each open set U = { ( 0 }, V is defined by the holomorphic functions f3 =

. ,		 jPi ((0		 (11	
= 1,.. . , r. Such a variety is called a (projective) algebraic

variety. It is known that every variety in CIP'2 is algebraic (Chow's theorem). In
particular, the "hyperplane" defined by ( 0 is an n - 1 dimensional submanifold
of CPTh which may be identified with CP'1. Thus we may express CPTh as a
disjoint union CIP = Ctm U CIP', which leads to a cellular decomposition of C]PTh
CllTh = Ctm U C' U U C°. Using this we may compute the homology of CIPTh;

(4.11)	 H(CPtm;Z) =
{ Z, for p=0,2,..., 2n,	

0, otherwise.

Exercise 4.12. For complex numbers a, i and y, let Va, be the variety in CP2
defined by

Va,y = { [(ü,	 2] E C2 1 (0(1 - (i
-
a(0) ((1 - 3(0) ((1

- yco) =0 }

(1) Show that, if a, 3 and 'y are mutually distinct, Vj3, has no singular points.
(2) Show that, if 'y 0, V0,0, has only one singular point at p = [1,0, 0], which is
equivalent to the one in Example 4.9, 1.
(3) Show that V0,0,0 has only one singular point at p = [1,0, 0], which is equivalent
to the one in Example 4.9, 2.

5. Germs of varieties

In this section, we consider the germs of varieties and the relation between
these germs and the ideals in O. See, e.g, [Han for the corresponding theory in
Algebraic Geometry.

We first introduce a relation in the set of subsets of C. Let A and B be
two subsets of Ctm. We define A B if there is a neighborhood U of 0 such that
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A fl U = B fl U. It is easily checked that this is an equivalence relation. We call
the equivalence class of A the germ of A at 0 and we denote it also by A unless it
is necessary to distinguish the two. Usual operations of sets induce those of germs.
Thus for two germs A and B at 0, A fl B, A UB and A \B are well-defined. The
relation A c B is also well-defined.

Let fl, .. , fr be germs in O. We choose a neighborhood U of 0 such that
these germs are represented by holomorphic functions on U, which we also denote
byWe set

V(f1,...,fr) = the germ at 0 of {z EU f, (z) = ... = f(z) = 0}
and call it the germ of the variety defined by fl, . . . , f. More generally, let I be
an ideal in O,. By the Noetherian property of O, (Theorem 3.7), there exist a
finite number of germs fl, . . . , fr such that I = (fl, . .. , fr) (the ideal generated by
fl, . . . , fr). We set V(I) = V(f1,. . . , fr) and call it the germ of the variety defined
by I. It is easily checked that it does not depend on the choice of generators of I.
Thus each ideal in O,., defines a germ of variety at 0. Conversely suppose we are
given a germ V of variety at 0. We choose a neighborhood U of 0 such that the
germ is represented by a variety in U, which we also denote by V. We set

1(V) = { f O,. f(z) = 0 for all z in V and near 01.
It is easily checked that this is an ideal in O,. For an ideal I in O, we set

= { f Eon fk e I for some positive integer k }

and call it the radical of I. This is again an ideal in O and it contains I.

Exercise 5.1. For k = 1,.. . , n, we consider the "coordinate functions" zi,.. . , z as
germs in (9. Show that

I(V(zi,...,zk)) = (z1,. ..,zk).
There are various relations between germs of varieties and ideals, most of

which follow rather straightforward from definition. The most important and deep
fact will be the following theorem. We refer to [GR], for example, for the proof.
Theorem 5.2 (Hubert Nullstellensatz). For any ideal I in O,

I(V(I)) = /i.

Exercise 5.8. Show that, for an ideal I ( O) in O, the complex vector space
On/I is finite dimensional if and only if V(I) = {0}.
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In general, let R be a commutative ring with identity. For an ideal I in R,
its radical \/i is defined similarly as for the ones in O,. An ideal p in R is said to
be prime if R/p is an integral domain, i.e., p R and ab E p implies a E p or b E p.
If p is prime, then p.

Definition 5.4. Let V be a germ of variety at 0. We say that V is irreducible if
V

	

and if V= V1U V2 implies V1=V or V2 =V.

Theorem 5.5. A germ of variety V is irreducible if and only if the ideal 1(V) is
prime.

Corollary 5.6. For a germ f, which is not 0 or a unit, in O, the following are
equivalent
(i) V(f) is irreducible.
(ii) I(V(f)) (=	 is a prime ideal.
(iii) There is an irreducible element p in O, such that f = ptm for some positive
integer in.

The following is a consequence of the "primary decomposition theorem":

Theorem 5.7. Any (non-empty) germ V of variety can be written as

VViU"UVr,

where V1,..., Vr are germs of varieties such that each V is irreducible and that
V, V V, if i j. Moreover, V1,..., V,. are uniquely determined by V up to order.

The proof of the following is not difficult.

Theorem 5.8. Let f be a germ, which is notO or a unit, in (9. 1f f = pr" ...
pr

is the irreducible decomposition of f, then

V(f) V(pi) UUV(pr)

is the irreducible decomposition of V(f).

Let f be a germ in O, which is not 0 or a unit. We say that f is reduced
if the irreducible decomposition of f has no multiple factors, i.e., in the irreducible
decomposition f = p' ...

p2r, we have m = 1 for all i. We represent f by a
holomorphic function f in a neighborhood of 0. Then, it can be proved that, if f is
reduced at 0, the germ f in °72,Z is reduced for all z sufficiently close to 0. Note
that, on the other hand, even if f is irreducible at 0, f, may not be irreducible. For
example, consider the "Whitney umbrella" (Example 4.9, 3).

Exercise 5.9. Show that f is reduced if and only if 1(V(f)) = (f).
14






We define the dimension of a variety on the basis of the following theorem.
For the proof we refer to [GR].
Theorem 5.10. Let V be an irreducible germ of variety. We may find a represen-
tative V of V such that Reg(V) is connected and dense in V.

For a germ of variety V at 0, we define its dimension (at 0), denoted by
dim V, as follows. If V is irreducible, then we define dimV to be the dimension of
the complex manifold Reg(V). In general, if V l7 U U Vr is the irreducible
decomposition of V, we set dimV = maxl<i<r dimV. We also define the codimen-
sion (denoted by codim V) by codim V = n - dim V. Note that in this case we
have the corresponding decomposition Reg(V) = Ci U ... U Cr of Reg(V) into its
connected components C. Each C is a complex manifold whose closure coincides
with V. However, in general, C does not coincide with Reg(V). We say that V is
pure dimensional if all the components V have the same dimension.

The "if' part of the following theorem follows from Theorem 5.8. For the
"only if" part, we refer to [GR].

Theorem 5.11. A germ V of variety is pure n - 1 dimensional if and only if there
is a germ f in O,, not 0 or a unit, such that 1(V) = (f).

Let D be an open set in a complex manifold M. A variety V in D is said to
be (globally) irreducible if it cannot be expressed as the union of two varieties V1
and V2 in D with V1, V2 V. This notion should be distinguished from the "local"
irreducibility (Definition 5.4). For example the variety V0,0, of Exercise 4.12, (2)
is globally irreducible, but locally not irreducible at p. Note that every variety is
written as a union of irreducible varieties. Note also that V is irreducible if and only
if the regular part Reg(V) is connected. Hence, for an irreducible variety V and a
point p in V, the dimension of V at p remains constant. We call it the dimension of
V. In general, we say that V is pure dimensional, if all the irreducible components
of V have the same dimension.
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Chapter II. Differential forms and ech-de Rham cohomology

1. Vector bundles

In what follows, we denote by K either R or C and Mr(K) the sets of r x r
matrices with entries in 1K. It is naturally identified with KT2. Also we set

GL(r, K) { A E M, (K) detA O}.

It has the structure of a real or complex Lie group. Namely, it is a group with
respect to the multiplication of matrices and, moreover, it is a C°° or a complex
manifold according as K is R or C, since it is an open set of Mr(IK), and the group
operation is C°° or holomorphic.

Definition 1.1. Let M be a C°° manifold. A (C°°) vector bundle of rank r over
M is a topological space E together with a continuous map ir : E - M such that
there exists an open covering U = {Ua}QEI of M with the following properties
(1) for each c, there is a homeomorphism

with w o =7r, where w denotes the projection U,,, x K' ---> U,,,,
(2) for each pair (a,/3), there is a C'° map

U flU -* GL(r,IK)

with
o	 '(p, ) = (p, h" (p)	 for	 (p, () E u n u

We say that E is a real or complex vector bundle according as 1K is R or C.

Thus if it : E - M is a vector bundle of rank r over a C'° manifold M
of dimension m, then E has the structure of a C°° manifold of dimension in + r
or m + 2r, according as K = R or C, so that it is a C°° surjective submersion

(surmersion) and each fiber E = 7r-'(p), p E M, has the structure of a vector
space of dimension r over 1K. We call 'J a trivialization of E on U. We also call
h the transition matrix of E on u, fl U and the collection {h} the system of
transition matrices of E. For each point p in U fl Ui fl we have the identity

(1.2)

	

h(p)h(p) = h(p).

Thus, in particular, h (p) = I (the identity matrix) and h1 (p) = (h (p)) . We
may think of the system {(Uc, , h)} as defining a vector bundle structure on
E.
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If we are given an open covering {U} of M and a collection {h} of C°°
maps

UaflU -*GL(r,IK)

satisfying (1.2) for p in Ua fl U fl U, we may construct a vector bundle as follows.
For (pa, in U x W and (pa, () in U >< K, we define (pa, ) (pa, () if and
only if

I Pa Pi (P)
=

Then it is easy to see that this is an equivalence relation in the disjoint union

Lja(Ua >< Kr). Let E be the quotient space. Then, since

(Uc, X K')/ = Uc, x

E has a vector bundle structure with {h} as a system of transition matrices.
Let E and F be two vector bundles on M. A C°° map E - F is said

to be a vector bundle homomorphism if it commutes with the projections and if
the induced map y : -p F on each fiber is K-linear. We say that is an
isomorphism if it is a C°° diffeomorphism. In this case induces a K-isomorphism
on each fiber. We also say that E and F are isomorphic (or E is isomorphic to F),
and write E F, if there is an isomorphism of E onto F. A vector bundle is called
trivial if it is isomorphic to the product M x K".

