

	

United Nations	

hductionaI, Scientific
The Abdus Salam	 ind Cultural Organization

International Centre forTheoretical Physics

Ir.ternatio.& Ato.mc

Energy Agency

SMR1671/6

Advanced School and Workshop on Singularities in

Geometry and Topology

(15 August - 3 September 2005)

Computational Aspects of Singularities

Anne FrUhbis-krUger
Universität Kaiserisautern
Fachbereich Mathematik
Kaiserslautern, Germany

Computational Aspects of Singularities
Notes of a Set of 2 Talks given at the Summer

School on Singularities in Geometry and
Topology at the ICTP 2005

Anne Friffibis-Krilger

July 22, 2005

Contents

1 Studying the Singular Locus		 2
1.1 The Jacobian criterion

	

2
1.2 The non-equidimensional case

	

6
1.3 Finding the Correct Number of components

	

8

	2Computing Invariants of Isolated Singularities		 9
2.1 Local and Global Considerations

	

10
2.2 Dimension and Multiplicity

	

11
2.3 Milnor and Tjurina Number

	

12
2.4 Puiseux Expansion

	

15
2.5 Classification of Hypersurface Singularities

	

17
2.6 Monodromy and Spectral Numbers

	

18

	3Deformations of Singularities	 19
3.1 T' and T2

	

19
3.2 Studying Families of Singularities

	

24

	4Varieties with Singularities	 27
4.1	 Hypersurfaces with Prescribed Singularities

	

27
4.2	 Resolution of Singularities

	

29	
4.2.1 Blowing Up

	

30
4.2.2	 Computing the Order

	

31
4.2.3	 Descent in Dimension

	

32
4.2.4	 Identification of Exceptional Divisors

	

34
4.2.5	 Intersection Matrix of Exceptional Curves

	

35

1

Preface
This is a preliminary version of lecture notes for a set of two talks entitled Com-
putational Aspects of Singularities at the School on Singularities in Geometry
and Topology. The aim of the talks is to first introduce the participants to the
use of computational methods for studying singularities and then proceed step
by step from the simple application of predefined computational tools to more
complex applications. Using the algorithmic resolution of singularities as an
example, we further show, how a rather complex computational task can be
tackled by decomposing it into several smaller tasks.

As this set of talks is embedded into a school on singularities, we assume
that the participants are familiar with the (singularity theory) background of
the treated computational tasks or that they become familiar with it during the
3 week period of the school. Hence, we simply put each task into context by
recalling the definitions and some properties from the algebraic point of view
before outlining the computational approach to it and discussing a practical
example (computed in the CA-system SINGULAR).

We are grateful to the organizers of the School, Professors J.-P. Brasselet, 3.
Damon, M. Lejeune-Jalabert, M. Oka and Lê D.T., for the opportunity to take
part in this interesting meeting.
The research of the author was also partially supported by the DFG-Schwerpunkt
Globale Methoden in der komplexen Geometrie".

1 Studying the Singular Locus
In this first section, we show how to use some tools from computational com-
mutative algebra to study the singular locus of a variety. For a more detailed
discussion of these techniques 'and for a description of the underlying algorithms
see [?].

1.1 The Jacobian criterion

Given a affine variety V(I) C Ktm over a (perfect) field K, I = (fl,..., fm) c
K[xj,.. . , x,], our first task is to to determine its singular locus by means of
the Jacobian criterion.

Recall that the set

Sing(A) := {P Spec(A) A is not regular}

is called the singular locus of A and that the Jacobian criterion can be stated
as follows:

Lemma 1 Let K be a perfectfield, let A = K[ai,...,x]/(f1,. x,,]/(f1,...,f) be equidi-
mensional and let J C A be the ideal generated by the (n - dim(A))-minors of
the Jacobian matrix (L.). Thenaxi

Sing(A) = V(J).

Example 1 (irreducible curve)
In this first example, we consider the curve specified by the parametrization

-

t - (t3,t4,t5)

We shall first compute the ideal of the curve and then apply the Jacobian cri-
terion. At this point, it is important to observe that in general all calculations
in a computer algebra system are performed over the rationals or over suitable

field extensions thereof, but not over the real or complex numbers. This does not
change the calculations, but has to be kept in mind when discussing the compu-
tational result.

We now determine the ideal of the curve by specifying the parametrization
and then eliminating the parameter t:	

II ring of char 0 containg
> ring r=0,(t,x,y,z),dp;	 II variables x,y,z and t
> ideal Ip=x-t3,y-t4,z-t5;	 II input of the parametrization

> ideal Ie=eliminate(I,t);	 II compute ideal of the curve:
> le;		 II elimination provides equations
_[1]=y2-xz	 II of the projection
- [2] =x2y-z2
- [3] =x3-yz
> ring r2=0,(x,y,z),dp;	 II we do not need t any more	

// move the ideal of the
> idea]. I=imap(r,Ie);	 II curve to this ring

As this is obviously an irreducible curve, we do not need to worry about the
equidimensionality condition in the Jacobian criterion. We can simply proceed
by computing the dimension of K[x, y, z]/I (of which we know that it is 1), the
Jacobian matrix and the ideal of minors of the appropriate size:

> mt dimA=dim(std(I));
> dmA;
1

II dimension of K[x,y,z]/I;
II 'std' (Groebner basis) required
II for using command 'dim'
II we already know that it is 1

> matrix Jac=jacob(I);
> print(Jac);
-z, 2y,-x,
2xy,x2,-2z,
3x2,-z,-y

// determine Jacobian matrix
II show the matrix

3

> ideal J=minor(Jac,3-diniA);
> ideal sL=J+I;
> sL;
sL [1] =-x2y-2z2
sL [2] =-2xy2+6x2z
sL [3] -2y2-xz
sL[4]=3x3+yz
sL [5] =3x4+2xyz
sL [6] 6x2y-z2
sL [7] x3-4yz
sL [8] =2x2y+2z2
sL [9] =4xy2+x2z
sL [10] =y2-xz
sL [11] x2y-z2
sL [12] x3-yz

II determine the minors
1/ ideal of singular locus

12 generators for the ideal of the singular locus seems to be quite a lot.
Indeed, ideals generated by minors of matrices tend to have a high number of
redundant generators and we can try to find a smaller set of generators by
applying appropriate commands such as mstd. But in our particular case, we
are only interested in the set of singular points and we can hence even pass to
the radical of the ideal by the Hubert Nullstellensatz:

II the radical is contained in a
> LIB 'primdec.lib;	 /1 Singular library which needs to
> radical(sL);	 II be loaded before using it
_[1]=z
_[2]=y
_[3]=x

Hence we see that the only singular point of this curve is the origin.

Example 2 In the second example, we consider a variety consisting of 3 smooth
hyperplanes. To this end, we first define each of the hyperplanes separately
and then form their union by intersecting the corresponding ideals. Afterwards,
we apply the predefined procedure slocus to determine the singular locus and

subsequently study it further.

> ring r=0,(x,y,z,w),dp;
> ideal I1x,w;
> ideal 12y,z;
> ideal I3z-x2-y2,w;
> ideal Itemp=intersect(I1,12);
> Itemp;
Itemp [1] =yw
Itemp [2] =zw
Itemp [3] =xy

II polynomial ring: char. 0, 4 var.
// the y-z plane
II the x-w plane
II another smooth surface
II union of y-z and x-v planes

4

Itemp [4] =xz
> ideal I=intersect(Itemp,13);
> I;
I[1]=zw
I[2]=yw
I [3] =-x2zw-y2zw+z2w
I [4] -x2yw-y3w+yzw
I [5] =-x3z-xy2z+xz2
I [6] =-x3y-xy3+xyz
I [7] =-y2+zw

II union of all three surfaces

In this case, we expect the singular locus to be the locus where the surfaces
meet, since each of the surfaces is smooth. The surfaces V(I1) and V(12) respec-
tively V(12) and V(Th) meet in the point V((x, y, z, w)), whereas the intersection
locus of V(I1) and V('IS) is the curve V((x,w,z - y2)).

> LIB "sing.lib;	 II slocus is in library 'sing.lib'
> ideal sL=slocus(I);	 II compute singular locus
> size(sL);
91

To see both components of the singular locus, we cannot restrict our consid-
erations to the radical or the minimal associated primes in this case, because
one component, the point, is contained in the other component. Here we need
to consider a primary decomposition' of the ideal sL, to find both components:

> LIB 'primdec.lib't;			 II library for primary decomposition
> minkssGTZ(sL);			 II minimal associated prime ideals
[1]:			 II just one minimal prime	

_[1] =y2-z	
-[21=w	
-[31=x

> primdecGTZ(sL);			 II complete primary decomposition
[1]:			 II first primary component	

[1]:		 II primary ideal		
_[11=W		
_[2] =y2-z		
_[3]=x	

[2]:		 II corresponding prime		
_[13=W		
- [2] =y2-z		
_[3]=x

[2]:			 II 2nd primary component	
[1]:		 II primary ideal

11n the primary decomposition commands implemented in SINGULAR, the list containing
the result is not ordered. Therefore permutations of the list entries occur quite often.

