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0. Platonic triples and
simple objects

The Platonic triples consist of integers p, q, r
( p, q, r ≥ 2 ) satisfying

(∗) 1

p
+

1

q
+

1

r
> 1 .

Normalizing to r = 2 , we get the following
pairs (p, q) and their well known relation to
the (symmetry groups of the) Platonic solids
or to regular tesselations of the sphere S2 (by
p–gons, q of them meeting at each corner).

p q (generalized) Platonic solid
2 n Hosohedron
n 2 Dihedron
3 3 Tetrahedron
4 3 Hexahedron (Cube)
3 4 Octahedron
5 3 Dodecahedron
3 5 Icosahedron
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Not distinguishing between (p, q) and (q, p) ,
we find pairs of numbers attached to the cor-
responding symmetry groups in SO(3, R) .

Theorem
Besides the cyclic groups, there exist - up to
conjugacy - only 4 (classes of) finite subgroups
of SO(3, R) . They are (as abstract groups)
presented by generators α, β and relations

αp = βq = (αβ)2 = e .

Under the group isomorphism

PSU(2, C) ∼= SO(3, R)

the finite subgroups of SO(3, R) can be lifted
to subgroups of doubled order in

SU(2, C) ⊂ SL(2, C) .

They are called the binary polyhedral groups.
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Theorem
Besides the cyclic groups of odd order, there
exist - up to conjugacy - only the binary polyhe-
dral groups as subgroups of SL(2, C) . They
have (as abstract groups) a presentation by
generators and relations governed by the asso-
ciated Platonic triple.

Condition (∗) also appears in other contexts
for certain quadratic forms to being positive or
negative definite, in particular in LIE theory .

Theorem
The only simply laced simply connected sim-
ple complex LIE groups are classified by their
DYNKIN diagrams of type ADE which, in the
cases D and E, are also in 1 - to - 1 bijection
to the Platonic triples.
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Thus, there seems to be a close connection be-

tween finite groups and LIE groups, and already

FELIX KLEIN has speculated about this inter-

action of discrete mathematics and geometry.

The main tool used nowadays for understand-

ing the relation can be found in his famous

book on the Equation of the fifth degree and

the Icosahedron of 1884 where he introduced

- of course not under this name - the KLEIN

singularities (also known as Rational Double

Points, Simple Singularities etc.).

In fact one can find any KLEIN singularity (and

even its complete deformation theory) inside

the geometry of the corresponding simple LIE

group (work of GROTHENDIECK, BRIESKORN

and SLODOWY).
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1. KLEIN singularities

The theory of KLEIN singularities estab-
lishes a (formal) one-to-one correspondence
between the conjugacy classes of finite
subgroups of SL (2, C) (also called binary
polyhedral groups by abuse of language) and
the COXETER–DYNKIN–WITT diagrams (or
DYNKIN–diagrams, as they are usually called)
of type ADE via the following scheme:

{finite subgroups Γ ⊂ SL(2, C) }/ conjugacy

l
{KLEIN singularitiesXΓ = C2/Γ }/ ∼

l
{minimal resolutions X̃Γ }/ ∼

l
{CDW-diagrams of type ADE }

Here, the symbol ∼ in the second and third
line denotes complex–analytic equivalence.
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Figure 1

The last arrow is given in the downward di-
rection by associating to a minimal resolution
π : X̃Γ → XΓ the dual graph of its exceptional
set E := π−1(0) ⊂ X̃Γ (with the irreducible
components E1, E2, . . . ).
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2. MC KAY’s observation

In 1979, MCKAY constructed directly via rep-
resentation theory the resulting bijection be-
tween the first and last line of this dia-
gram. In particular, according to this so called
MCKAY correspondence, each (nontrivial) ir-
reducible complex representation of Γ corre-
sponds uniquely to an irreducible component
of the exceptional set E .

Recall the construction of the MCKAY quiver
associated to a binary polyhedral group and -
more generally - to a finite small subgroup

Γ ⊂ GL(2, C) .