Exercise 1.3. Let E and F be two vector bundles on M with systems of transition
matrices {h} and {g}, respectively, on an open covering {U}. Show that E
and F are isomorphic if and only if there exists a C°° map h° Uc, -f GL(r, K),
for each a, such that




h(p) = h(py'g(p)h'3(p),

for p in Uc, fl U.

We say that a sequence of vector bundle homomorphisms

E		''-+

	

-4

is exact if, for each p in M, the induced sequence E -- F -- G is exact, i.e.,
Kerb = Imço.

Let it : E -f M be a vector bundle of rank r. A subset E' of E is said to
be a subbundle of E, if there is a system {(Uc,, 1'c, h)} as in Definition 1.1 such
that each 'c, maps it'1(Uc,) onto Uc, x K"', where it' denotes the restriction of it

to E' and K"' is identified with the subspace of K" consisting of (column) vectors
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((j, , Cr) (the transposed of (Ci,.. . , Cr)) with Cr'+i = = Cr = 0. In this
case, each h°- is of the form

*
(1.4)		 =

where h' and h" are C°° maps from Uc, fl U into GL(T', K) and GL(r", K),
= r - r', respectively. Note that each of the systems {h'} and {h"} satisfies

(1.2). Thus E' has the structure of a vector bundle of rank r' with {h'} as a

system of transition matrices. The vector bundle of rank r" defined by the system
{h"} is called the quotient bundle of E by E' and is denoted by E/E'. Note
that there is a surjective vector bundle homomorphism p: E -> E/E' so that the

sequence

is exact, where t denotes the inclusion.
In general, if we may choose a system {h} of transition matrices of a

vector bundle E so that each h° is of the form (1.4), then E admits a subbundle
with {h'} as a system of transition matrices.

Exercise 1.5. Let : E - F be a homomorphism of vector bundles. Show that, if
the rank of the restriction cop of to each fiber E, p E M, is constant, then the
kernel Ker =

UPEM Ker ço and the image Tmy = LIPEM Imy of are subbundles
ofE and F, respectively. Show also that the quotient bundle E/ Ker is isomorphic
to Imco The quotient F/Tm co is called the cokernel of co and is denoted by Coker co

If f M' - M is a C°° map of C°° manifolds and if 7r: E -p M is a vector
bundle over M, we define the pull-back f*E of E by f by

f*E ={(p,e) EM' xE f (p) = 7r(e) }.

It is a vector bundle over M' with projection the restriction of the projection onto
the first factor. Note that (f*E) = Ef(). In particular, if V is a submanifold
ofM with inclusion map i and if E is a vector bundle on M, the pull-back i*E is
called the restriction of E to V and is denoted by Ely.

A complex vector bundle over a complex manifold M is said to be holo-

morphic if E admits a system of transition matrices {h} such that each hc is

holomorphic. Note that in this case, E has the structure of a complex manifold so
that the projection E - M is a holomorphic submersion.

Let ir : E - M be a vector bundle of rank r and U an open set in M.
A (C°°) section of E on U is a CcYO map s : U -+ E such that 'it o s = 1u, the

identity map of U. A vector bundle E always admits the "zero section", i.e., the
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mapM -* E which assigns to each point p in M the zero of the vector space E.
The set of CO sections of E on U is denoted by C(U, E). This has a natural
structure of vector space by the operations defined by (s1 + 82)(p) = s1 (p) + s2(p)
and (cs) (p) = cs(p) for sl,82 and s in C°°(U,E), cm K and pin U. If E is a
holomorphic vector bundle over a complex manifold M, a section over U is said to
be holomorphic if it is a holomorphic map from U into E. The set of holomorphic
sections of E over U is denoted by F(U, E). This has the structure of a complex
vector space.

A section s on U can be described as follows. We fix a system of transition
matrices {h'3} of E on an open covering {U}. Using the C°° diffeomorphism

7r-1 (U,,) -+ U x K, we may write

,b(s(p)) = (p, s(p)) for p E U fl Ua,

where s is a C°° map from Un U into K'. For each point p in Un Ua fl U, we
have

(1.6)

	

sa(p) = h0(p)s(p).

Conversely suppose we have a system {s} of C°° maps satisfying (1.6). Then by
setting s(p) = ''(p, sa(p)) for p in u fl we have a section s over U.

For k =

	

a k-frame of E on an open set U in M is a collection
s = (si,. . . , SO of k sections s of E on U linearly independent at each point in U.
An r-frame is simply called a frame. Note that a frame of E on U determines a
trivialization of E over U.

Example 1.7. LetM be a C°° manifold of dimension m. We may give naturally a
vector bundle structure on the (disjoint) union TRM = L]PEM TR, M of the tangent
spaces of M. First, define IV : TM -k M by assigning to each tangent vector its
base point. Then let {U} be a covering of M by coordinate neighborhoods U
with coordinates (xv,.. . , x). By taking (3/8x ..... 8/8x) as a basis of		 M
for each p in	 we have a bijection i/ ir'(Ua) Uy x R. Since we have the
relation

8			 8=	 - (p)

	

	j =1.... IM,

for pinUaflU, we see that aO00 '(p,) = (p,t(p)) for (p,) E (UaflUç)xRm,
where





Hence we see that TaM admits the structure of a real vector bundle of rank m with
{t} as a system of transition matrices. We call it the (real) tangent bundle of

19






M. A (C°°) vector field v on an open set U is a (C°°) section of TM. Thus it is

expressed as, on each U fl Ua,

v =

where the fe's are (C°°) functions on UaflU. In UflUaflU13, we have a =
t (ff'.	 f). Note that (0/3x

	

D/Dx) is a frame ofTM on Ua.
If V is a submanifold of dimension £ of M, then we may cover V with

coordinate neighborhoods 11a on M with coordinates (xv,.. , x) such that

Vfl Ua = {p E Ua x1(p) = = x(p) = O}.

Then the restriction tv of t°8 to V fl Uc. fl U13 is of the form

ta/3	 *
tIv =

(

	

tlla13)

a	 a

	

3where t and t denote the Jacobian matrices D(x1,. . . , x )/8(x1,... , x) and
" , x)/9(x1, . . . , x), respectively, both restricted to V. Since the re-f+	 m

	

i+
striction of (x, .. . , x) to V form a coordinate system on V fl Ua, we see that
TaMv admits TaV as a subbundle. We call the quotient bundle the normal bundle
of V in M and denote it by N,v.

It is known that there exist a neighborhood U of V in M, a neighborhood
W of (the image of) the zero section Z in Na,v and a diffeomorphism of U onto
W such that V) Z ([GP] p.76). Such a neighborhood U is called a tubular
neighborhood. Usually we take an open disk bundle (or NR,V itself) as W so that
V is deformation retract of U with a C°° retraction p: U -f V.

Example 1.8. Let M be a complex manifold of dimension n and {Ua} a covering of
M by coordinate neighborhoods Ua with complex coordinates (zr,. . . , z). Then,
as in Example 1.6, the union TM = L]pEMTM of the holomorphic parts of the

complexified tangent spaces of M admits the structure of a complex vector bundle
of rank n with {ra13},

=9(ZO
z

as a system of transition matrices. Since, for each pair (ci, 3), r is a holomorphic
map from Ua fl U13 into GL(n, C), TM is a holomorphic bundle. We call it the
holomorphic tangent bundle of M. Note that, as a real bundle, TM is isomorphic
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to T11M (see Proposition 2.2 of the following section). A holomorphic section v of
TM is called a holomorphic vector field. On U, we may write as

V =

where the fe's are holomorphic functions on U.
If V is a complex submanifold of M, then as in 1.6, TMv admits TV as

a subbundle. We call the quotient the holomorphic normal bundle of V in M and
denote it by NV so that we have the exact sequence

O-+TV---*TMIv-Nv--*O.

For each point p in V, we have the situation considered in Ch. I, Exercise 4.8 (2).
Note that, again by Proposition 2.2, N is is isomorphic to NR,V as a real bundle.

Example 1.9. Let M be a complex manifold of dimension n and V a hypersurface
(possibly with singularity) in M. We cover M by open sets Uc, so that in each
Ua, V is defined by a "reduced equation" fc = 0, i.e., the germ of fc at each
point in V fl Uc, is reduced (see Ch.I, section 5). Note that if V fl Uc, = 0, then we
may take a non-zero constant as f. Then, for each pair (a, 3), f = fa/f1 is
a non-vanishing holomorphic function on U,, fl U and the system {f} defines a
complex vector bundle of rank- one (a line bundle) on M. We call this bundle the
line bundle defined by V and denote it by L(V). Note that L(V) is a holomorphic
bundle and admits a natural holomorphic section whose zero set is exactly V, i.e.,
the section determined by the collection {f'}.

In particular, the line bundle on the projective space CIPTh defined by the
"hyperplane" CIP'1 is called the hyperplane bundle and denoted by IJ. If we
use the notation of Ch.I, Example 4.2, 2, the bundle H is defined by the system
transition functions {h3} with = on the covering {U}.

Exercise 1.10. Show that, if V is a non-singular hypersurface of M, then there is a
natural isomorphism L(V)Iv Nv.

If we are given some vector bundles, we may construct new ones by algebraic
operations. Thus we let E and F be vector bundles on M. We may construct the
direct sum E F, the homomorphism Hom(E, F) and the tensor product E ® F.
Note that there is a natural isomorphism

Hom(E,F) E* ®F.

We also have the k-th exterior power A' E. For a complex vector bundle

E, we have the complex conjugate E and for a real vector bundle E, the complexi-
fication EC = E C-		
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The complex vector space C' is naturally considered as a real vector space
of dimension 2r and this defines a natural homomorphism

GL (r, C) , GL(2r, R).

Thus ifE is a complex vector bundle of rank r, it has the structure of a real vector
bundle of rank 2r.

2. Vector fields and differential forms

We denote by TM the holomorphic tangent bundle of a complex manifold
M as in section 1. The following two propositions are consequences of the Cauchy-
Riemanu equation.

Proposition 2.1. If M is a complex manifold, there is a natural isomorphism

TM TM EE TM.

Proposition 2.2. We have TM TRM as real bundles.