5

_[1]=w2
_[2]=zw
_[3]=z2
- [4] =yw
_[5]=y3z
- [6] =y4-y2z
_[7]'xyz
_[8]=xy2
_[9]=x3w
- [1O]=x3z
_Ell]=x3y
_[12]=x6

_[1] =w
_[2]=z
_[3]=y
- [4] =x

II corresponding prime

1.2 The non-equidimensional case

The two previous examples were constructed in a suitable way to make sure
that they are equidimensional. But in general this is not known a priori. Hence
the variety needs to be decomposed first - into equidimensional components.

Example 3 We now consider the union of the space curve of example ?? and
a surface V(x3 - y2) which possesses a non-isolated singularity.

> ring r=O,(x,y,z),dp;
> ideal Ii=y2-xz,x2y-z2,x3-yz;
> ideal I2=x3-y2;
> ideal I=intersect(I1,12);
> I;
I [1] =x3y2-x4z-y4+xy2z
I [2] =x5y-x2y3-x3z2+y2z2
I [3] =x6-x3y2-x3yz+y3z
> LIB "primdec.lib";
> list li=equidim(I);
> li;
ii [1]

- [1] y2-xz
- [2] =x2y-z2
- [3] x3-yz

ii [2]
-[11=x3-y2

II polynomial ring: char 0, 3 var.
II the previously computed ideal
II the singular surface
II the union of the two varieties

II equidim. deconip. is in 'primdec.lib'
II compute list of equidim. parts

II ideal describing part of dim. 1

II ideal describing part of dim. 2

Using this equidimensional decomposition, we can then compute the singular
locus of each of the equidimensional parts by the Jacobian criterion. The union

6

of these singular loci and of the intersection locus of the various parts now is

precisely the singular locus of the whole variety.

Example 4 (example?? continued)

> LIB tsing.lib";
> ideal sLlslocus(li[1]);
> ideal sL2=slocus(li[2]);
> sL2;
sL2 [1] =x3-y2
sL2 [2] -2y
sL2[3]3x2
> ideal interl2=li [1]+li [2];
> interi2;
interi2[1]=y2-xz
interi2 [2] =x2y-z2
interl2 [3] =x3-yz
interl2 [4] =x3-y2

II 'sing.lib' contains slocus
II singular locus of 1-dim, part
II singular locus of 2-dim. part

II intersection of 1- and 2-dim, parts

// union of contributions
II to sing. locus

> ideal sL=intersect(sLl,sL2,interi2);
> primdecGTZ(sL);
[1]:	 II first primary component:	

[1]:	 II singular locus of surface
...[1] =y
[2]=x2

[2]:
_[1] =y

=x
[2]:

[1]
_[1]=z2
- [2] =y2-yz
_[3]=xyz
_[4]x2z
...[5]=x3-yz

[2]:
_[1]=z
- [2] =2y-z
- [3] =x

[3]:
[1]

_[1]=z-1
[21 =Y-l
[31 =x-1

[2]:
...[1] z-1

II second primary component:
II singular locus of curve
II but also one of intersection
II points of the two parts

II third primary component:
II other intersection point
II of the two parts

7

_[21
=Y-l

[3]=x-1

1.3 Finding the Correct Number of Components
As the following example shows, the result of the primary decomposition needs
to be interpreted with caution when counting the number of branches:

Example 5 Consider the variety V((x4 - yz2,xy - z3,y2 - x3z)) C A. Its
only singular point is the origin. The task is to compute the number of branches
of this space curve.

> ring r=O,(x,y,z),dp;
> ideal I=x4-yz2,xy-z3,y2-x3z;			 II the ideal of the curve
> primdecGTZ(I);			 II primary decomposition
[1]		

[1]			
- [1] 'z8+yz6+y2z4+y3z2+y4		
- [2] =xz5+z6+yz4+y2z2+y3		
- [3] =-z3+xy		
- [4] =x2z2+xz3+xyz+yz2+y2		
- [5] =x3+x2z+xz2+xy+yz	

[2]:		
- [1] =z8+yz6+y2z4+y3z2+y4		
-[2] xz5+z6+yz4+y2z2+y3		
-[3] -z3+xy		
- [4]=x2z2+xz3+xyz+yz2+y2		
-[5] =x3+x2z+xz2+xy±yz

[2]:		
[1]			

- [1]=-z2+y		
- [2] =x-z	

[2]:		
- [1]=-z2+y		
_[2] =x-z

This result seems to imply that the number of branches would be 2. To
check the plausibility of this conclusion, we consider the Milnor number of the
singularity at the origin, which turns out to be 12. But by the formula i =
2ô - r + 1, an even number of branches would imply an odd Milnor number.
Therefore, the conclusion that there are two branches is not plausible. The
reason for this is that we are calculating over the rationals, but thinking over the
complex numbers. In particular, the first primary component actually consists
of 4 components, as we see by considering the normalization.2

2Recall that in our situation the normalization coincides with a parametrization of the
curve.

> LIB "normal.lib";	 II normalization is in 'normal.lib'
> list 1inormal(I);	 /1 compute normalization
II 'normal' created a list of 1 ring(s).
1/ To see the rings, type (if the name of your list is nor):

show(nor);
II To access the 1-st ring and map (similar for the others), type:

def B. = nor[1]; setring B.; norid; normap;
II R/norid is the 1-st ring of the normalization and
II normap the map from the original basering to R/norid
> size(li);			 II how many branches (over Q)
1
> def norring=li[11;		 II consider branch more closely
> setring norring;
> basering;
II	 characteristic : 0
1/	 number of vars : 2
1/	 block	 1 : ordering a

names	 T(1) T(2)
II	 : weights	 1

	

0
II	 block	 2	 : ordering dp
II			 : names	 T(1) T(2)
II	 block	 3	 : ordering

	

C
> florid;
norid[1J =T(2) 5-1

At first glance, it might seem strange that the ring describing the normaliza-
tion has two variables, although it describes a 1-dimensional object. But looking
at norid, we see that the second variable is only used to specify an appropri-
ate field extension over the rationals such that all branches are separated. In
particular, we see that we have 5 branches.

Another possibility to determine the correct number of branches, is the use
of a projection to the plane and determine further data of the curve via Puiseux

expansion (see?? below).

2 Computing Invariants of Isolated Singularities
After discussing briefly some aspects of algorithmic calculations in local rings,
this section contains a few examples of invariants which can be computed in
practice. To each example, we also mention where further information on the
algorithmic aspects can be found. This list of examples is by no means exhaus-
tive, it is intended as a kind of appetizer for the audience to start discovering
what is available as algorithmic tools for their field of research; for simplicity of
the presentation, we only discuss examples whose implementation is also avail-
able in SINGULAR and not even half of the funtionality of SINGULAR in this area
is mentioned.

9

2.1 Local and Global Considerations
Up to this point, we have only studied varieties, but not germs. As a consequence
all computations have been performed in polynomial rings, not in power series
rings.3 Actually, a full implementation of power series rings on a computer is
not feasable, but nevertheless many practical tasks can be tackled by using the
localization of the respective polynomial ring at the origin instead'.

To understand the basic idea behind the implementation of this type of
localizations of polynomial rings, we first need to consider the problem of repre-
sentation of polynomials on the computer. The need to represent polynomials
on the computer in a unique way forces us to use a total ordering on the set of
all monomials which has to be compatible with multiplication of monomials. If
the monomial 1 is the smallest monomial, the monomial ordering is called global
and the ring is a polynomial ring; if 1 is the largest monomial, the monomial
ordering is called local and the ring is a localization of the polynomial ring at
the origin. Orderings, in which some, but not all monomials are smaller than
1, are also possible and are usually referred to as mixed orderings. A detailed
discussion of the influence of the choice of ordering on the ring is beyond the
scope of this set of two talks and we refer the participants to a suitable textbook,
e.g. [?].

Example 6 In this example, we show some very simple calculations to illustrate
the contrast between the local and global monomial orderings.

