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METRIC THEORY OF SINGULARITIES.

LIPSCHITZ GEOMETRY OF SINGULAR SPACES.

L. BIRBRAIR (UFC, BRAZIL)

1. Metric viewpoint. Comparison of metrics. Normal embedding.

Metric Geometry is a geometry of metric spaces. The collection of metric spaces

is considered as a category. In our setting Lipschitz maps are the morphisms in this cate-

gory. Remind that a map F :X → Y is called Lipschitz if there exists a positive constant

K ∈ R such that, for every x1, x2 ∈ X, we have: dY (F (x1), F (x2)) ≤ KdX(x1, x2). A

map F is called bi-Lipschitz if F is bijective, Lipschitz and F−1 is Lipschitz. Clearly,

bi-Lipschitz maps are isomorphisms in this category. We apply a natural classification

question to ”singular spaces”. During these lectures by ”singular space” we mean a

compact semialgebraic or subanalytic (or definable in some o-minimal structure ) set in

Rn which is not a smooth submanifold of Rn.

Let X ⊂ Rn be a compact connected subanalytic set. We consider two natural

metrics on X. The first one is an euclidean metric de(x1, x2) = ||x1 − x2||. The second

one is a so-called inner (or intrinsic ) metric di(x1, x2) = inf
γ∈Γ(x1,x2)

l(γ) where Γ(x1, x2)

is a set of piece-wise smooth arcs connecting x1 and x2 and l(γ) is a length of γ.

Remark. In fact, d(x1, x2) = min
γ∈Γ(x1,x2)

l(γ) because Hopf-Rinov theorem is true for

compact singular spaces.

These two metrics define the same topology on X but they are not necessary

bi-Lipschitz isomorphic. To see it, consider the following semialgebraic subset of R2:
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X = {(x1, x2)| x3
1 − x3

2 = 0, |x1| ≤ 1, |x2| ≤ 1}

Fig.1

Clearly, di(x1, x2)/de(x1, x2) →∞ , for x1, x2 sufficiently closed to 0.

This example motivates the following definition. A set A ⊂ Rn is called nor-

mally embedded if (X, de) and (X, di) are bi-Lipschitz isomorphic. All compact smooth

submanifolds of Rn are normally embedded. A so-called β-horn Hβ gives an example

of a normally embedded singular set

Hβ = {(x1, x2, y) ∈ R3| 0 ≤ y ≤ 1, (x2
1 + x2

2)
q = y2p},

where β = p/q ≥ 1 is a rational number. Fig.2

These notes are devoted to first steps of bi-Lipschitz classification of subanalytic

sets with respect to the inner metric. The following theorem shows that this question

is equivalent to a question of bi-Lipschitz classification of normally embedded singular

sets.

Theorem. (Normal Embedding Theorem.)[BM]. Let X ⊂ Rn be a compact

subanalytic set. Then there exists another subanalytic set X̃ ⊂ Rm such that X̃ is

bi-Lipschitz equivalent to X with respect to the inner metric.

Question. Let X ⊂ Rn be a compact real algebraic set. Is it possible to construct a

real algebraic set X̃ ⊂ Rm with the same properties as in the theorem above? Namely,

X̃ must be normaly embedded and bi-Lipschitz equivalent to X with respect to the

inner metric.

2. Finiteness results.

There are many classification problems in Singularity Theory. If one restricts a

classification problem to an algebraic setting the following question is important. Con-

sider the set of singular spaces (singular maps, singular germs) defined by polynomials
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of degree (complexity) bounded from above by some number K. Is a set of equivalence

classes (by the given equivalence relation) finite? Positive answers for this question

are called Finiteness rezults. Fortunately, Lipschitz Geometry of Singularities admits

finiteness rezult.

Definition. Upper complexity of a semialgebraic set X ⊂ Rn is a number defined as

follows: U(X) = min(N + D + E), where N is a number of variables, E is a number of

equations and inequalities from a given formula defining X and D is a maximal degree

of all the polynomials appear in this formula. The minimum is taken on the set of all

the presentations X.

Theorem (Mostowski [Mo], Parusinski [Pa]). Let K be a positive integer number.

Consider the set of all semialgebraic sets with upper complexity bounded from above by

K. Then the number of equivalence classes for the bi-Lipschitz equivalence with respect

to the euclidean metric is finite.

If two semialgebraic (or subanalytic) sets are bi-Lipschitz isomorphic with respect

to the euclidean metric they are bi-Lipschitz isomorphic with respect to the inner met-

ric. Hence, the bi-Lipschitz equivalence with respect to the inner metric also admits a

finiteness result. For subanalytic sets, A. Parusinski proved the following generalization

of finiteness theorem.