The following shows how a complex vector field (a section of TM) and a
real vector field (a section of T1M) correspond in the above isomorphism, when
they are expressed using local coordinates

fj(z)-
n

i=1

where f = u + \/Iv with u and v real valued functions.

Example 2.3.	 In C = {z} the complex vector field z			 corresponds to the real
vector field x	 +	 and z2	 to (x2 - y2)j + 2xy.

Let M be a C°° manifold of dimension m. We call a C°° section w of the
bundle AP(TM)* on an open set U in M a (complex valued) differential p-form of
class C°° (simply, a Cc p-form) on U. We denote by AP(U) the set of C p-forms
on U, which has naturally the structure of a C-vector space. The set A°(U) is
thought of as the set of C°° functions on U. We have the exterior product

A(U) x A(U) -* A(U),	 (w, 0)

	

wA0.

It is bilinear in w and 0 and satisfies A 0 = (_1)Pq0 A w.
We also have the exterior derivative

d = d : A(U) -* A'(U),
22






which is a C-linear map satisfying d1 o d' = 0 and

(2.4)

	

d(wAO)=dwAO-I-(-l)'wAdO

for w E AP(U) and 9 E A(U).
For a complex vector bundle E on M and an open set U in M, we set

AP (U, E) = C°°(U, AP(TM)* ®E). An element a in AP(U, E), called a differential
p-form with coefficients in E, is expressed locally as a finite sum w 0 s with w
p-forms and s, sections of E. The exterior product induces a bilinear map

A(U) x A(U,E) -+ AP+Q(U,E).

Now let M be a complex manifold. Recall that the holomorphic cotangent
bundle is the vector bundle T*M dual to the holomorphic tangent bundle TM. By
Proposition 2.1, we have a natural isomorphism

(2.5) (TM)* T*MT*M.

Hence we have an isomorphism

AT*M®/\*M.
p+q=r

We call a section of A T*M 0A T*M a differential form of type (p, q) (simply,
a (p, q)-form). Thus a differential r-form is expressed as a sum of (p, q)-forms with
p + q = r. Suppose that a point z in M is in a coordinate neighborhood U with
coordinates (zr, .... z). We write z = x + /-iy and identify 1T'M and TM
with subspaces of (T M)* by the isomorphism (2.5). Then, if we set

dz = dx + \/1idy and d = dx -

a straightforward computation shows that dz.	 dz are inTM and form a basis
dual to the basis (3/ôz,. . . , 3/ôz) ofTM and that d .	 d2 are in TM and
form a basis dual to the basis (8/3 ..... 8/8) of TIM. Since dz A"" A dz,
where (i1,. . . , ii,) runs through p-tuples of integers with 1 i1 < < i < n, form
a basis of A TM and	 A Ad, where (ii, .	 jq) runs through q-tuples
of integers with 1	 < Jq < n, form that of A" TM, a (p, q)-form w is
written as, on Uc,

(2.6)		w =	 A" . Adz? Ad
Z1	 ZP

1ˆii<...<ipˆn
lJ1<<3qTh
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where f	 are Cc functions on Ua. By setting I = (i1,. . . , i) and .
p,31

	

Jq
J = (ii,. . . jq) we may write (2.6) simply as

w = f(z)dz Ad.

In particular, a (p, 0)-form w can be written as, on Uc,.

(z)dzA...Adz.
1 î1<...<ipn

When each	 is holomorphic, we say that w is a holomorphic p-form. It is

nothing but a holomorphic section of A T*M.
We denote by AM(U) the set of (p, q)-forms on an open set U in M. For

each (p, q), it is an A°(U)-module and we have the decomposition

AV(U) =

	

A"(U).
p+q=r

Thus we may express the exterior derivative d as a sum d = 8+8 with

8: AP(U) -+ A(U)	 and

	

: AP(U) -* AP(U).

From dod= 0,




0o8=0, 8°3=O and 8o3+DoD=0.

3. Stokes' theorem

Let M be an oriented C°° manifold of dimension m. Recall that, for a C°
rn-form w with compact support, we may define the integral fm w.

Let D be an open set in M and assume that the boundary 0D of D is C°°,
i.e., for any point p of 3D there is a coordinate neighborhood U with coordinates
(Xi,...,Xm) such that

Rn U= {q eU xi(q)

where R= (the closure ofD in M). In this case, OR 3D is an rn-i dimensional
C°° submanifold of M. In fact if (x1,..., x,7) is a coordinate system as above, then

(x2,.. . , m) is a coordinate system on 8R fl U. Moreover, ifM is orientable, so is
OR. IfM is oriented so that a coordinate system (x1,. . ., im) as above is positive,
we orient OR so that (x2, . . . , Xm) is positive. Suppose M is oriented and R as above
is compact. Then we may define, for a C° rn-form w on a neighborhood of R, the
integral fRw.
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Theorem 3.1 (Stokes' theorem). Let D be a relatively compact open set in
M with C°° boundary (which may be empty). For a C° (m - 1)-form w in a
neighborhood of R =

JR
dw

faR
where t OR c-+ M denotes the inclusion.

Note that the above formula makes sense if the boundary OR is only piece-
wise C.

More generally, let ci	 na be a (C°°) singular p-chain in M. Thus
each o is a C'° map from (a neighborhood of) the standard p-simplex JP into M.
For a p-form w on M, we define

fw=njf aw.

IfM is a complex manifold, M is orientable (cf. Ch.I, (2.5)). We orient M
so that, if (zi,. . . , z,) is a complex coordinate system on M, (x1, Yi,. . . , x, y) is
a positive coordinate system, where z,	 x +

	

i =I,-, n.

4. de Rham cohomology
we list [BT] as a basic reference for this section. Let M be a C°° manifold

of dimension rn. For an open set U in M, we denote by AP(U) the space of complex
valued C°° p-forms on U.

The exterior derivative d defines the de Rharn complex of M
d°

	

d'0 - A0(M) - A' (M) -* ...	 Am(M) - 0.
The p-th de Rham cohomology H(M; C) is the p-th cohomology of this complex;
HP (M; C) = Ker dP/ Tm d1. For a closep-form w, we denote its class in H(M; C)
by [w]. IfM is connected, we easily see that H(M; C) C.
Lemma 4.1 (Poincaré lemma). The de Rham complex ofR is acyclic, i.e.,

H(W;C)=0 for p>0.

This is a special case of the following de Rham theorem, in fact it is a key
ingredient in the proof of the theorem.

Let Hp (M; C) and HP (M; C) denote the singular (or simplicial) homology
and cohomology of M. The integration of a p-form on a (piecewise C°°) singular
p-chain of M induces a homomorphism

H(M; C) - HP(M; C),
which is shown to be an isomorphism;
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Theorem 4.2 (de Rham theorem). For a C°° manifold M,

HP (M;		HP(M;C).

Now, by (2.4), the pairing

H(M;C) x H(M;C) - H(M;C)

given by ([w], [6]) [ A 0] is well-defined and it corresponds to the cup product in
the isomorphism of Theorem 4.2. We write [w A 0] = [w] '-' [0]. This product makes
the direct sum H(M; C) = H(M; C) a graded ring.

If M is compact, connected and oriented then, by the Stokes theorem, the

integration on M induces a linear map

Im : H(M;C) C.

Then it is proved that the bilinear form

HP (M;	 x H(M;C) - H(M;C) --fm ) C

is non-degenerate ([BT] Ch.I, §5)

Theorem 4.3 (Poincaré duality). For a compact, connected and oriented C°°
manifold M of dimension rn, the above pairing induces an isomorphism

P: H(M;C) * HM _P(M;C)* = H_(M;C).

In the isomorphism of Theorem 4.3, a class [w] in HP(M; C) corresponds to
the class of a (piecewise C°°) singular (m - p)-cycle C in M satisfying

(4.4)

	

fA0=f6M

	

C

for all closed (m - p)-form 0 on M. In particular,

H,(M; C) Ho (M; C) C

and, for the class [w] of a closed rn-form w, the corresponding homology class may
be thought of as a complex number, which is given by fm w. Also

Hm(M;C)	 Ho (M;C) C
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and the homology class in H,,,(M; C) corresponging to the class [1] of the function
constantly equal to 1 is represented by an rn-cycle C such that	 9 =	 9 for
all closed rn-form 0. Thus this homology class coincides with the class [M] of M
considered as an rn-cycle, the fundamental class of the compact oriented manifold
M. Note that it is the canonical generator of the integral homology Hm(M; Z)

	

	Z .
Remark 4.5. Let M be a complex manifold and V a compact analytis variety of
dimension £ in M. Then we may think ofV as a 2-cycle, for example, by triangula-
tion, in which case we have the class [V] in H2 (V, Z), or by integration of 2-forms
on M ([GE] Ch.O), in which case we have the class [V] in H2e(M, C). Moreover,
if V is (globally) irreducible, then H2t(V, Z) Z and [V] is the fundamental class
(e.g., [Br]).

Recall that the Poincaré isomorphism P in Theorem 4.3 is given by the "cap
product" with the fundamental class;

P({w]) = [w] [M].

5.	 ech-de Rham cohomology

The ech-de Rham cohomology is defined for arbitrary covering of a man-
ifold M, however for simplicity here we only consider coverings of M consisting of
only two open sets.

Let M be a C°° manifold of dimension m and U = { Uo, Ui } an open covering
of M. We set U01 = U0 fl U1. Define a vector space AP(U) as follows:

A(U) = A(U0) @A°(U1) AP-'(U01).
Therefore an element a E AP (U) is given by a triple a = (ao, o, croi) with o a
p-form on U0, a3. a p-form on U1 and a01 a (p - 1)-form on Uoi.

We define the operator D : A(U) -* A by

Da = (dao,dal, o1 -	 -
duo,).

Then it is not difficult to see that DoD = 0. This allows us to define a cohomological
complex, the Cech-de Rham complex:

___		D°'AP-1(U)		 A(U)
DP ) A'(U)

Set Z(U) = KerD, B(U) = ImD and

H(U) =

which is called the p-th ech-de Rham cohomology of U. We denote the image of
a by the canonical surjection ZP(U) -p H(U) by [a].

27






Theorem 5.1. The map AP(M) - AP(U) given by w '- (w,w,0) induces an
isomorphism

a : H(M) - H(U).