The first of these small tasks is the calculation of a Cröbner basis resp.
standard basis for the ideal of the variety consisting of the plane V(z + 1) and
the two lines V(x, y) and V(x - 1, y - 1) in A:

> ring rg=O,(x,y,z),dp;
> ring rl=O,(x,y,z),ds;

7/ polynomial ring in 3 var.: dp
/7 localization at origin:	 ds

> setring rg;
> ideal I1=z+i;
> ideal 12x,y;
> ideal 13x-i,y-1;
> ideal Itemp=intersect(I1,12);
> ideal I=intersect(Itenp,13);
> I;
I [1] =-xz+yz-x+y
I [2] =xyz+xy-yz-y

> ideal J=groebner(I);

/7 go back to polynomial ring
/7 the plane V(z+1)
7/ first line
// second line
7/ union of the first two
/7 union of all three

/7 remark:	 I is radical by
/7

	

construction

/7 compute Groebner basis

3The functionality of primary decomposition, radical and normalization is only available
in polynomial ring, not in localizations thereof.

4For obvious reasons, the input and output still need to be specified in terms of polynomial
data.

10

> 3;
- [1]=xz-yz+x-y
- [2] =y2z+y2-yz-y

> setring rl;
> def I=imap(rg,I);
> I;
I [1] =-x+y-xz+yz
I [2] =-y+xy-yz+xyz
> ideal J=groebner(I);
> 3;
_[1]=x
- [2] =y

II now go to localization
7/ map ideal via identity map

1/ observe the different way
/1 of writing I[1]
/1 compute standard basis

7/ we only see the components
7/ meeting the origin

Continuing with the same example, we now compute the dimesions and check
whether the variety/germ is contained in the plane V(x):

> setring rg;	 7/ back to polynomial ring
> dim(3);		7/'dim' needs Groebmer/standard basis
2	 /7 dimension of the plane
> setring rl;	 7/ back to localization
> dim(3);		/1applying 'dim' at 0
1	 7/ dimension of components meeting 0

> setring rg;		
7/ ideal membership test x in 3 ?

> reduce(x,J);	 II 3 needs to be Groebner/standard basis
x		7/answer: no
>setring rl;
> reduce(x,J);	 7/ same question locally
0	 /1 answer: yes

2.2 Dimension and Multiplicity
As we already used the dimension of a variety or agerm in the previous example,
this seems to be a good moment to look at its calculation and at related data.
Thenotion of dimension itself can be phrased in several ways (e.g. for a local ring
(II, in): maximal length of chains of prime ideals, minimal number of generators
of an rn-primary ideal in a local ring (R, rn),etc.), but most accessible to the
use in practical calculations is the definition by means of the degree of the
Hilbert-Samuel polynomial.

More precisely, it is possible to explicitly compute the Hilbert-Samuel poly-
nomial of a given ideal with polynomial generators in the localization of a poly-
nomial ring at the origin. The general idea ofthis calculation is to find a suitable
system of generators (a standard basis of the ideal w.r.t. a local degree order-
ing), then pass to the ideal generated by the largest terms of the generators (the

11

so-called leading ideal) and compute the desired C-vector space dimensions for
this new (monomial) ideal in a combinatorial way. The degree and leading co-
efficient of this Hilbert-Samuel function yield the desired data. For an in depth
discussion of this calculation and its theoretical background see e.g. chapter 5
of [?].

In SINGULAR, the dimension and multiplicity5 are directly accessible as ker-
nel commands din and mult.

Example 7 To illustrate the use of these commands, we now consider a space
curve singularity at the origin consisting of an E6 singularity in the -y plane
and the z-axis.

> ring r=O,(x,y,z),ds;
> ideal I=xz,yz,x3-y4;
> I=groebner(I);
> I;
I[1]=xz
I[2]=yz
I[3]=x3-y4

> lead(I);
_[1]=xz
_[2]=yz
_[3J=x3
> dim(I);
1
> mult(I);
4
> dim(lead(I)),mult(lead(I));
II ** - is no standardbasis
II ** - is no standardbasis
14

II this is a local degree ordering
II a space curve singularity
II compute standard basis

// ideal generated by largest monomials of
// the generators of I

II compute dimension

// multiplicity

II should give the same values
II ** automatic warnings can be ignored
II ** if ideal is monomial

2.3 Milnor and Tjurina Number

Another example, which illustrates the issue of local and global orderings nicely,
is the calculation of the Milnor and Tjurina numbers of a given singularity.
Recall that for an isolated hypersurface singularity defined by f e C{1}, these
invariants defined as the C-vector space dimensions:

Of \ Of= dime
(CUM

L

	

h-)) r = dime
(Cfx}/(f,

-,		,
))

-
ax, ax"

For more details on these invariants see any textbook on singularities, e.g. [?] in
the curve case, [?] for hypersurfaces or [?] in the case of complete intersections.

5 Calling the degree of the Hubert-Samuel polynomial d, the multiplicity is d! times leading
coefficient of the Hubert-Samuel polynomial.

12

Example 8 In this example, we compute the Milnor and Tjurina number at the
origin for the plane curve consisting of two cusps V(x2 - y3) and V(x3 - y2).

> ring r=0,(x,y),ds;
> ideal I=(x2-y3)*(x3-y2);
> ideal Jac=jacob(I);
> groebner(Jac);
- [1] =2x2y-5y4
- [2] =2xy2-5x4
_[3]=x5-y5
_[4]=y6
> vdiin(groebner(Jac));
11
> vdirn(groebner(Jac+I));
10

II local ring in 2 variables
// the curve
II jacobian ideal of I

If the Milnor number

II the Tjurina number

Alternatively, we can also use the predefined commands in the library 'sing.lib':

> LIB "sing.lib";
> milnor(I);	 7/ the Milnor number
11
> tjurina(I);	 /1 the Tjurina number
10

But what would happen, if we specified a global ordering instead of the local
ordering?

> ring r2"O,(x,y),dp;
> ideal I(x2-y3)*(x3-y2);
> ideal Jac=jacob(I);
> groebner(Jac);
- [1] =3x2y3-5x4+2xy2
- [2] =3x3y2-5y4+2x2y
-[31=x5-y5
- [4] =9y7-19x4y+lOxy3
> vdim(groebner(Jac));
21
> vdirn(groebner(Jac+I));
15

/1 global ordering
7/ the curve
/1 jacobian ideal of I

The numbers, which we computed here, are precisely the sums over the Mil-
nor resp. Tjurina numbers of all singularities of the affine curve. Therefore we
expect to find further critical points outside the origin whose multiplicities add
up to 10 resp. further singular points whose Tjurina numbers add up to 5. To
check this, we determine the singular locus, move to each of the other singular
points and compute Milnor and Tjurina numbers there. Subsequently, we also
study the critical locus, which, of course, contains the singular locus.

13

> LIB "primdec.lib';
> minAssGTZ(slocus(I));
[1]

Ell =y
- [2] =x

[2]:

_
[11 =Y-l
[2]=x-1

[3]:
- [1] =y4+y3-i-y2+y+l
- [2] =y3+y2+x-I-y+1

1/ components of singular locus
/1 the origin -- we knew that one

II the point (1,1)

II a set of 4 points
1/ <--- keep this in mind (*)

> setring r; II go back to local ring
> map ml=r2,x+1,y+1; II translation of (1,1) to origin
> def 12=ml(I); II move our curve, to study at (1,1)
> 12;
12 [1]=6x2-l3xy+6y2+9x3-llx2y-llxy2+9y3+5x4-3x3y-10x2y2-3xy3+5y 4

+x5-3x3y2-3x2y3+y5-x3y3
> milnor(12); II Milnor number
1
> tjurina(12); II Tjurina number
1

> ring r2a=(O,a),(x,y),ds;
> minpoly=a4+a3+a2+a+1;

/1 extend basefield to look
II at the 4 points
/1 adjoining parameter a
II minimal polynomial, see

> map m2=r2,x-a3-a2-a-1,y+a;
> def 13in2(I);
> milnor(12);
1
> tjurina(12);
1

> setring r2;
> miuAssGTZ(jacob(I));
[1]		

Ill =y
- [2] =x

[2]

-[2]=x-1
[3]:

- [1] =y4+y3+y2+y+l
- [2] =y3+y2+x+y+1

// go to one of the points
II map the curve
II Milnor number

II Tjurina number

II go back to r2
II decompose set if critical points
II origin -- already considered

II (1,1) -- already considered

II 4 points -- already considered

14

[4]:		 II 4 critical points	
_[1] =81y4+54y3+36y2+24y+16	
_[2] =27y3+18y2+12x+12y+8

[5]:		 II 1 critical point	
-[11=3y-2	
-[21=3x-2

Actually, it would not have been necessary to move to each of the points
and check the Milnor and Tjurina numbers explicitly, because we only had a
difference of 10 for the Milnor and of 5 for the Tjurina number and this equals
the number of additional points in the critical resp. singular locus.