Theorem [Pa]. Consider a finite-dimensional subanalytic family of subanalytic sets.

Then the number of equivalence classes with respect to a bi-Lipschitz isomorphism with

respect to the euclidean metric is finite.

For definable sets in o-minimal structures (especially, if a structure is not poly-

nomially bounded), the finiteness result cited above does not take place. To see it one

can consider the following family Tλ depending on λ.

Tλ = {(x1, x2) ∈ R2| 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ xλ
1},
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for λ ∈ [1,∞). For different λ1, λ2, the sets Tλ1 , Tλ2 are not bi-Lipschitz equivalent.

This family is definable in log− exp o-minimal structure.

3. Germs of subanalytic surfaces.

A subanalytic surface X ⊂ Rn is a subanalytic set of dimension 2. This section

is devoted to a local bi-Lipschitz classification of subanalytic surfaces. Remined that

two germs of subanalytic sets are called bi-Lipschitz equivalent if there exists a germ of

a bi-Lipschitz isomorphism h: (X, x0) → (Y, y0). Remined that a standard β-horn is a

semialgebraic set defined as follows:

Hβ = {(x1, x2, y) ∈ R3| (x2
1 + x2

2)
q = y2p, 0 ≤ y ≤ 1},

where β = p/q is a rational number and β ≥ 1.

We start our classification from the following result.

Theorem 3.1. [L1] Let X ⊂ Rn be a subanalytic surface and let x0 ∈ X be a singular

point such that, for sufficiently small ε > 0, the intersection X∩Sx0,r is connected. Then

there exists a rational β ≥ 1 such that the germ of X at x0 is bi-Lipschitz isomorphic

to the germ of Hβ at 0 ∈ R3. Moreover, for β1, β2 ≥ 0, the germs of Hβ1 and Hβ2 are

not bi-Lipschitz isomorphic.

Here we say that x0 is a singular point of X if X is not a smooth submanifold

without boundary of Rn near x0. It means thet 0 ∈ Tβ is not an isolated singular point.

In fact, this theorem is a corollary of a more general result so-called Hölder

Complex Theorem. Hölder Complex Theorem is a Lipschitz version of the Triangulation

Theorem (see notes of the course of M.Coste). In 2-dimensional case a triangulation

can be chosen canonically and this canonical triangulation presents a complete Lipschitz

invariant for germs of semialgebraic surfaces.

Definition. An Abstract Hölder Complex is a pair (Γ, β) where Γ is a finite graph
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without loops and β: EΓ → Q (where EΓ is the set of edges of Γ) is a rational function

such that, for all g ∈ EΓ, we have: β(g) ≥ 1.

Hölder triangle Tβ is a semialgebraic set in R2 defined as follows:

Tβ = {(x1, x2) ∈ R2| 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1}.

Let (Γ, β) be an Abstract Hölder Complex. A germ of subanalytic surface X at a

point x0 ∈ X is called a Geometric Hölder Complex associated to (Γ, β) if there exists

a subanalytic triangulation such that x0 is a vertex of this triangulation, Γ is isomor-

phic to the star of x0 in this triangulation and, for any β ∈ EΓ, the corresponding

2-dimensional simplex is bi-Lipschitz isomorphic with respect to the intrinsic metric to

Tβ(g). Moreover, the triangulation map maps 0 ∈ Tβ(y) to x0:

Fig.3

The following result was proved by several authors independently (using different

notations and terminology).

Theorem 3.2. ([Ku],[BRi],[Pa] and [L1],[L2] for the present version). Let X

be a subanalytic surface and let x0 ∈ X. Then there exists an Abstract Hölder Complex

(Γ, β) such that the germ of X at x0 is a Geometric Hölder Complex associated to (Γ, β).

Note that this Abstract Hölder Complex is not unique. Now we are going to cor-

rect this Abstract Hölder Complex in order to obtain a complete bi-Lipschitz invariant.

Let (Γ, β) be a Hölder complex. A vertex a ∈ VΓ (here VΓ is the set of vertices

of Γ) is called smooth if a is connected with two other vertices by only two edges

correspondentes. Suppose that a is connected by edges g1 and g2 with vertices a1 and a2.

Let us construct a new graph Γ̃ such that the vertex a and the edges g1, g2 are removed,

the vertices a1 and a2 are connected by a new edge g. Set β(g) = min{β(g1), β(g2)}.
Fig.4

This operation is called an elimination of a smooth vertex .
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A vertex a is called loop vertex if it is connected with only two edges g1 and g2

and these edges connect a with the same vertex a1. A loop vertes is called simple if

β(g1) = β(g2). Let (Γ, β) be a Hölder complex with a nonsimple loop vertex a. Let us

construct a new Hölder complex (Γ̃, β̃) in the following way. We make this loop vertex

simple just redefining β̃(g1) = β̃(g2) = min(β(g1), β(g2)). This operation is called a

correction near a loop vertex .