Proof. It is not difficult to show that a is well-defined. To prove that a is surjective,
let a = (ao, a1, aoi) be such that Da = 0. Let {po, pi} be a partition of unity
subordinated to the covering U. Define w = poa0 + piai - dp0 A aç. Then it is
easy to see that dw = 0 and 1(w, w, 0)] = [a]. The injectivity of a is not difficult to
show. LI

We define the "cup product"

A(U) x A(U) -f AP+(U)

by assigning to a in A (U) and T in A (U) the element a r in AP+ (U) given by

(5.2)	 (a '-' r)	 a A r, i = 0, 1, (a '- r)01 = (_1)Pao A r01 +a01 A r1.

Then we have D(a '-i T) = Da '-' r + (_1)°a '-i Dr. Thus it induces the
cup product

H(U) x H(U) -* H(U)

compatible, via the isomorphism of 5.1, with the cup product in the de Rham
cohomology.

Now we recall the integration on the Cech-de Rham cohomology (cf. [Leh]).
Suppose that the rn-dimensional manifold M is oriented and compact and let
U = {Uo, U1} be a covering of M. Let R0, R1 C M be two compact manifolds of
dimension m with C°° boundary with the following properties:
(1) R3 c U for j = 0, 1,
(2) IntR0 flIntR1 = 0 and
(3) R0uR1 =M.

Let R01 = R0 fl R and give R01 the orientation as the boundary of Ro;
R01 = R0, equivalently give R01 the orientation opposite to that of the boundary
of R1; R01 = -8R1. We define the integration

f:Am(U)C
by f a=f ao+f ai+f

a01.
M	 M	 R0	 Ri

	

R01

Then by the Stokes theorem, we see that if Da = 0 then fm a is independent
of {R0, R1} and that if a = Dr for some r E AP-'(U) then fm a = 0. Thus we
may define the integration




fm
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which is compatible with the integration on the de Rham cohomology via the iso-
morphism of 5.1.

Next we define the relative Cech-de Rham cohomology and describe the
Alexander duality. Let M is an rn-dimensional oriented manifold (not necessarily
compact) and S a compact subset of M. Let U0 = M \ S and let U1 be an open
neighborhood of S. We consider the covering U= {U0, U1} of M. We set

AP (U, U0) = { a = (ao, a1, aoi) E AP (U) a0 = 0 }.

Then we see that if a is in AP(U, U0), Dcr is in AP(U, U0). This gives rise
to another complex, called the relative Cech-de Rham complex and we may define
the p-th relative Cech-de Rham cohomology of the pair (U, U0) as

H(U,U0) = Ker1Y/ImD''.

By the five lemma, we see that there is a natural isomorphism

H(U, U0) HP(M,M\ S; C).

Let R1 be a compact manifold of dimension mwith C boundary such that
Sc IntR1 C R C U1. Let R0 = M\IntRi. Note that R0 C U0. The integral
operator fm (which is not defined in general for Am(U) unless M is compact) is
well defined on A' (U, Uo):

JM :Am(U,Uo)C,	 f a=f ai+f
a01,M R1 R01

and induces an operator fm : Hm(U, U0) -+ C.
In the cup product AP(U) x Am-P(U) -f Am(U) given as (5.2), we see that

if a0 = 0, the right hand side depends only on a1, aol and i" Thus we have a
pairing AP(U, U0) x AmP(U1) -* Am (U, (JO), which, followed by the integration,
gives a bilinear pairing

AP(U, Uo) x Am(U1) - C.

If we further assume that U1 is a regular neighborhood of 5, this induces the
Alexander duality

(5.3) A: H(M,M \ 5; C) H' (A (U, Uo)) Z Hm(Ui, C)* D Hm_p(S, C).
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Proposition 5.4. If M is compact, we have the commutative diagram

HP(M,M\S;C)

t A
Hm_p(S, C)

HP (M; C)

I t P
i*	

Hm_p(M,C),

where i andj denote, respectively, the inclusions S '- M and (M, 0) - (M, M\S).
Example 5.5. Let M = Rm and S = {0} with m > 2. Then U0 IRtm \ {0},
which retracts to	 Let U1 = Rm. In this situation, we compute H (U, U0).
For p = 0, each element a in A°(U, Uo) can be written as a = (0, f, 0) for some
C°° function f on U1. If Do, = 0, we have f 0 and therefore HOD(U, (JO) = {0}.
Next, an element a in A1(U,U0) can be written as a = (0,ai,f) with a1 a 1-form
on U and f a C function on Uo fl U1. If a is a cocycle then da1 = 0 on U1 and

df = a1 on U0 fl U1. By the Poincaré lemma the first condition implies that a1 = dg
for some C°° function g on U1 and the second condition implies that f g + c
for some c E C. Therefore f has a C°° extension, still denoted by f, over {0} and

a=(0,df,f)=D(0,f,0). Hence H(U,Uo) ={0}. Forp> 2themap

H'(U0) -H(U,U0) given by [w] H-* [(0,0,-w)]

can be shown to be an isomorphism (we leave the details to the reader) and we have

C for p=mHp (U, Uo) H(Uo) Hp-l(Sm_l) =
~O for p = 2,... , m - 1.

An explicit generator of Hm_l(Sm_l) is given as follows ([Gil] p.370). For
x = (x1,...,Xm) in W, we set (x) = dx1 A . Adxm and

= (-1)'x dx1 A ... A dx A" A dxm.

Also, let Cm be the constant given by

{

(-1)!	 for m = 22r
C7fl=	

(2)!	 for m=2+1.	22t+h7r!

Then the form




= Cm	
	IxIIm

-
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is a closed (m - 1)-form on R \ 0 whose integral on the unit sphere Sl (in
fact a sphere of arbitrary radius) is 1. Now we identify C with R2, then 2n =

(i3 + )/2, where	

r(,-1) (n 1)!C' -(-1) 2-	

	(2irTh

Then	 is a closed (n,n - 1)-form on C \ 0, real onS2' and fs2n-l 011
=1. We

call /3 the Bochner-Martinelli kernel on Ctm. Note that

1	 dz
=

27rvfT z'

the Cauchy kernel on C.
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Chapter III. Chern-Weil theory of characteristic classes and some more
complex analytic geometry

1. Chern classes via connections

Let M be a C°° manifold of dimension m. For an open set U in M, we
denote by A°(U) the C-algebra of C functions on U. Also, for a C°° complex
vector bundle E of rank r on M, we let AP(U, E) be the vector space of C°° sections
of AP(TM)* ® E on U. Thus A°(U, E) is the A°(U)-module of C°° sections of E.

Definition 1.1. A connection for E is a C-linear map

V : A°(M,E) - A'(M,E)

satisfying

V(fs) = df ® s + fV(s) for f E A°(M) and .s E A°(M, E).

Example 1.2. The exterior derivative

d: A°(M) - A(M)

is a connection for the trivial line bundle M x C.

From the definition we have the following:

Lemma 1.3. A connection V is a local operator, i.e., if a section s is identicallyo on an open set U, so is V(s).

Thus the restriction of V to an open set U makes sense and it is a connection
for Eu. From the definition we also have the following lemma.

Lemma 1.4. Let V1,. .. , V be connections for E and fl, . . . , fk COC functions on
M with	 f	 1. Then	 fV is a connection for E.

Exercises 1.5. (1) Prove Lemmas 1.3 and 1.4.
(2) Show that every vector bundle admits a connection.

If V is a connection for E, it induces a C-linear map

V : A1(M,E) -* A2(M,E)

satisfying

V(w ® s) = dw ® s - w A V(s)	 for w e A1(M) and s E A°(M, E).
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The composition
K = Vo V : A°(M, E) -* A2(M, E)

is called the curvature of V. It is not difficult to see that

K(fs) = fK(s) for f E A°(M) and s e A°(M, E).

The fact that a connection is a local operator allows us to get local repre-
sentations of it and its curvature by matrices whose entries are differential forms.
Thus suppose that V is a connection for a vector bundle E of rank r and that E is
trivial on U; Eu U x Cr. Ifs (s,,. ..,s) is a frame of E on U, then wemay
write, for i= 1, .. . , r,

V(s) =		Oij ® s,	 O E A'(U).

We call 0 = (O) the connection matrix with respect to s. For an arbitrary section
s on U, we may write s =	 fs with f C°° functions on U and we compute

r

	

7'

V(s) =		+		f0) ® Si.
i=1

	

	j= 1

The connection V is trivial with respect to s, if and only if 0 = 0. Thus in this case
we have V(s) =

	

df 0s. Also, from the definition we compute to get

K(s) =
r

ic 0 sj,	 ic = d0 -	 0j A °kj
j=1	 k=1

We call K = (Icj) the curvature matrix with respect to s. If s' = (s . . . , s) is
another frame of E on U', we have s	 as3 for some C°° functions aij on
U fl U'. The matrix A = (a) is non-singular at each point of U fl U'. If we denote
by 0' and r,' the connection and curvature matrices of V with respect to s',

(1.6)	 0' = dA. A-' + A0A1 and it' = AkA1 in U fl U'.

Let n = [m/2] and, for each i = 1,.. . , n, let a denote the i-th elementary
symmetric function in n variables X,,...,X,, i.e., a(X,,.. . , is a polynomial
of degree i defined by
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Since differential forms of even degrees commute with one another with respect
to the exterior product, we may treat ic as an ordinary matrix whose entries are
numbers. Thus we define a 2i-form 0j(K) on U by

det(Ir + tc) = 1 + al(s) + + o(ic),

where Ir denotes the identity matrix of rank r. Note that o (it) = 0 for i =
r + 1,... ,n and, in particular, c, (r,) = tr(ic) and o(it) = det(ic). Although a(ic)
depends on the connection V, by (1.6), it does not depend on the choice of the
frame of E and it defines a global 2i-form on M, which we denote by o-i (V). it is
shown that the form is closed ([GH] Ch.3, 3 Lemma, [MS] Appendix C, Fundamental
Lemma). We set




c(V) =
()ai(V)

and call it the i-th Chern form.
If we have two connections V and V' for E, there is a (2i-1)-form c(V, V')

with c(V, V') = -c(V', V) and satisfying

(1.7)

	

dc(V,V') = c(V') - c(V).