The Milnor and Tj'urina numbers for isolated complete intersection singulari-
ties are available by the same command - in the case of the Milnor number by use
of the Lê-Creuel formula. The Tjurina number for Cohen-Macaulay codimen-
sion 2 singularities, which are not ICIS, is provided in the library 'spcurve.lib
in the general case it can be obtained via the command T', see below.

2.4 Puiseux Expansion
To determine further invariants of the plane curve in the previous example we
are now going to use Puiseux expansion. More precisely, we are going to use
Hamburger-Noether expansion, an analogue to Puiseux expansion which works
in arbitrary characteristic. More details on Hamburger-Noether expansion can
be found in [?J.

Example 9 Continuing where we stopped in our calculations in the previous
example, we now apply Hamburger-Noether expansion and extract information
about the given plane curve from it. Recall that this curve consisted of two
branches V(x2 - y3) and V(2 - x3).

> LIB "lmoether.lib't;		 II load Hamburger-Noether library
> poly f=I [1];		 II hnexpansion needs argument of type poly
> hnexpansion(f);		 II call Hamburger-Noether expansion
[1]:		 II result lives in a new ring

II	 characteristic : 0
/1	 number of vars : 2
II		 block 1 : ordering ls
II	 : names

	

xy
II	 block	 2 : ordering C

> def S=_ [1];
> setring S;
> brie;
[1]

	[1]
[1, 1] =0
Ci. , 2] =x
[1, 3] =0

// give that ring the name S
II and change to it
// result can be found in line
// technical data, not really readable

15

[2, 1] =0
- [2,2]=1
_[2,3]=x

[2]:
	1,2

[3]:
	0

[4]:	
0

[2]:
	[1]		

[1, 1] =0	
_[1,2]=x	
[1,31=0	
[2, 1] =0	
[2,21 =1	

_[2,3]=x
[2]:

	1,2
[3]:

	1	
[4]:	

0
> displayHNE(hne);		 II the better way to look at it ;-)
II Hamburger-Noether development of branch nr.1:
HNE [1] =-y+z (0) *z(1)
HNE[2]=-x+z(1Y2

II Hamburger-Noether development of branch nr.2:
HNE [1] =-x+z (0) 1)
HNE[2]=-y+z(1Y2

II Caution!
II numbering of branches may
II change when calling hnexpansion
/7 a second time on the sane input

> displaylnvariants(hne);			 1/ the invariants computed from it	
invariants of branch number 1

characteristic exponents		 : 2,3
generators of semigroup		 : 2,3
Puiseux pairs		 : (3,2)
degree of the conductor		 : 2
delta invariant		 : 1
sequence of multiplicities: 2,1,1

invariants of branch number 2 :

16

characteristic exponents
generators of semigroup
Puiseux pairs
degree of the conductor
delta invariant
sequence of rnultiplicities:

2,3
2,3
(3,2)
2
1
2,1,1---

contact numbers :----------------------------- --- ------ --- --- ------ --- --- ------ --- ---

branch	 2---

1

	

---------1---

intersection niultiplicities

branch I	 2---

1	 ---------i

	

4-

delta invariant of the curve : 6

2.5 Classification of Hypersurface Singularities
Sometimes, we want to check whether a given singularity is in Arnold's list of
hypersurface singularities [?]. This test is implemented in SINGULAR as well:

Example 10 Still continuing with the singularity which we have been consid-
ering in the previous examples, we now use the Arnold-classifier to determine
its type:

> LIB "classify.lib";	 II classifier library
> setring r;	 II need to be in correct ring
> def f=I[1];	 /7 input needs to be of type 'poly'
> quickclass(f);	 /7 first guess via invariants
Singularity R-equivalent to :		Z[k,12k+6r-1]=Z[1,11] Y[k,r,s]=Y[1,1,1]
Hilbert-Code of Jf2
We have 2 cases to test
null form
[1]

Z[k,12k-i-6r-1]Z[1,11] Y[k,r,s]=Y[1,1,1]
[2]:

2

> classify(f);
About the	 singularity

Nilnor number(f) = 11

17

/7 classification following
II Arnold's algorithm

Corank(f)		 2
Determinacy	 < 8

Guessing type via Milnorcode:		Z[k,12k+6r-1]=Z[1,11] Y[k,r,s]=Y[1,1,1]

Computing normal form
Arnold step number 16

The singularity
-x2y2+x5+yS-x3y3

is R-equivalent to Y[1,p,q] = T[2,4+p,4+q].
Milnor number	 = 11
modality	 = 1

2.6 Monodromy and Spectral Numbers

Another set of invariants which has been made accessible to practical computa-
tions in recent years are the monodromy and spectral numbers.6

Example 11 Let us consider the example of the isolated hypersurface singular-
ity defined by the polynomial f = x5 + y5 + x2y2. We first want to compute a
matrix M such that e2M is the monodromy matrix of the given f:

> LIB "gmssing.lib";
> ring r=0,(x,y),ds;
> poly f=x5+yb+x2y2;
> monodromy(f);
[1]

-[21=7/10
_[3]=9/10
-[41=1
-[51=11/10
_[6]=13/10

[2]:
2,1,1,1,1,1

[3]:
1,2,2,1,2,2

/1 monodromy, spectrum etc.
/1 as usual first the 'ring' definition
II then the polynomial
/1 compute data of the monodromy:
1/ eigenvalues of M

/1 sizes of blocks

1/ multiplicities
6See Ebeling's and Steenbrink's series of talks at this School for definitions and properties

of the monodromy and spectrum.

18

Therefore, the Jordan normal form ofM has the following structure:

000000000
0 000000000
00 0000000010
000 000000010
0000 00000010
000 0 0 0 0 010 0 0
00000010000
000000 04 000
00000000 4- 00
000000000 13

10 0
0000000000 13

10

The same library also provides supportfor calculation ofthe spectral numbers
of f using standard basis methods for the microlocal structure of the Brieskorn
lattice. For details on this algorithmic approach and on more sophisticated data
which can also be acquired along these lines see I?]-
> spectrum(f);			 II compute the spectrum
[1]:			 II spectral numbers	

-[21=-3/10	
-[31=-1/10	
-[4]=0	
_[S]=1/10	
_[6] =3/10	
_[7]=1/2

[2]:			 II their multiplicities	
1,2,2,1,2,2,1

> spprint(_);			 II pretty printing of previous output
(-1/2,1)2(-3/10,2),(-1/10,2),(0,1),(1/10,2),(3/10,2)2(1/2,1)

3 Deformations of Singularities
After using computational methods for studying the singular locus of a variety
and for determining invariants of isolated singularities, we now turn our interest
to families of singularities. More precisely, we first consider how to compute the
T' and T2 of an isolated singularity, construct versal families and then proceed
to a more detailed study of certain special families of singularities.7

3.1 T' and T2

In the case of a isolated complete intersection singularity (X, 0) given by I C
C{xi,... , x,.,} = O,, it is a well known fact that there are no obstructions to

7Definitions and properties of T', T2 and versa! deformations can e.g. be found in the
textbook [?J.

19

lifting first order deformations. Hence we only need to compute T1.

By definition, the T1 is computed, in general, by determining the normal
module N,o Homo,(I, Ox,o) and then passing to the cokernel of the map
from the free module of On-derivations to Nx,o defined by

o - Nx,o
'0 i.- (fF-+'0(f))

This general approach to comuting Tj.0 can get rather time consuming. For

complete intersections, however, we know the normal module and the cokernel
of the map explicitly8:

Example 12 As a complete intersection example. let us consider the isolated
space curve singularity defined by the ideal I = (x2 + p2 + z3, yz).

>	 ring r=O,(x,y,z),ds;
>	 ideal 1x2+y2+z3,yz;
>	 def N=I*freemodule(2);
>	 def T=jacob(I)+N;
>	 vdim(std(T));
6
>	 kbase(std(T));

_[1]=z2*gen(1)
_[2]=z*gen(1)
_[3]=gen(1)
-	 [4]=z*gen(2)
[5] =x*gen(2)

_[6]=gen(2)

II the singularity
II presentation of normal module
II presentation of T1
II the Tjurina number

II base of 1st order miniversal deform.