Abstract Hölder Complex is called simplified if it has no smooth vertices and all

the loop vertices are simple. Abstract Hölder Complex (γ̃, β̃) is called a simplification of

(Γ, β) if it is simplified and can be obtained from (Γ, β) using the operations described

above.

Theorem 3.3. Let a germ of a subanalytic surface X at x0 be a Geometric Hölder

Complex associated to two Abstract Hölder Complexes (Γ1, β1) and (Γ2, β2). Then the

simplifications of them are isomorphic.

It motivates the following definition. A Canonical Hölder Complex associated

to a germ of a subanalytic surface (X, x0) is a simplification of any Abstract Hölder

Complex (Γ, β) such that (X, x0) is a Geometric Hölder Complex associated to (Γ, β).

By Theorem 3.3, Canonical Hölder Complex is well defined.

Theorem 3.4. (Classification Theorem of Subanalytic Surfaces )[L1]. Two

germs of subanalytic surfaces (X,x0) and (Y, y0) are bi-Lipschitz isomorphic if and only

if the corresponding Canonical Hölder Complexes are isomorphic.

We finish this section by the following Realization Theorem.

Theorem 3.5. [BS] Let (Γ, β) be Abstract Hölder Complex. Then there exists Geo-

metric Hölder Complex (X, x0) associated to (Γ, β). Moreover, (X, x0) can be germ of

a semialgebraic set.

Question. When Abstract Hölder Complex admits a real algebraic realization?
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Remark. R.Benedetti with M.Dedo and independently S.Akbulut with H.King gave

conditions for a topological realization of a 2-dimensional simplicial complex. Our prob-

lem is a geometric version of their results.

4. Metric Homology.

A theory presented in section 3 is a 2-dimensional theory. Here we are going to

discuss some invariants of similar nature for higher dimensions. Let Y and Z be two

bounded subanalytic subsets of Rn. Let Uε(Z) be an ε-neighbourhood of Z. We define

a function f(ε) as follows:

f(ε) = voldim Y Y ∩ Uε(Z).

Let

α(r) = lim
ε→0

f(ε)
εr

.

By results of Lion-Rolin [LR] for volume-functions on subanalytic sets, there exists a

rational number µ such that

α(r) =
{

0, if 0 < r < µ,

∞, if µ < r < ∞.

This number µ is called a volume grouth number of Y with respect to Z. We use

the notation µ(Y,Z).

Remark. If Z is a point and Y is a smooth manifold then µ(Y,Z) = dim Y . If Y and

Z are submanifolds of Rn and if they intersect transversally such that Y ∩ Z 6= ∅ then

µ(Y, Z) = n− dim Z.

Let X be a subanalytic set. A partition {Xi} of X is called Lipschitz trivial

stratification if

1. All Xi are Lipschitz submanifolds of Rn.
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2. {Xi} is a topological stratification of X.

3. For any i and for any two points x1, x2 ∈ Xi, there exist a pair of neighbourhoods

Ux1 and Ux2 and a bi-Lipschitz homeomorphism h: Ux1 → Ux2 such that, for all

other stratum Xj , we have: h(Ux1) = Ux2 ∩Xj .

Now we are going define Metric Homology ([BB1],[BB2]) in ”Intersection Ho-

mology” [GM] style. Let p̄: {0, 1, . . . , n− 1} → Q ∩ [1,∞[ be a function called volume-

perversity . Now we fix a field of coefficients L and consider, for each k, the set of

subanalytic k-chains, i.e. the set of expressions

η =
p∑

i=1

Fi(∆k)ai,

where ai are elements of L. A k-chain η is called admissible with respect to a stratification

{Xj} and a perversity function p̄ if, for each stratum Xj , one has:

µ(Supp η, Xj) ≥ p̄(codim Xj), µ(Supp ∂η, Xj) ≥ p̄(codim Xj).

Admissible chains form a chain complex and the homology of this chain complex is called

Metric Homology with respect to the stratification {Xj} and the perversity function p̄.

We use a notation MH p̄(X, {Xj}).

Basic properties of Metric Homology.

1. Let p̄ be a volume-perversity function satisfying the following condition:

p̄(i) ≤ p̄(i + 1) ≤ p̄(i) + 1.

This condition is called G-M condition. Then MH p̄(X, {Xj}) does not depend on a

Lipschitz trivial stratification {Xj}. Thus, one can use the notation MH p̄(X).

2. Let F : X → Y be a subanalytic bi-Lipschitz map. Then MH p̄(X) = MH p̄(Y ).
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