In fact the form c(V, V") is constructed as follows ([Bo] p. 65). We consider the
vector bundle E x R-M x R, and let V be the connection for it given by

7=(1-t)V+tV',

where t denotes a coordinate on R. Denoting by [0, 1] the unit interval and by
7r : M x [0, 1] -M the projection, we have the integration along the fiber

7r A2(M x [0,1]) -* A2i-1M.
Then we set c(V, V') =

From the above, we see that the class [c(V)] of the closed 2i-form c(V) in
the de Rham cohomology H2(M; C) depends only on E and not on the choice of
the connection V. We denote this class by c(E) and call it the i-th Chern class
c(E) of E. We call

c(E) = 1 + ci(E) + c2(E) + ... + Cr(E)

the total Chern class of E, which is considered as an element in the cohomology
ring H* (M; C). Note that the class e(E) is invertible in H* (M; C).
Remarks 1.8. 1°. It can be shown that the top Chern class cr(E) is equal to the
Euler class e(E) of the underlying real bundle.
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2°. It is known that c(E) is in the image of the canonical homomorphism

H2(M; Z) - H2(M; C).

In fact it is possible to define c(E) in H2(M; Z) using the obstruction
theory; it is the primary obstruction to constructing r - i + 1 sections linearly
independent everywhere [St].
3°. For the hyperplane bundle H on C (Ch.II, Example 1.9),

c(H) = 1 + h,

where h denotes the canonical generator of H2 (Cpl; C) (the Poincaré dual of the
homology class [CIP'].

More generally, if we have a symmetric polynomial y, we may write =

P(cri, 0,...) for some polynomial P. We define, for a connection V for E, the
characteristic form (V) for by (V) = P(ci(V),c2(V),. (V)....),

which is a closed
form and defines the characteristic class o(E) of E for y in the de Rham cohomology.
We may also define the difference form ço(V, V') by a similar construction.

2. Virtual bundles

For simplicity, we consider only virtual bundles involving only two vector
bundles.

If we have two complex vector bundles E and F, the total Chern class of
the "virtual bundle" F - E is defined by

(2.1)

	

c(F - E) = c(F)/c(E).

Let VE and VF be connections for E and F, respectively. We write the
degree i term in the right hand side of (2.1) as

c(F - E) =		'(E) .	 F)
j

with	 (E) and j) (F) polynomials in the Chern classes of E and F, respectively.
Then the i-th Chern class of F - E is represented by the differential form

c(V) =		(i)(VE) A(VF'),

where V denotes the pair (yE, VF)
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Also, for a polynomial y in the Chern classes of E, we may define a closed
form ç(V) which represents the class o(F - E).

If we have two pairs of connections V, V for E and F, there is a form

V) satisfying an identity similar to (1.7).
Now let

(2.2)

	

OEFGO

be a sequence of vector bundles on M, and VE, VF and V' connections for E, F
and C, respectively. We say that the family (VE, VF' VG) is compatible with the

sequence if the following diagram is commutative

AO(M,E)	 AO(M,F)

	

AO(M,G)

J,VF

	

jVC




	A'(M,E) '®	 A' (M,	
1®?	

A1(M,G).

If the above sequence is exact, there is always a family (VE, VF' VG) of connections

compatible with the sequence and for such a family we have ([BB] (4.22) Lemma)

c(V) = c(VE)

3. Characteristic classes in the ech-de Rham cohomology and a van-

ishing theorem

Let M be a C°° manifold and U = {U0, U1} an open covering of M. For a
vector bundle E ---> M, we take a connection V on U, j 0, 1. Then let c(V)
be the element of A2 (U) given by

(3.1)

	

c(V) = (c(Vo),c(Vi),c(Vo,Vi)).

Then we see that Dc(V) = 0 and this defines a class [c(V)] E HJ(U
Theorem 3.2. The class [c(V)] E H(U) corresponds to the Chern class c(E) E
H(M) under the isomorphism of Ch.II, Theorem 5.1.

By a similar construction, we may define the characteristic class (E) for a

polynomial in the Chern polynomials in the Cech-de Rham cohomology. It can
be done also for virtual bundles.

Let E be a complex vector bundle of rank r on a C manifold M. Let
s (s1,. . . , s) be an £-frame of E on an open set U, i.e., £ sections linearly
independent everywhere on U. We say that a connection V for E on U is s-trivial,
if V(s1) =0 for 1,. . . ,
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Proposition 3.3. If V is s-trivial, then

c(V)0	 for i>r-?+1.

Proof. For simplicity, we prove the proposition when £ = 1. Let U C M be an open
set such that Eju Ux Cr. Since s 0 everywhere on M, we may take a fram
e = (ei,... , e'.) on U so that ei = Si. Then all the entries of the first row of the
curvature matrix K of V with respect to e are zero. Since Cr(V) = det i, up to a
constant, we have c, (V) = 0. LI

4. Divisors

Let M be a complex manifold of dimension n. A meromorphic function
on M is defined by a data {(U, f, g')}, where {U} is a covering of M, and f0

and g are holomorphic functions on such that the germ g at z is non-zero for
all z in U, the germs f and g are relatively prime for all z in Ua (cf. the phrase
after Ch.I, Theorem 3.6) and that fag = fg in Ua fl U. We write = fa/gcx
011 Ua.

A divisor D on M is a finite formal sum D = >1 nVj, where the V's
are irreducible hypersurfaces in M and the ni's are integers. Thus, if we coverM
by open sets {U} so that V is defined by f on U (cf. Ch.II, Example 1.9), the
meromorphic function ço = fl(f) defines D on Ua. For each pair (a, /3),
f1- = is a non-vanishing holomorphic function on Uc, fl U and the system
{f} defines a line bundle on M. We call this bundle the line bundle defined by Dr	 72

	

72and denote it by L(D). We may write L(D) = ® L(V) , where L(V) denotes
the tensor product of n copies of L(V), for n2 > 0, and the tensor product of -n
copies of L(V)*, for n2 < 0. A divisor D = nV is called effective if n 0
for all i. Thus an effective divisor is defined locally by a holomorphic function.	

If y is a meromorphic function on M given by p = f°/g' on Ua, taking
the irreducible decompositions of fc and g, we may consider a divisor, which we
call the divisor of çü and denote by (p). We may write () =		 - D,, where D0
and D		 are defined, respectively, by f" and ga on Ua. Clearly the bundle L(y) is
trivial. Conversely, it is shown that, if L(D) is trivial for a divisor D, then D = ()
for some meromorphic function cp ([Gil] Ch. 1, 1, [Hi] §15). We say that two divisors
Di and D2 are linearly equivalent if Di - D2 = () for some meromorphic function

. Thus this is equivalent to saying L(D) = L(D2)-
For a divisorD = >1	 we set D = U= V and call it the support of

D. If each V is compact, the divisor D defines a homology class [D] =		n [Vi]
in H272_2(M; Z) (or in H272_2(D;Z)). It is known that, if M is compact, [D]
is the Poincaré dual of ci(L(D)) ([Gil] Ch.1, 1 Proposition, see [Su3] for more
"precise" duality). Thus, if D1 and D2 are linearly equivalent, then [D1] = [D2].
Also, for n divisors D1,. . . , D72 the "global" intersection number (D ... D72) is
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given by fm ci(L(Di)). ci(L(D)), where the product is the cup product. If the
intersection fl1 D consists of isolated points, then this number is the sum of the
intersection numbers at the points of intersection. See Example 6.2 below for this
"local" intersection number when the divisors are effective.

Example 4.1. Let V be the algebraic variety in C1P = {[o. . . , (,]} defined by
a homogeneous polynomial P of degree d (Ch.I, 4). The function p = P/ is a
well-defined meromorphic function on CPTh, which is given as the quotient of P/
by 0d/ on each affine open set Uj = {ç O}. Thus, if we denote by D the

hyperplane defined by = 0, then V is linearly equivalent to d D,,, and IV] =
d [D]. Recall that [D] = {C1P1] is the generator of H2_2(CP; Z) Z. Also,
the intersection of k copies of [D] generates H2_2k(CIPTh; Z) Z, for k = 1,.. . , n
(cf. Ch.I, (4.11)).

5. Complete intersections and local complete intersections

We start with the local situation. Let °n+k be the ring of convergent power
series in (zi, . . . , zflk).

Definition 5.1. Let V be a germ of variety at 0 of pure dimension n in Ck.
We call V a complete intersection if the ideal 1(V) is generated by k germs of

holomorphic functions. In particular, if k = 1, V is a (germ of) hypersurface.

In general, let V be a germ of variety at 0 in Ck. Take germs fl,. . . , f
in Oj and set gj =

	

with aij E °n+k, for i = 1,. . . , s. Then

(0)<raiik
a(fi,...,fr

(0).rank	
.,zfl+k)	

-	
ô(zi,	 . ,Zflk)

Thus we have

Lemma 5.2. If the germs fl,..., f. generate 1(V), then the rank of the Jacobian
matrix 5(f1,..., fr)/D(zi,.. -, z,+i) at 0 does not depend on fl,..., fr.

Let V be a complete intersection of dimension n and fl,.. . , fj, generators of

1(V). We take a neighborhood U of 0 in C'' such that the germs V and fl, .. . , fk
have representatives on U. We may assume that the germs fl, .

	

generate
I(V) for all x in U ("coherence of the ideal sheaf', e.g., [GR]) and hence we may
write

V = {x eU fi(x) = ... = fk(x) = 0}.

We call fl, . . . , fr as above "reduced defining functions" for V. With these
functions, we may describe the singular set of V as follows:
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Proposition 5.3. If V is a k codimensional complete intersection,

k}.
Sing(V)={xeV

	

8(f1,,fk)rankrank	 (x) <

Remark 5.4. If V is a pure k-codimensional subvariety, which may not be a com-
plete intersection, the set Sing(V) may be expressed similarly as above, replacing
fl,..., f by (arbitrary number of) generators fl,..., fr of 1(V) (e.g., [Ok] Ch.I,
§1). Thus, for an analytic variety V, Sing(V) is also an analytic variety.

In general, let V be a variety in a neighborhood U of 0 in CTh+k which has 0
as its only singular point. Let B6 = { (z1,. . . , zj) I IziI + . . . + Izn+k12 <E2 } be
the closed disk of radius E and S the (2(n + k) - 1)-sphere of radius e, which is the
boundary of B6. It is known that, for sufficiently small E, the pair (B6, B6 fl V) is
homeomorphic to the cone over (Se, S6 fl V) ([Mi] Theorem 2.10, see also [Ok] Ch.I,
§1). In this case, S6 and V are transverse and K = S5 fl V is a (2n - 1) dimensional
C°° manifold, which is called the link of the singularity of V at 0.