This is, of course also available as a SINGULAR command:

>	 LIB "sing.lib";
>	 Tjurina(I);
/1 Tjurina number = 6

_[1]=x*gen(1)
-	 [2]=y*gen(2)+3z2*gen(1)
-	 [3] =2y*gen(1)+z*gen(2)
[4] =x2*gen(2)+y2*gen(2)+z3*gen(2)

.[5] =xz*gen(2)

.[6] =z2*gen(2)

.[7]=z3*gen(1)
> kbase(std(_));
_[1]=z2*gen(1)

II command is in 'sing.lib'
II compute Ti, ICIS case

II base of 1st order miniveral deform.

51n the case of Cohen-Macaulay codimension 2 singularities, there is a direct method for
computing these data, too. Whenever there is such a direct approach, it tends to be much
more efficient than the general one and hence should be preferred.

20

_[2] =z*gen(1)
- [3]=gen(i)
- [4]=z*gen(2)
_[5]=x*gen(2)
- [6]gen(2)

In the general case, we do not only need the T', whose calculation was
already explained above, but also the obstructions to lifting first order deforma-
tions to deformations: Given an isolated singularity (X, 0) defined by the ideal
I = (fi,.. . ,fi) C Or,, we denote the module of syzygies of I by 1Z and the
submodule of Koszul relations by Rjo. Then the T2 can be computed as

T2 := Homo(R/Ro, Ox,o)/Homo(Ok, (9x,o).

Example 13 As an example in the general case, let us consider the isolated
singularity defined by the 2-minors of the matrix

(x y z u
Z	 U	 V)

and compute its T' and T2 using the appropriate built-in commands of SINGU-
LAR.

> LIB "sing.lib"; II Ti and T2 are in 'deform.lib'
> ring rl=0,(x,y,z,u,v),ds; II local ring in 5 variables
> matrix M[2][41 = x,y,z,u,y,z,u,v; II the matrix, see above
> ideal I=minor(M,2); II the ideal
> I;
I[1]"-u2+zv
I [2] =-zu+yv
I [3] =-yu+xv
I [4] =z2-yu
I[5]=yz-xu
I [6] =-y2+xz
> T_12(I); II compute Ti and T2
II dim T_i = 4
// dim T_2 = 3
[1]: // standard basis of T'1

_[1]=gen(8)+2*gen(4)
_[2] =gen(7)
[3] 'gen (6) +en(2)

_[4]gen(5)+gen(i)
_[5]=gen(3)
- [6] =x*gen(9)
- [7]=2x*gen(4)+z*gen(2)
- [8] =x*gen(2)
...[9] =x*gen(1)+y*gen(2)

21

	_[10]=y*gen(9)+z*gen(2)
.J11]=2y*gen(4)-z*gen(1)+u*gen(2)
_[12] y*gen(2)
_[13]=y*gen(1)+z*gen(2)
_[14] =z*gen(9)+u*gen(2)
_[15] =2z*gen(4)-u*gen(9)-u*gen(1)	
[16) =z*gen(2)

_[17] =3z*gen(1)-u*gen(2)
- [18] =u*gen(9)+3u*gen(1)
- [19] =2u*gen(4)-v*gen(9)-v*gen(1)
- [20] =u*gen(2)
_[21]=2u*gen(1)-v*gen(2)
_[22] =v*gen(9)+v*gen(1)
_[23] v*gen(4)
_[24] =v*gen(2)
_[25] v*gen(1)

[2]:
_[1] =gen(9)
_[2]=gen(7)+gen(5)
_[3] gen(6)
[4] gen(3)
[5] =gen(2)

_[6]=gen(1)
[7] x*gen(8)
[8] x*gen(5)
[9] =x*gen(4)
[10]=y*gen(8)-z*gen(5)-u*gen(4)

- [11] =y*gen(S)+z*gen(4)
.[12] =y*gen(4)
_[13] =z*gen(8)
[14]=z*gen(5)+u*gen(4)
[15] z*gen(4)
[16] =u*gen(8)
[17]=u*gen(5)+v*gen(4)

_[18] u*gen(4)
[19] =v*gen(8)

_[20] =v*gen(5)
[21] =v*gen(4)

/1 standard basis of T2

Being able to compute T1 and T2 explicitly, it is a natural question to ask
whether we can also determine versal deformations up to a given degree in prac-
tice. The answer is affirmative and the corresponding algorithm is implemented
in the library deform. lib.

> LIB "deforin.lib";
> list L=versal(I,5);	 II compute versal deformation up to degree 5

22

> L;	 /1 result is list of rings
II ready: T_1 and T_2
II start computation in degree 2.

II 'versal' returned a list, say L, of four rings. In LEl] are stored:
II	 as matrix Fs:	 Equations of total space of the miniversal deformation,
/1	 as matrix Js:	 Equations of miniversal base space,
II	 as matrix Rs:	 syzygies of Fs mod Js.
II To access these		data, type

def Px=L[1]; setring Px; print(Fs); print(Js); print(Rs);

[1]
II	 characteristic : 0

II	 number of vars : 9
II	 block	 1 : ordering ds
/1			 :names	 ABCD
II	 block	 2 : ordering ds			

names	 xyzuv
/1	 block	 3 : ordering C
[2]:	

II	 characteristic : 0
//		number of vars : 9
//			 block	 1 : ordering ds
//					 :names	 ABCD
II			 block	 2 : ordering ds
II					 : names	 xyzuv
/1			 block	 3 : ordering C
II quotient ring from ideal
[3]	

II	 characteristic : 0
// number of vars : 4
II	 block	 1	 : ordering ds
II			 :names

	

ABCD
/1			 block	 2 : ordering C
[4]:

	//	 characteristic : 0
/1		 number of vars : 9
/1			 block	 1 : ordering ds					

names	 ABCD
/1			 block	 2 : ordering ds
II				 :	 names	 xyzuv
II			 block	 3 : ordering C
II quotient ring from ideal
> def R1=L[1];
> setring Ri;	 II go to first of the returned rings

23

> Js;	 II equations of miniversal base space
Js[1,1]=BD
Js[1,2]=-AD+D2
Js[1,3]=-CD
> Fs;	 II equations of miniveral total space
Fs [1,1] =-u2+zv+Bu+Dv
Fs [1,2] =-zu+yv-Au+Du
Fs [1,3] =-yu+xv+Cu+Dz
Fs [1,4] =z2-yu+Az+By
Fs [1 ,5]=yz-xu+Bx-Cz
Fs [1 .6] -y2+xz+Ax+Cy

3.2 Studying Families of Singularities
Having constructed versal families in the previous example, we now proceed
to study the question of stratifying the base space of a certain classes of fami-
lies of singularities with respect to the Tjurina number. This question can be
dealt with algorithmically for versal families of simple hypersurface and Cohen-

Macaulay codimension 2 singularities and for families of semiquasihomogeneous
singularities (again hypersurfaces or CM codimension 2) with fixed initial part.
In the first case, it can be used as one ingredient when determining an ad-

jacency to another singularity explicitly; in the second case, it is one step in
the construction of moduli spaces for semiquasihomogeneous singularities with
fixed initial part (for more details on this topic see e.g. [?J). We only consider
the first situation here, as the latter one involves the use of a rather technical
modification of the standard basis algorithm.

Example 14 To keep the calculations as simple as possible, we only consider
a very small example, an A3-singularity. We first compute a versal family by
means of calculation of a vector space basis for the T1 (Tjurina algebra) and
the relative T1 of this family:

> ring r=O,(x,y),ds;
> poly f=x4+y2;
> ideal kb=kbase(Tjurina(f));
> kb;
kb[1]=x2
kb[2]=x
kb[3]=1
> ring rt=O,(a,b,c,x,y),ds;
> poly F=x4+y2+a+b*x+c*x2;
> ideal jF=diff(F,x),diff(F,y),F;

II the singularity
II the vector space basis for Ti

II suitable ring for total space
II versal family
II presentation of relative Ti
II but as module over ring rt,
II we need it as C[a,b,c]-module

> jF;
jF [1] =b+2cx+4x3

24

jF[2]=2y
jF [3] =a+bx+y2+cx2+x4

We know that the jF is a finitely presentable K[a, b, c] module. As f is a hy-
persurface singularity, we can determine the corresponding presentation matrix
by looking at the Euler relation and suitable products of it with monomials in x
and y. (In this example only the products with x and x2 are relevant.)

II suitable ring for finding Euler rel.
> ring rg=O,(x,y,a,b,c),(dp(2),dp); /1 (Q[a,b,c])[x,y]

> def jF=imap(rt,jF); II fetch jF from rt
> jF=mstd(jF) [2]; II find minial system of generators

II for jF
> jF; II look at jF
jF[1]=y
jF [2] =4x3+2xc+b

jF[3]=2x2c+3xb+4a II <-- Euler relation
> matrix Tmat [3] [3];
> def tempnat=coef(jF[3],xy); II give temporary name, because lists
> Tmat[1,13]=teinpmat[2,1. .3]; II can only be formed from named objects
> tempmat=coef(reduce(jF[3]*x,jF[2]),xy);
> Tmat[2,1..3]=tempmat[2,1. .3];
> tempmat=coe±(reduce(jF[3]*x2,jF[2]),xy);
> Tmat[3,1..3]=tempmat[2,i. .3];
> print(Tmat); II presentation matrix of Ti

II as Q[a,b,c]-module
2c,	 3b,	 4a,
3b,	 -c2+4a,-1/2bc,
-c2+4a,-2bc,

		

-3/4b2

The strata of constant Tjnrina number can now be obtained by means of the
flattening stratification of the relative T1. This implies that we need to determine
the Fitting ideals of the module, that is we need to determine the minors of size
one, two and three:

> ideal minl=mstd(minor(Tmat,1)) [2];
> mini;
mini[l]=c
mini [2] =b
mini[3]=a
> ideal min2=mstd(minor(Tmat,2)) [2];
> min2;
inin2 [i] =2c3+9b2-8ac
min2 [2] =bc2+l2ab
inin2 [3] =3b2c-8ac2+32a2
> ideal min3=mstd(minor(Tmat,3)) [2];

II minimal set of generators for 1-minors

II dito for 2-minors

II and for 3-minors

25

> min3;
inin3 [1] =4b2c3-16ac4+27b4-144ab2c+128a2c2-256a3

From this computation we can see that the maximal value of the Tjurina
number is attained exactly for the fiber over the point V(a, b, c) of the base. For
fibres over points outside of V(4b2c3- 16ac4+27b4 - 144ab2c+ 128a2C2 -256a3),
which is the swallowtail singularitiy, on the other hand there are no singularities.
The Tjurina number is 2 for points in V(min2) \ V(a b, c). It is 1 for points in
V(min3) \ V(rnin2), i.e. points on the swallowtail which do not lie on the curve
V(xnin2).

-,4 4

Figure 1: The swallowtail singularity V(min3).

Figure 2: The singular locus of the swallowtail singularity V(min2)

26

4 Varieties with Singularities
In this last section, we consider two areas of more complex applications of

computational methods in singularity theory: the task of finding hypersurfaces
with prescribed singularities and the task of resolution of singularities. In the
first case, the goal is more of theoretical nature and explicit calculations are
basically used to check whether certain conditions are satisfied or for finding
good examples which show certain properties. In the second case, the set-up is
very different: The task itself is computational, but it consists of many different
computational aspects each of which needs to be treated carefully in order to
obtain an efficient implementation.

4.1 Hypersurfaces with Prescribed Singularities
Here, we briefly sketch two applications of computer algebra tools in this area:
first we treat the question of finding an upper bound for how many singularities
of a given type can fit on a hypersurface of a given degree, then we outline how
computational tools aided in the search for examples of surfaces of fixed degree
with a high number of double points.

Example 15 The question, which we are treating in this example, is the follow-
ing: What is the maximal number of singularities of type T3,3,3 that can occur
on a surface of degree 7 in P3'?
Let us fist recall that the singularities oftype T3,3,3 form a ,a-constant 1-parameter
family given by equations of the kind

x3+y3+z3+t"xyz=O, where t3 -27.

To obtain the desired bound, we now use the semicontinnity property of the spec-
trum. More precisely, the number of spectral numbers of the singularities of a
deformation of a given hypersurface in an intervall (a, a + 1] cannot exceed the
number of spectral numbers of the original singularity in this intervall; for semi-
quasihomogeneous singularities the same statement also holds for the intervalls
(a,a+ 1).

> LIB "gmssing.lib";
> ring R=O,(x,y,z),ds;
> poly f=x3+y3+z3;
> list sl=spectrum(f);
> 51;
[1]

[2]
	1,3,3,1

II here are the spectrum related commands
II local ring in 3 variables
II a singularity of type T_3,3,3
II compute its spectrum

// spectral numbers

II multiplicities

27

		

II any surface of degree 7 is a
> poly g = x7+y7+z7;	 II deformation of this surface
> list s2 = spectrum(g);	 /1 compute its spectrum, takes longer
> s2;
[1]:	 II spectral numbers	

- [1] =-4/7	
- [2] =-3/7	
- [3] =-2/7	
_[4]=-1/7		
[5] =0		
[61 =1/7		
[7] =2/7	

_[8] =3/7	
_[9] =4/7	
_[1O] =5/7	
-[111=6/7	
_[12]=1		
[13] =8/7	

_[14] =9/7	
_[15]=10/7	
.[16] =11/7

[2]:			 // inultiplicities
1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1

> spsemicont(s2,list(sl));		 1/ checking semicontinuity condition
[1]		

18
> spsemicont(s2,list(sl),1);		 II checking sqh.semicont. condition
[1]:		

17

Thus a septic in 1P7 can at most contain 17 singularities of type T3,3,3.

On the other hand, computer algebra methods have recently been sucessfully
used by 0. Labs and D. van Straten to construct a septic with 99 nodes [?].
The basic idea behind the approach of Labs and van Straten is the following:
They start with a 7-parameter family of septics and develop conditions to easily
determine the number of nodes on a given septic from a 5-parameter subfamily
of this family. Then they pass to small prime fields (11 p 53) and explic-
itly check the actual number of nodes on the septic for all possible parameter
combinations to obtain those which provide exactly 99 nodes. Further geomet-
ric considerations in characteristic zero lead to a condition for the parameters
which can be described as the zero locus of a single univariate polynomial of

9Up to degree 6 the maximal number of nodes on a surface is known, that is there are
known examples possessing exactly the number of of nodes specified by an upper bound. In
degree 7, however, Varchenko's spectrum bound and Giventhal's bound both lead to an upper
bound of 104 for the number of nodes on a septic, the septic with the highest number of nodes
that had been known prior to the example of Labs andvan Straten had 93 nodes.

28

degree 150, which is, of course, still too large to be of any direct use. Therefore

they factorize the polynomial and plug into each of the factors the solutions
which were previously obtained over the small prime fields. This leads to only
one factor of degree 3 whose vanishing locus contains one real solution; it can
then be checked by explicit calculation that the surface corresponding to this
parameter has precisely 99 nodes and no other singularities.

&

	

a

J	 _ CS7t

-	 A

Figure 3: The septic surface with 99 real nodes found by 0. Labs and D. van
Straten.

4.2 Resolution of Singularities
The last aspect of computational methods for studying singularities is the task
of resolution of singularities. As the series of talks of H. Hauser at this school
is devoted to the theoretical background of this topic, we only consider the
practical side of it.

As the process of resolution of singularities consists of a sequence of blow-
ups at suitable centers, the computational goal can be decomposed into two

separate tasks: the computation of a blow-up at a given center and the search
for suitable centers. This latter task itself is the key point of the algorithm and
a detailed explanation of its construction can be found in H. Hauser's notes;
from the computational point of view the main difficulties of it are the descent
in dimension and the computation of the operator A which is used to determine

29

the locus of maximal order.
One issue, which needs to be discussed before focusing on these three tasks, is

the representation of the data on the computer. Because we are not just dealing
with affine varieties, it is necessary to cover the objects, which are considered,
by charts. In particular, each blow-up introduces a new covering by charts in
the usual way. Hence the whole resolution process leads to a tree of charts which
introduces a new difficulty for working with the result in explicit examples: the
identification of points which appear in several charts.

Based on the implementation of the resolution process, it is then possible
to determine resolution related invariants explicitly. As an example, we discuss
how to determine the intersection matrix of the exceptional divisors in a (non-
embedded) resolution of a surface. For a detailed discussion of practical aspects
of other applications see [?I-

4.2.1 Blowing Up

The blow-up can be implemented as a preimage computation. More precisely,
a blow-up it : W1 - W at a smooth center C can be computed as follows: the
ideal 1(W1) is determined as the preimage of 1(W) under the map

C{xi,...,x,yo,...,y8_i]

I-*

tg

where the variables x1, .. . , x7, are the original ones, yo, " . . , y8-i new variables
and go,. , ge-i E C{xi,... , a set of generators of the ideal of C. The
blown-up space W1 is covered by the affine charts D(y). Total transforms of
subvarieties of W can then be computed in the usual way and passing to weak
respectively strict transforms can be implemented as iterated ideal quotients
((J : 1(H))... : 1(H)) where J denotes the ideal of the total transform of the
subvariety and 1(H) the ideal of the new exceptional divisor.