Now let V be a (germ of) complete intersection of dimension n and Ii,. . . , fjç
generators of 1(V). We suppose that these germs have representatives in U and we
think of f =	 fig) as a holomorphic map from U onto a neighborhood W
of 0 in Ck. Let C(f) be the set of critical points of f. Then, by Proposition 5.3,
Sing(V) = V fl C(f). Note that, when k 1, Sing(V) = C(f) (cf. [Lo] Proof of
(1.2) Proposition).

We have the following "fibration theorem", which is due to [Mi] when k = 1
and to [Ham] for general k, see also [HL], [Lê2], [Lo] and [Ok].
Theorem 5.5. Let V be a complete intersection of dimension n with isolated sin-
gularity at 0 in CTh+k. Then there exist small disks B6 about 0 in U and B about
0 in W such that D(f) = B fl f(C(f)) is a hypersurface in B and that f induces
a fiber bundle structure B5 fl f' (B \D(f)) - B \ D(f). Moreover, the (typical)
fiber F of this bundle has the homotopy type of a bouquet of n-spheres.

The fiber F is called the Milnor fiber and the number of spheres appearing
in the above is called the Milnor number of V at 0 and is denoted by t(V, 0).
The number V, 0) does not depend on the choice of generators of 1(V). There
is an algebraic formula for this number ([L61], [Gr], see also [Lo] ). We set, for
i

	

	k,
=dimc 0n+k/(J(fl,.. . ,fi), fl). . . ,

where the denominator in the right hand side is the ideal generated by the Jacobians
<""<v n+k,andfi,...,f_i. Then

(V,0) =
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In particular, when k = 1,
(5.6)

	

p(V, 0) = dimc Q+1/J(f),
where J(f) = (3f/8zi, . . -, af/ai), f = fi (cf. [Or]).

Now we consider the global situation. Let W be a complex manifold of
dimension n+ k and V an analytic variety in W. Suppose V is pure n dimensional.
We call V a local complete intersection (LCI) if the germ of V at each point of V is
a complete intersection. Thus each point of V has a neighborhood, where V admits
k reduced defining functions.

In this case, there is a vector bundle NV over V of rank k, which extends
the normal bundle NV, of V' in W. We have a commutative diagram with an exact
row (e.g., [LS] Proposition 1)

TW!v

(5.7)

	

1 ii
0	 > TV'	 TW'	 Nv'

	

0.
If fl, . . . fk are local reduced defining functions of V, then there is a frame

of NV which extends the frame (ir(D/afi),.. . , rr(9/Ufjc)) of Ny'. (Note that near a
regular point of f (f, .... , fj), i.e., a regular point of V, we may take (fl,..., f)
as a part of a local coordinate system on W.) We call it the frame of Nv associated
to f=(fl,...,fk).

For an LCI V in W, we call TWIv - NV the virtual tangent bundle of V.
Now let N be a holomorphic vector bundle over W of rank k and s a

holomorphic section of N. We call the zero set V of s in W an LCI defined by s
if it is an LCI with local components of s (with respect to some local holomorphic
frame of N) as its reduced defining functions. In this case, we have NV = Nv.
Examples 5.8. As examples of LCIs defined by a section of a holomorphic vector
bundle, we have the following:
1. V a hypersurface in W (k = 1). In this case, we may take as N the line bundle
L(V) defined by V and as s the natural section described in Ch.II, Example 1.9.
2. V a complete intersection. In this case we may take as N the trivial bundle and
as s a system of generators of the ideal of holomorphic functions vanishing on V.
3. V a (projective algebraic) complete intersection in the projective space
This means that the ideal of homogeneous polynomials vanishing on V is generated
by k homogeneous polynomials P1,. . . , Pk. Let d2 denote the degree of P2 for
i = I,-,. , k and Uj the affine coordinate (j 0 for j = 0,..., n+ k. Then, in U, V
is defined by fi = = fk = 0, f = Pil(4' i. Note that it is only locally a complete
intersection. In this case, we may take as N the bundle Hdl ... Hdk, where H
denotes the hyperplane bundle (Ch.II, Example 1.9).
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6. Grothendieck residues

For details on this subject, we refer to [GH}. Let O denote the ring of
germs of holomorphic functions at the origin 0 in C and fl, . . . , f7 germs in O?,
such that V(f1,... , f) = {0} (Ch.I, 5). For a germ w at 0 of holomorphic n-form
we choose a neighborhood U of 0 in CTh where fl, . . . , f,, and w have representatives
and let F be the n-cycle in U defined by

F={zEUIIfi(z)I="=Ifm(z)E},
where, is a small positive number. We orient F so that the form dO1 A . A dO is
positive, O = argf. Then we set

w	 1	 1

	

JWRes0If,

	

1=,

	

. , fn j	 (2		)	 r fl	 fn
Note that this residue is alternating in (fl, .. . , f).
Example 6.1. When n = 1, the above residue is the usual Cauchy residue at 0 of
the meromorphic 1-form 4fi.
Example 6.2. If w = df1 A.. A df, then

1dfiAAdfRes01
[	 fl,---,fn

is a positive integer which is simultaneously equal to
(i) the intersection number (D1 D)o at 0 of the divisors D defined by f (see
section 4 and [Gill Ch.5, 2, [Su3}),
(ii) dimc On/(f,. . . ,f) and
(iii) the (Poincaré-Hopf) index at 0 in C of the vector field v =	 f
(the mapping degree of f = (fl, .. . , fTh)), see Ch.IV, sections 2 and 3.

Example 6.3. In particular, if f = 0f/8z for some f in O, then it is the Milnor
number i(V, 0) of the hypersurface V defined by f at 0 (see section 5) :

d (-~L) A...Ad([)1

	

(V)Res0
	8zj"8z	 J

We also call this number the multiplicity of f at 0 and denote it by m(f, 0)
(cf. Ch.IV, 3 below).
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Chapter IV. Localization of Chern classes and associated residues

1. Localization of the top Chern class

Let it : E -i M be a C°° complex vector bundle of rank r over an oriented
C°° manifold M of dimension m. Let s be a non-vanishing section of E on some
open set U. Recall that a connection V for E on U is s-trivial, if V(s) = 0. If V is
an s-trivial connection, we have the vanishing (Ch.III, Proposition 3.3)

(1.1)

	

Cr(V) = 0.

Let S be a closed set inM and suppose we have a C°° non-vanishing section
s of E on M \ S. Then, from the above fact, we will see that there is a natural
lifting c, (E, s) in H2r(M, M \ S; C) of the top Chern class Cr(E) in H2r(M, C).

Letting U0 = M \ S and U1 a neighborhood of S, we consider the covering
U = {U0, U1} of M. Recall the Chern class c, (E) is represented by the cocycle
Cr(V*) in A2r(U) given by

C,(V.) = (Cr(VO), Cr(Vi), C, TO, V1)),

where V0 and V1 denote connections for E on U0 and U1, respectively. If we take
as V0 an s-trivial connection, then c(V0) = 0 by (1.1) and thus the cocycle is in
A2r(U, Uo) and it defines a class in the relative cohomology H2r(M, M\S; C), which
we denote by Cr (E, s). It is sent to the class Cr (E) by the canonical homomorphism

H2T(M, M \ S; C) -+ H2"(M; C). It does not depend on the choice of the
connection V1 or on the choice of the s-trivial connection V0. We call Cr(E, s) the
localization of r(E) with respect to the section s at S.

In the above situation, suppose that S is a compact set, with a finite number
of connected components (SA)x, admitting a regular neighborhood. Then we have
the Alexander duality Ch. 11(5.3):

A: H2, (M, M \ S; C) 4 Hm2r(S, C) (DH.-2,(SA, C).

Thus the class c, (E, s) defines a class in H,-2, (S),; C), which we call the residue
of c(E) at S with respect to s and denote by Rescr(s, E; SA). This residue corre-
sponds to what is called the "localized top Chern class" of E with respect to s in
[Fu] 14.1.

For each A, we choose a neighborhood UA of SA in U1, so that the 's are
mutually disjoint. Let R,, be an rn-dimensional manifold with C°° boundary in UA

containing SA in its interior. We set ROA =	 Then the residue Rescr (s, E; SA)
is represented by an (m

- 2r)-cycle C in SA such that

(1.2)	 Ic IF = fR A

Cr(Vi) A T+ fRox cr(Vo, v1) A
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for any closed (m - 2r)-form r on UA. In particular, if 2r = m, the residue is a
complex number given by

(1.3)	 Rescr(s,E;SA)	 JR Cr(Vi)+f	
	cr(Vo,Vi).		
R0A

By Ch.II, Proposition 5.4, we have the following "residue formula".

Proposition 1.4. In the above situation, ifM is compact,

(i.,),. Rescr(s, E; SA) = Cr(E) '' [M]	 in Hm_2r(M; C),
A

where A denotes the inclusion SA -* M.

2. Residues at an isolated zero

Let 7r: E -* M be a holomorphic vector bundle of rank n over a complex
manifold M of dimension n. Suppose we have a section s with an isolated zero at p
in M. In this situation, we have Res(s, E;p) in Ho ({p}; C) = C. In the following,
we give explicit expressions of this residue.

Let U be an open neighborhood of p where the bundle E is trivial with holo-
morphic frame (ei,. . . ,e,-). We write s = f e with f2 holomorphic functions
on U.

(I) Analytic expression

Theorem 2.1. In the above situation, we have

[df1A...Adf1Res(s,E;p)=Res
[

	

j

Proof. We indicate the proof for the case n = 1 (for n > 1, we use the Cech-
de Rham cohomology theory for n open sets, see [Su3], [Su5]). Thus s = fei for
some holomorphic function f on U. Let R be a closed disk about p in U. In the
expression (1.3) of the residue, we may take as V1 an e1-trivial connection on U,
thus c1(V) 0 and

Res(s,E,p) = -
Ja

clTo,V1)
with V0 an s-trivial connection on U'	 = U \ {p}. Now we recall how the Bott
difference form ci(Vo, Vi) is defined (Ch.III, 1). Consider the bundle E = E >< R
over U x IR, and let t be a coordinate on	 JR. Define a connection for E on U' x JR by
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V = (1 - t)V0 + tV1. Let ir : U' x [0, 1] -+ U' be the canonical projection and let
ir. be the integration along the fibers of iv. Then we define ci(Vo, Vi) = irci(V).