Obviously, the difficulty of the computation of the preimage depends very
much on the generators g of the center and on the total number of variables
involved. In particular, successive blowing-ups in smooth irreducible centers
turn out to be by far less expensive than blowing-up at several smooth (dis-
joint) irreducible centers simultaneously. Therefore we always apply primary
decomposition of the center and blow up at each of the components separately.
Clearly, this is possible because a blow-up is an isomorphism outside of the
center. The draw-back of this improvement is the fact that more charts are
produced and hence more duplicate calculations can occur in future steps of
the resolution process; but this tradeoff still pays off in a very large number of
practical applications.

Another enhancement to the resolution process follows from the fact that
not all s charts arising from a single blow-up contain new information. It may
very well happen that in one or more charts we do not see any new information
that is not already provided by the other charts. In this case, such charts may

30

be dropped. We have been very careful not to state what the information is,
because that can depend very much on the data that is to be computed from
the resolution: If the goal is, e.g., to compute the intersection matrix of the

exceptional divisors of a resolved surface, the relevant information, which needs
to be kept, just consists of the points of the transform of the surface. If on
the other hand, the goal is the computation of a (-function, no charts may be
dropped.

4.2.2 Computing the Order

Let us first recall the definition of the order of an ideal and of :
Let W be a non-singular algebraic variety, J a sheaf of ideals in 0w and w E W
a closed point. Then the order at w with respect to J is defined as

vJ(w) = sup{m I J c

We define (J) c 9w as the sheaf of ideals which is locally generated by

agi
{g1 <i< s}u{-I1	 s,1 j d},

where xi,. . . , x is a regular system of parameters for Ow,. and gi, 9. are
a set of generators for J,,. A'(J) is then inductively defined as (i_ 1(J))
Recall further that the locus of order at least b of J coincides with V(AP1(J)).

The definitions of the order and of (J) heavily rely on using generators for
the ideal J C 0W,w and a regular system of parameters for °W,w at the given
closed point w E W. Theoretically this is fine, but in practice it is, of course,
not feasible to compute at each point of W. Here, the use of a set of generators
of JOw,w does not cause any problems, since we are working on affine charts
U1 and on each chart we are specifying J by a set of generators anyway. The
difficulties arise from the need for a global system of local regular parameters
for OW,, on U1, which, in general, does not exist. Instead it is necessary to
pass to a suitable open covering {U3} of U such that for each U1 we can find a

global system giving rise to a regular system of parameters at each point of U13.
This, in turn, increases the number of charts which we can avoid by recombining
the results on the U3 to one on U1. More precisely, (J) is determined by the
following algorithm:

Algorithm Delta

Input (g,... ,9r) generating Iw C C[xi,...,x] = (.9u
(fi,...,fs) generating 1x C C[x1,...,x]
such that V(Iw) is equidimensional and regular and 1w c 1x"

Output A(IX) CC{zi,...,z]Ou1

1. ifIzrr(O)
9f,	 '9fthen return((fi,,f5,- 3

31

2. Initialization

D=(1)
Li = { n - dim(W) square submatrices of the Jacobian matrix

of Iw whose determinant is non-zero}	 10

3. while (L1!=O)
"	 choose M E Li
L1= L1\{M}

"	 q = det(M)
"	 determine an ii - dim(W) square matrix A such that
A .M = q En-dim(W) 11

"	 determine components of L(J) not lying inside V(q):

{	

af		a91	 3f		 1 ˆ ˆ S,	

}

CM = C U	 q		 -		 -ALk---
aXk

	

not row of M		X	krow ofOxj	 M

	

3
lcolumn of M

CM = sat(CM,q)
"	 Add these components to the previously found ones:
D =DflCM

4. return(D)

The basic idea behind this algorithm is that W is regular and hence at each

point there is at least one (n - dim(W))-minor of the Jacobian matrix of 1w
which does not vanish. So A(J) is computed separately on each complement
of a minor of the Jacobian, then we pass to all of U again by saturation and
combine the results of the computations on the complements.

From the practical point of view the above algorithm still needs to be im-
proved to avoid redundant calculations. In particular, one should first check
whether there is a minor of the appropriate size which is itself an element of
C. In this case, the complement of the minor is the whole open set U and the
other minors do not give any new contributions.

4.2.3 Descent in Dimension

For the descent in dimension, that is the computation of the Coeff-ideal, the
crucial point is the choice of the smooth hypersurface Z which is subject to
two normal crossing conditions regarding the exceptional divisors. As soon as
such a hypersurface is found, the computation of the Coeff-ideal only involves

determining the z of the ideal which has previously been discussed and basic
operations on ideals such as taking powers and sums.

10For simplicity, the row and column indices used inside the submatrices will be the ones
of the corresponding rows resp. columns in the Jacobian matrix.

"E3 denotes the j xj unit matrix. As before, we use rowand column indices corresponding
to those of M for simplicity

32

Figure 4: As an example for the problem of computing (J), let us consider
the situation illustrated in the above pictur: There are three minors whose
determinant does not vanish (each one illustrated by one of the curves in the
above picture) and VA(J)) consists of the three points. Then computing on
the complement ofjust one of the minors will not provide all points of V((J)),
because each of the curves meets at least one point.

As H. Hauser already pointed out in his talk, such a hypersurface Z usually
does not exist globally. In an implementation, the choice of the hypersurface
involves passing to a suitable open covering such that on each open set U there
is a hypersurface which can be used as Z for each point w C The basic idea
for finding such a covering is to consider AP'-1(J) where J is the original ideal
and b' is the maximal order of J. As the intersection of the singular loci of the
generators of A6'-' (J) is empty (b' is maximal order), it is possible to express
I as a combination of the generators of the ideals of these singular loci and use
the complements of those generators appearing with non-zero coefficients as the
open covering12

The need to pass to an open covering can enlarge the number of charts
significantly which slows down the subsequent steps of the resolution process
due to duplicate calculations for points/subvarieties/centers appearing in more
than one chart. The first idea to keep the number of open sets as low as possible
is to recombine in the end, just as in the previous algorithm. Unfortunately, the
auxilliary objects do depend on the chosen hypersurface, although the resulting
value of the governing function at each point is independent of this choice.
Therefore, we cannot just recombine directly as before; instead, we continue
with the algorithm for finding the maximal locus of the governing function in
each of the open sets and then (carefully) recombine those maximal loci.

120f course, it is necessary to check that the two normal crossing conditions hold and, if
necessary, pass to a different way of expressing 1 in terms of the generators of the singular
loci.

33

4.2.4 Identification of Exceptional Divisors

The task here is to identify points resp. subvarieties which occur in more than
one chart; in particular, we need to decide whether two given exceptional divisors

living in two different charts actually belong to the same exceptional divisor

(after glueing the charts). To this end, we move through the tree of charts

arising during the resolution process, first blowing-down from the first chart to
the one in which the history of the two charts in question branched, and then
blowing-up again to the other chart with which we want to compare (cf. figure
??).

chart 1:V(x2u2-z2)

z\\

chart 2:V(x2y2-z2)	 chart 3:V(x2u2-z2)
Et:V(x)	 E1:V(g)		

-V(y.z)	 =V(x.z)

chart 4:V(x2-z2)	 chart 5:V(g2-z2)
E1:V(x), E2-V(U)	 E1-V(U), E3-V(x)

	=V(x	z)	

~_V(U'Z)
chart 6;V(t-z2)	 chart ?:V(1-z2)

E2:V(y); E4:V(x)

	

E3:V(x): E4:V(y)

Figure 5: The tree ofblow-ups in the resolution of the singularity V(r2y2 -z2) c
A3. For simplicity of notation the variable names in all charts have been chosen
to be x, y, a. To determine whether two exceptional divisors in two different
charts actually belong to the same exceptional divisor, we need to move through
the tree by first blowing down and then up again; for instance, the question,
whether the divisors V(x) in chart 6 and V) in chart 7 belong to the same
divisor, can only be answered by comparing the centers in charts 4 and 5. To
this end, we have to move from chart 4 to chart one by blowing down twice and
then proceed to chart 5 by blowing up twice.