Let 0 be the connection matrix of V, i = 0, 1 with respect to the frame
e1. Therefore 01 = 0. To find 00, we use Ch.III, (1.6). Since the connection matrix
with respect to s is zero, we get

df
0oj.

Hence 0 = (1 - t)Oo = (t - 1) and the curvature matrix k is given by

=d0-0A0=dtAJi.
Thus
	df	 1 df

e1(Vo,Vi) =irci(V) = 27r
7r(dtA 7) =

which proves the theorem (for the case n 1). El

Remark 2.2. For general n, if we take suitable connections we see that the difference
form is given by

c(Vo, Vi) = _f*3Th,
where f

=
(fi,. . . , fn) and 13 denotes the Bochner-Martinelli kernel on C (Ch.II,

5). This gives a direct proof of Theorem 2.4 below. Thus we reprove the fact that
the Grothendieck residue in the above theorem is equal to the mapping degree of f
(cf. [GH] Ch.5, 1. Lemma).

(II) Algebraic expression
Theorem 2.3. In the above situation, we have

Res,(s,E;p) =dimO/(fi,...,f).

This can be proved, for example, by perturbing the sections and using the
theory of Cohen-Macaulay rings (e.g., [Su5]).

(III) Topological expression
Let	 denote a small 2n - 1 shere in U with center p. Then we have

the mapping




=
lifil

: S' -+

where S2" denotes the unit shere in C.

Theorem 2.4. In the above situation, we have

Res (s, E;p) = deg ço.

This can also be proved by perturbing the sections, see [GH], [Su5].
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3. Examples I

(a) Poincaré-Hopf index theorem
Let M be a complex manifold of dimension n. We take as E the holomorphic

tangent bundle TM. Then a section of TM is a (complex) vector field v. We define
the Poincaré-Hopf index PH(v, S,) of v at a connected component SA of its zero set
S by

PH(v,SA) = Res
In (v, TM; S,\).

Then, ifM is compact, by Proposition 1.4, we have

PH(v,SA) = Im
where c(M) = c(TM) and it is known that the right hand side coincides with
the Euler-Poincaré characteristic (M) of M ("Gauss-Bonnet formula"). Thus, by
Theorem 2.4, we recover the Poincaré-Hopf theorem in case v is holomorphic and
the zeros are isolated.

Exercise 8.1. Find all the holomorphic vector field on the Riemann sphere C]?' and
verify the Poincaré-Hopf formula for each of them.

(b) Multiplicity formula
Let M be a complex manifold of dimension n. We take as E the holomorphic

cotangent bundle T*M. For a holomorphic function f on M, its differential df is a
section of T*M. The zero set S of df coincides with the critical set C(f) of f. We
define the multiplicity m(f, S) of f at a connected component SA of C(f) by

m(f,S.x) = Rescn(df,T*M;S).
Note that, if S,, consists of a point p, it coinsides with the multiplicity m(f,p) of f
at p described in Example 6.3 of Ch.III.

Now we consider the global situation. Let f : M -p C be a holomorphic
map of M onto a complex curve (Riemann surface) C. The differential

df:TM_*f*TC
of f determines a section of the bundle T*M ® f*TC, which is also denoted by df.
The set of zeros of df is the critical set C(f) of f. Suppose C(f) is a compact set
with a finite number of connected components (SA)\. Then we have the residue
Res (df, T*M 0 f*TC; SA) for each ). If M is compact, by Proposition 1.4, we
have




Res(df, T*M ® f*TC; SA) =
f

c,, (T- ® f*TC)
A

	

M

We look at the both sides of the above more closely. In the sequel, we set
D(f) = f(C(f)), the set of critical values. Then, if M is compact, f defines a C°°
fiber bundle structure on M \ C(f) -p C \ D(f).

We refer to [IS] for a precise proof of the following
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Lemma 3.1. IfM is compact, and if D(f) consists of isolated points,

JM c(T*M f*TC) = (-1)((M) - (F) (C)),

where F denotes a general fiber of f.
Suppose that f(SA) is a point. Taking a coordinate on C around f (S.\), we

think of f as a holomorphic function near SA. Then we may write

Res (df, T*M ® f*TC; SA) = Res. (df, TM; S,x) = m(f, SA),

the multiplicity of f at S. Thus we have

Theorem 3.2. Let f : M -p C be a holomorphic map of a compact complex
manifold M of dimension n onto a complex curve C. If the critical values D(f) of
f consists of only isolated points, then

My' SA) = (-l)Th((M) - (F) (C)),

where the sum is taken over the connected components SA of C(f).
In particular, we have ([I], see also [Fu] Example 14.1.5)

Corollary 3.3. In the above situation, if the critical set C(f) off consists of only
isolated points,

m(f,p) = (-1)((M) - (F) (C)).
pEC(f)

4. Residues of Chern classes on singular varieties

In this section, we deal with the situation more general than the one we
discussed in section 1, in two ways. Namely, we consider Chern classes other than
the top ones for vector bundles on possibly singular varieties. We refer to [Su2] and

[Su5] for details of the material in this section.
Let V be an analytic variety of pure dimension n in a complex manifold

W of dimension n + k. We denote by Sing(V) the singular set of V and set V' =
V \ Sing(V).

First, suppose V is compact and let U be a regular neighborhood of V in
W. Then, as in Ch.II, 4, the cup product in H* (CT) H* (V) and the integration

Iv
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induces the "Poincaré homomorphism"

P : Hp (V, -*

which is not an isomorphism in general. Note that in [Br] the above homomorphism
P, as well as the Alexander homomorphism defined below, are described in a com-
binatorial way for (co)homology with integral coefficients. The homomorphism P
is given by the cap product with the fundamental class [V].

Now suppose V may not be compact. Let S be a compact set in V. We
assume that S has a finite number of connected components, S D Sing(V) and that
S admits a regular neighborhood in W. Let U1 be a regular neighborhood of S in
W and U0 a tubular neighborhood of U0 = V \ S in W. We consider the covering
U = {Uo, U1} of the union U = Uo U U1, which may be assumed to have the same
homotopy type as V. We define the subcomplex A* (U, Uo) of A* (U) as in Ch.II, 5.
Then we see that

HD' (U,Uo)DH(V,V\S;C).

Again, as in Ch.II, 5, the cup product and the integration induces the
"Alexander homomorphism"

A: HP (V,V\S;C) -*H2_(S,C),

which is not an isomorphism in general.
Suppose V is compact. Then the following diagram is commutative

HP(V,V\S;C)

(4.1)		
t
A

H2-(S, C)

HP(V,C)

P

H2_(V,C),

where i and j denote, respectively, the inclusions S V and (V 0) -* (V V \ 5).
For a complex vector bundle E over U of rank r, the i-th Chern class c(E)

is in H2(U) H2(V). The corresponding class in H2(V) is denoted by e(EIv).
The class c2 (E) is represented by a Cech-de Rham cocycle Cj(V) on U given as

(3.1) in Ch.III with V0 and V1 connections for E on U0 and U1, respectively. Note
that it is sufficient if V0 is defined only on Uo, since there is a C0 retraction of
U0 onto Uo. Suppose we have an £-tuple s = (Si,. . . , s) of C°° sections linearly
independent everywhere on U0 and let V0 be s-trivial. Then we have the vanishing
c(Vo) = 0, for i > r-+1 (Ch.III, Proposition 3.3), and the above cocycle c(V)
defines a class c(EIv, s) in H(U, U0) H`(V, V \ S; C). It is sent to c(Ev) by
the canonical homomorphism j : H2(V, V \ S; C) -+ H2(V, C).
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Let (S) be the connected components of S. Then, for each A, c(Ev, s)
defines the residue Res (s, Ely; S) via the Alexander homomorphism

A: H2(V, V \ S; C) - H2,-2i(S, C) = H22(S, C).

For each .A, we choose a neighborhood U, of S,>, in U1, so that the (TA's are

mutually disjoint. Let f?,\ a real 2(n + k)-dimensional manifold with C°° bound-

ary in U,>, containing 8,>. in its interior such that the boundary i9R is transverse to
V. We set Ro = -ÔR,>, fl V. Then the residue Res (s, E v; S) is represented by a
2(n - i)-cycle C in S,>, satisfying the identity as (1.2) for every closed 2(n - i)-form
'r on U,>,. In particular, if i = n, the residue is a number given by a formula as (1.3).

From the commutativity of (4.1), we have the "residue formula"

Proposition 4.2. In the above situation, if V is compact, we have, for ˆ r-t+1,

(ix)Resc(s,Ey;Sx) = c(E) c's [V]	 in H2_2(V,C),

where i,>., : S -* V denotes the inclusion.

Note that the Res (s, Ely; Sx)'s are in fact in the integral homology and
the above formula holds in the integral homology.

5. Residues at an isolated singularity

Let V be a subvariety of dimension n in a complex manifold W of dimension
n + k, as before. Suppose now that V has at most an isolated singularity at p
and let E be a holomorphic vector bundle of rank r (> n) on a small coordinate

neighborhood U of p in W. We may assume that E is trivial and let e = (e1,. . . , e7)
be a holomorphic frame of E on U. Let £ = r - n + 1 and suppose we have an

£-tuple of holomorphic sections of E on U. Suppose that S() fl V = {p}. Then
we have Res (s, Ely; ) with s = lv. In the following, we give various expressions
of this number.