As blow-ups are isomorphisms away from the center, this process of suces-
sively blowing-down and then blowing-up again does not cause any problems
for points which do not lie on an exceptional divisor at all or only lie on ex-
ceptional divisors, which already exist in the chart at which the history of the
considered charts branched. If, however, the point lies on an exceptional divi-
sor which arises later, then blowing-down beyond the moment of birth of this
divisor will inevitably lead to incorrect results, because this blow-up map is not
an isomorphism. To avoid this problem, we need to represent the point on the
exceptional divisor as the locus of intersection of the exceptional divisor with

34

an auxilliary variety which is not contained in the exceptional divisor. More
formally speaking, we use the following simple fact from commutative algebra:

Let I C K[xi,...,x] be a prime ideal, J C K[xi,...,x] another ideal such
that I + J is equidimensional and ht(I) = ht(I + J) - r for some integer 0 <
r < ii. Then there exist polynomials	 Pr E I + J and a polynomial
feK[x1,...,x] such that

In our situation, the ideal I is, of course, the ideal of the intersection of
the exceptional divisors in which the point or subvariety V(J) is contained. As
any sufficiently general set of polynomials Pi,.. . ,p E J \ (I n J) leading to
the correct height of I + (p1,.. . ,p4 will do and as the only truely restricting
condition on f is that it has to exclude all extra components of I+ (pr,.. . ,Pr),
we also have enough freedom of choice of the pi, Pr, f to achieve that none
of them is contained in any further exceptional divisor that might be in our way
when blowing-down. Having solved the problem of identifying points which
exist in more than one chart, we can now determine which exceptional divisor
in one chart coincides with which one in another chart by simply comparing the
centers leading to these exceptional divisors. To this end, we start at the root of
the tree of charts of the resolution and work our way up to the final charts. The
criteria for identifying the centers are quite simple: first of all, the centers can
not be the same, if the the corresponding values of the governing function do
not agree, secondly, the centers cannot be the same if the exceptional divisors in
which they are contained are not the same and, in the last step, the remaining
candidates are compared explicitly by mapping them through the resolution
tree as described above.

At this point, we would like to repeat that computations in a computer
algebra system are performed over Q not over the complex numbers although
the reasoning often takes place over C. This is particularly important to keep
in mind for interpreting the results, e.g. if we need to determine the correct
number of exceptional divisors arising during the resolution process. This will
be an important issue in the subsequent section.

4.2.5 Intersection Matrix of Exceptional Curves

Given an embedded resolution of a surface singularity, stored as a tree of charts,
we would like to pass to a non-embedded resolution by dropping unnecessary
blow-ups at the end of the branches of the tree of charts. To this end, we
compute the list of exceptional divisors by identifying them in the different
charts as described in the previous section. Starting at the final charts, we
then move backwards through the resolution tree and cancel those blowing ups
which are not necessary for the non-embedded resolution (see illustration ?? for
an example).

35

chart I:V6c2+U2+z3)

chart		2:V(x2*y2z)		chart 3:V(>z3+y2+1)	
C1:V(z)			 1:V(x)

/

chart 4;V(2)	 h*rt 5V<xj2)
EV(z)	 C:I()	 E1V(z) 12V<)

hort	 V(j-,1)	 hrt ?:V21.)	 (hrt	 Vx.t)	 cht 9V(2+1.)

L2-V(u),3:V(z)I	
E:V(z):E3V()	 2:V,);

	

3V(z),

Figure 6: Tree of the embedded resolution process of an A2 surface singularity.
All charts which are marked by grey background arise from blow-ups which are
only necessary in the embedded case, but not for a non-embedded resolution.

Then we consider the intersection of the remaining exceptional divisors of the
embedded resolution with the strict transform to obtain the exceptional locus
of the non-embedded resolution. We can easily decompose these intersection s
into irreducible components over Q,but these components may still be reducible
over C and hence we need to achieve a descomposition over C to compute the
intersection matrix of the exceptional divisors. The following theorem (cf. [?})
is the basis for the decomposition over C:

Theorem 1 (Gao/Ruppert) Letf Q[x, yJ be irreducible of bidegree (m, n).
Let C = {g E Q[x, y] l (m - 1, n)	 deg(g), h E Q[x, y}, (L) =	 }. The
vector space C has the following properties

(i) f is irreducible in C[x, y] if and only if dimQ(C) = 1.

(ii) 9C C	 G modffor all g C

(iii) Let gi,	 . , g E G be a basis and g E C NQ,ggj =	 ajjg2	 mod
f.

ax

	

ax
Let (t) = det(tE - (a3)) be the characteristic polynomial. Then x is

irreducible in Q[t].

(iv)	 f = flcECx(c)0 gcd(f, g -c) is the decomposition off into irreducible
factors in C[x, y].

We use this theorem for the decomposition of curves in C which are irre-
ducible over Q by means of the following corollary:

36

Corollary 2 Let I C Q[xi,. . . ,x],ht(I) = 1, be a prime ideal. Then there
exists an irreducible polynomial X(t) E Q[t] such that the complex zeros of X(t) =
0 correspond to the associated prime ideals of IC[xi,.. . , x].

ring R=0, (x,y),dp;
poly p=x3-2y3;
getMinpoly(p);

[1]
poly p=t-3-2;

[2]:
[1]

(-0 . 6299605249474365823836053+1*1 .0911236359717214035600726)
[2]:

(-0.6299605249474365823836053-1*1.0911236359717214035600726)
[3]:

1.25992104989487316476721061
[3]:

3

If we factorize x3 + 2y3 over the field extension Q[t]/t3 - 2 we obtain two
factors.

ring T=(0,t),(x,y),dp;
minpoly=t3-2;
factorize (x3-2y3);

[1]
	_[1]=1
_[2] =x2+(t)*x*y+(t2)*y2
- [3]=x+(-t)*y

[2]:
1,1,1

To obtain a complete factorization we need a Galois extension which is of
higher degree. Therefore the factorization takes more time and so do all further
calculations in this field (Just consider the large coefficients of y in our very
simple example!).

ring T=(0,t),(x,y),dp;
ininpoly=t6+3t5+6t4+11t3+12t2-3t+1;
factorize (x3-2y3);

[1]
	_[1]=1
- [2] =x+(2/9t5+7/9t4+14/9t3+26/9t2+37/9t+2/9) *y
- 13]=x+(119t5+2/9t4+4/9t3+4/9t2-1/9t-11/9)*y

37

- [4] =x+ (-1/3t5-t4-2t3-10/3t2-4t+1) *y
[2]:

1,1,1,1

To identify the C-components of an exceptional divisor E (irreducible over Q)
in a chart, we, therefore, store E, (t) and the respective numerical root of X(t).
Given these data, we can then proceed in the same way as for the identification
of the Q-components in the previous section. As soon as the exceptional divisors
in the different charts are identified, we can directly compute the intersection
numbers for all i j.

The computation ofthe self-intersection numbers E? is done by the following
well-known method:
Let n: X - Y be a resolution of the surface Y and E1,...,E the exeptional
divisors and let h : Y - C be a non-trivial linear form. Then lr*(h).E = 0.
Now we can write

7r* (h) = cjEj + H,

where H denotes the strict transform, and obtain the equations

0=n*(h)Ej=cjEj.Ej+H.Ej VI <i<s

which provide us with the desired self-intersection numbers.

References

[1]	 Arnold,V., Gusein-Zade,S., Varchenko,A.: Singularities of Differentiable
Maps I, Birkhäuser (1985)

[2]	 Campillo,A.: Algebroid Curves in Positive Characteristic, Springer (1980)

[3]	 de Jong,T., Pfister,G.: Local Analytic Geometry, Vieweg, (2000)

[4]	 Ebeling,W.: Notes to the series of Talks entitled Monodromy of Isolated
Singularities at this summer school

[5]	 Fruhbis-Kruger,A.: Construction of Moduli Spaces for Space Curve Singu-
larities JPAA 164 (2001), 165-178

[6]	 Frühbis-Kruger,A., Pfister,G.: ome Applications of Resolution of Singu-
larities from a Practical Point of View, in Proceedings of Computational
Commutative and Non-commutative Algebraic Geometry, Chisinau 2004

(2005),104-117

[7]	 Gao,S.:Factoring Multivariate Polynomials via Partial Differential Equa-
tions, Math.Comp 72 (2003), 801-822

38

[8] Greuel,G.-M., Pfister,G.: A SINGULAR Introduction to Commutative Alge-
bra, Springer (2002)

[9] Hauser,H.: Notes to the series of Talks entitled The Proof of Resolution of
Singularities in Characteristic Zero at this summer school

[10]	 Labs,O.: A Septic with gg Real Nodes, AG/0409348

[11]	 Looijenga,E.: Isolated Singular Points of Complete Intersections, Cam-
bridge University Press, LNS 77 (1984)

[12]	 Schulze,M.: A Normal Form Algorithm for the Brieskorn Lattice,
J.Symb.Comp.38 (2004), 1207-1225

[13]	 Steenbrink,J.: Notes to the series of Talks entitled Mixed Hodge Structures
at this summer school

[14]	 Wall,C.T.C.: Singular Points of Plane Curves, London Mathematical So-
ciety Student Texts 63 (2004)

39