We write sj =

	

fj e, i = 1,.. . , £, with f2j holomorphic functions on

U. Let F be the £ x r matrix whose (i,j)-entry is

	

We set

For an element I (i1, . . . , i) in I, let F1 denote the £ x £ matrix consisting
of the columns of F corresponding to I and set coi = det F1. If we write ei =

e1 A ... A eje, we have




1AA=jej.
IEI

Note that S() is the set of common zeros of the pi's.
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(I) Analytic expression
First we recall:

Grothendieck residues relative to a subvariety

-	 Let U be a neighborhood of 0 in C?2

	

and V a subvariety of dimension n
in U which contains 0 as at most an isolated singular point. Also, let fi,. . .
be holomorphic functions on U and V(f1,.. . , fTh) the variety defined by them. We
assume that V(f1,. . . , f) fl V = {0}. For a holomorphic n-from w on U, the
Grothendieck residue relative to V is defined by (e.g., [Su2] Ch.IV, 8)

w	 1	

(	
1	 'Y '

	

w
Res0[	 -

	

_
Jfi"fn

where F is the n-cycle in V given by

F={qeUflVHf(q)=e,i=1,...,n}

for small positive numbers E. It is oriented so that darg(fi) A Ad arg(f) ˆ 0.
If k = 0, it reduces to the usual Grothendieck residue (Ch.III, 6), in which

case we omit the suffix V.
If V is a complete intersection defined by h1 = = hk = 0 in U, we have

w	 1

	

IwAdhldhklReso[	 I	 =		 Reso Lfl,...,fn,hl,...,hk]
To get the analytic expression, we first note that, from the assumption

S() Ii V = {p}, we have ([Su4] Lemma 5.6)
Lemma 5.1. We may choose a holomorphic frame e = (ei,... , e) of E so that
there exist n elements . . . , i(') in I with V(o1(i),. . . , ço) fl V= {p}.
Theorem 5.2. We have

Res(s,Ev;p) = Res [ a(e) 1
where I(1),. . . , p1Th are chosen so that they satisfy the conditions in Lemma 5.1
and (e) is a holomorphic n-from given in terms of the matrix F (see [Su4J for
the precise expression).

Here are some special cases:
1. The case £ = 1 and r			 n. Let e = (ei,.. . , e,) be an arbitrary frame of E
and write s =		fe2. Then we may set	 j(i) = f, i = 1, . . . , n, and we have

(e)=df1A...Adf.
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2. The case n = 1 and £ = r. Let e = (ei,. . ., er) be an arbitrary frame of E and
write s j1 f3 e, i = 1,..., r. Let F = (fjj) and set = detF. Then we may
set j(') and we have or, = do.

See [5u4] for more cases where the form a(e) is computed explicitly.

(II) Algebraic expression

Let

	

denote the ring of germs of holomorphic functions on U at p, which
is isomorphic to the ring °n+k of convergent power series in n + k variables. We
assume that V is a complete intersection defined by hl,..., hk near p and let .F(V)
denote the ideal in 0Up generated by (the germs of) the 1's and hl,..., h.

Theorem 5.3. We have

Res(s,Ev;p) = dimcO/.F(V)p.

(III) Topological expression

We again assume that V is a complete intersection in U. Let W (Ca) denote
the Stiefel manifold of £-frames in CT. It is known that the space Wt (CT) is 2 (r -
connected and 72n-1(Wt(CT)) Z (recall 2r - 2 + 1 = 2n - 1). Let L denote the
link of (V,p). Note that both of W(CT) and L have a natural generator for the
(2n - 1)-st homology. Thus the degree of the map

= SL : L -* W (CT)

is well-defined.

Theorem 5.4. We have

Res,js,EIv;p) = deg.

6. Examples II

(a) Index of a holomorphic 1-form of Ebeling and Gusein-Zade

Let V be a complete intersection in U with an isolated singularity at p
and defined by (h1,.. . , hk), as before. Also, let L be the link of (V,p). For a
holomorphic 1-form 0 on U, we consider the (k + 1)-tuple = (0, dh1,.. . , dhk) of
sections of T*U, which is of rank n + k. Thus r - £ + 1 = ri + k - (k+1)+1 =n.
We assume that S() fl V = {p}, which means that the pull-back of 0 to V \ {p} by
the inclusion V \ {p} U does not vanish. Let s = v, which defines a map of
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V \ {p} to W(Cr). It should be emphasized that here we take the restrictions of
components of as sections and not as differential forms.

Following [EG1], [EG2], with different naming and notation, we define the
V-index Indv(O,p) of 0 at p by

Indv(0,p) = degsL.

Then by Theorem 5.4, it coincides with Res (s, T*Uv; p) and by Theorems
5.2 and 5.3, it has analytic and algebraic expressions. In fact the algebraic one is
already given in [EG1], [EG2].
Remark 6.1. For a vector field, there is a similar index, which is called the GSV-
index ([GSV], [SS1]). Namely, in the above situation let v be a holomorphic vector
field on U. Assume that v is tangent to V \ {p} and non-vanishing there. Set
= (v, grad h1, . . .,grad hk) and s =	 Then the GSV-index of v at p is defined

by
GSV(v,p) =degs.

Since s involves anti-holomorphic objects, we cannot directly apply our
previous results. Note that it coincides with the "virtual index" of v ([LSS], [SS2])
and that there is an algebraic formula for it as a homological index, when k = 1
([Go]).

(b) Multiplicity of a function on a local complete intersection

We refer to [IS] for details of this subsection. Let V be a subvariety of
dimension n in a complex manifold W of dimension n + k. We assume that V is
a local complete intersection defined by a section s of a holomorphic vector bundle
N of rank k over W (see Ch.III, 5).

Recall that the restriction of N to the non-singular part V' coincides with
the normal bundle of V' in W. We denote the virtual bundle (T*W -Nv by
r and call it the virtual cotangent bundle of V. Let g be a holomorphic function
on W and let f and f' be its restrictions to V and V', respectively. We define
the singular set S(f) of f by S(f) = Sing(V) U C(f'). As in the case of vector
bundles, we may define the localization of the n-th Chern class of by df, which
in turn defines the residue Res (df, r; S) at each compact connected component
S of S(f). We define the virtual multiplicity in-(f, S) of f at S by

(6.2)

	

in- (f S) = Res, (df, r; S).

The multiplicity of f at S is then defined by

(6.3)	 m(f, S) = t(f, S) - i(V, S),
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where, p(V, S) denotes the (generalized) Milnor number of V at S as defined in
[BLSS} (cf. [A], [P], [PP] in the case k = 1). Note that if S consists of a point p, it
is the usual Milnor number i(V, p) of the isolated complete intersection singularity
(V,p) (cf. Ch.III, 5).

Note that, if S is in V', we have Res(df,T>; S) Res(df, T* V'; S). On
the other hand, in this case we have pV, S) = 0 so that m(f, S) coincides with the
one in 3 (b).

Let g : W - C be a holomorphic map onto a complex curve C and set
f = glv, I = gv' and 5(f) = Sing(V) U C(f'). We assume that 8(f) is compact.
We further set Vo = V \ S(f) and fo = gi v0. Thus df0 is a non-vanishing section of
the bundle T*Vo ® fTC, which is of rank n. If we look at c(6), E = r ® f*TC
and we see that there is a canonical localization c(E, df) in H2(V, V \ S; C) of

Let (SA)x be the connected components of S and let (RA)A be as in 4. Then
c(E, df) defines, for each ), the residue Res(df, r, ® f*TC; S,). If V is compact,
by Proposition 4.2, we have

Res (df, r ® f*TC; S) = JV c( ® f*TC)

The both sides in the above are reduced as follows. If f(S(f)) consists of
isolated points, we may write

Res (df, r ® f*TC; SA) = FaY' SA) = m (f, SA) - itW, SA)

and, if moreover, V is compact, we have

® f*TC)	 (-1) ((V) - X(F) (C)) +

	

(V, SA),

where F is a general fiber of f ([IS] Lemma 5.2). Thus, in the above situation, we
have ([IS] Theorem 5.5)

m(f, SA) = (-1) ((V) - (F) (C)).

In particular, if S(f) consists only of isolated points,

(6.4)		 m(f,p) = (_l) ((V) - (F) (C)),
pES(f)

which generalizes Corollary 3.3 for a singular variety V.
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If S consists of a single point p, the residue Res (df, r*;p) is given as
follows. Let U be a small neighborhood of p in W so that the bundle N admits a
frame (111, . . . , Ilk) 011 U. We write s	 h2 ii with h holomorphic functions on
U. Then V is defined by (hl,..., hi) in U. Consider the (k + 1)-tuple of sections

= (dg, dh1, .. . , dhk)

of T*U. By the assumption, we have S() fl V = {p}. Since the rank of T*U is
n+k, we have the residue Rescn(s,T*U!v;p), s = v" Then we have ([IS] Theorem
4.6)

(6.5)

	

fn- (f,p) = Rescn(s,T*UIv;p).

The virtual multiplicity fi(f,p) was defined as the residue of df on the
virtual bundle T and this definition led us to a global formula as (6.4). The identity
(6.5) shows that it coincides with the residue of s = (dg lv, dhilv,. . . , dhjv) on the
vector bundle T*UIV. Thus we have various expressions for ffi(f, p) as given in the
previous sections; by Theorem 5.2 we have a way to compute Fn (f, p) explicitly, by
Theorem 5.3 we may express

(6.6)

	

f,p) = dimc O+k/(J(g, hl,..., h), hl,...,

where J(g, hl,..., h) denotes the Jacobian ideal of the map (g, hl,..., h), i.e., the
ideal generated by the (k + 1) x (k + 1) minors of the Jacobian matrix
and by Theorem 5.4,

(6.7)

	

(f,p) = Indv(dg,p).

From (6.3), (6.6) and the identity (cf. [Gr], [LêlJ)

(V, p) + i(Vg,p) = dimc Q+k/(J(g, hl,..., hk), hl,..., hk),

where Vg denotes the complete intersection defined by (g, hi .... , hk), assuming
g(p) = 0, we get

(6.8)

	

m(f,p) = ,LL(Vg,p).

(c) Some others
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Let V be a complete intersection defined by (h1,. . . , hk) in U and p an
isolated singularity of V, as before.

The n-the polar multiplicity m(V,p) of Gaffney ([Ga]) is defined by

m(V,p) = dimc O+k/(J(, hl,..., h), hl,... ,

where £ is a general linear function. By (6.6) and (6.7), we may write

m(V,p) = Indv(d,p) = (lv,p).

Also, in the expression

Eu(V,p) = 1 + (-1)1j(V,p)

for the Euler obstruction Eu(V,p) of V at p (cf. [D], [Ka], see also [BLS]), we have
by (6.8),

i(Vt,p) = m(Iv,p).

Note that these local invariants appear in the comparison of the Schwartz-
MacPherson, Mather and Fulton-Johnson classes of a local complete intersection
with isolated singularities (cf. [OSY], [Sul]).
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