Let Irr Γ := { ρ0, ρ1, . . . , ρr }
denote the set of irreducible complex represen-
tations of Γ , ρ0 the trivial one, and

Irr0 Γ := { ρ1, . . . , ρr }
the set of its nontrivial irreducible complex rep-
resentations.
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Let c denote the natural representation on C2

given by the inclusion Γ ⊂ GL(2,C) . Then,

ρi ⊗ c∗ =
∑

j

aij ρj

where c∗ denotes the dual representation of

c (of course, c∗ = c for Γ ⊂ SL(2, C) ). The

MCKAY quiver is formed in the following way:

Associate to each representation a vertex and

join the ith vertex with the jth vertex by aij

arrows. - MCKAY’s observation may be formu-

lated in the following way:

For every finite subgroup Γ ⊂ SL(2, C) , one

has aji = aij ∈ {0, 1 } . Replacing each dou-

ble arrow by a line, one finds exactly the (ex-

tended) CDW diagrams of correct type.

In particular, there is a canonical bijection

Irr0 Γ −→ Irr E = {E1, . . . , Er } .
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For the binary tetrahedral group T , that is

the preimage of the symmetry group T ⊂
SO(3, R) of a regular tetrahedron under the

canonical group epimorphism

SU(2, C) −→ SO(3, R) ,

the irreducible representations are easily calcu-

lated. The isometry group T = A4 ∈ SO(3, R)

has obviously an irreducible representation of

order 3 and 3 representations of order 1 ,

which induce representations ρ0 (= trivial rep-

resentation), ρ4, ρ∗4 ( 1–dimensional) and ρ2

( 3–dimensional) of T . Of course, by our re-

alization of T as a subgroup of SL (2,C) ,

there is a canonical 2–dimensional represen-

tation which we call c = ρ1 . Finally, we define

ρ3 = c⊗ ρ4 and ρ∗3 = c⊗ ρ∗4 .
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Using the (obvious) character table of A4 , we
get the following character table for T :

C1 C2 C3 C4 C5 C6 C7

ρ0 1 1 1 1 1 1 1

c = ρ1 2 −2 0 −1 −1 1 1

ρ2 3 3 −1 0 0 0 0

ρ3 2 −2 0 −ζ3 −ζ2
3 ζ3 ζ2

3

ρ∗3 2 −2 0 −ζ2
3 −ζ3 ζ2

3 ζ3

ρ4 1 1 1 ζ3 ζ2
3 ζ3 ζ2

3

ρ∗4 1 1 1 ζ2
3 ζ3 ζ2

3 ζ3

Since the orthogonality relations are satisfied,
we have constructed all irreducible representa-
tions of T .
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The resulting quiver looks as below where

a subgraph • • stands for a double

arrow , i. e. two arrows in opposite direction.

Replacing such subgraphs by a simple line

• • , forgetting ρ0 and inserting the

ranks of the corresponding representations,

yields the other diagram below which, in fact,

is not only the CDW diagram of type E6 but

also represents the fundamental cycle Z of

the singularity C2/T .

• ρ0

• ρ1 = c

• • • • •
ρ4 ρ3 ρ2 ρ∗3 ρ∗4

2
•

• • • • •
1 2 3 2 1
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3. The geometric MCKAY
correspondence for
quotient
surface singularities

Of course, geometers wanted to understand
this phenomenon geometrically , and the
first who succeeded in this attempt were
GONZALES-SPRINBERG and VERDIER in 1983.
They associated to each nontrivial irreducible
representation of Γ a vector bundle F on X̃Γ
whose first CHERN class c1(F) hits precisely
one component of E transversally. Their
proof was not completely satisfying since they
had to check the details case by case. But in
1985, ARTIN and VERDIER gave a conceptual
proof using only standard facts on rational
singularities, and in combination with the so
called multiplication formula contained in the
paper of HÉLÈNE ESNAULT and KNÖRRER

from the same year it became clear how to
understand the full strength of the correspon-
dence, i. e. how to reconstruct the dual graph
of E ⊂ X̃Γ from the representations of Γ
completely in geometrical terms.

13



I would like to discuss this construction from

the beginning in the more general setting

of quotient surface singularities, or in other

terms: for small finite subgroups of GL (2, C)

(instead of finite subgroups of SL (2, C) )

in more detail (work of ESNAULT, WUNRAM,

RIEMENSCHNEIDER).

Recall that a finite subgroup Γ ⊂ GL(2, C)

is called small, if it acts freely on C2 \ {0} ,

or equivalently, if its (normal) subgroup gener-

ated by (pseudo–) reflections is trivial.

By a well known result of GOTTSCHLING

and PRILL, every quotient C2/Γ is complex–

analytically isomorphic to a quotient by a small

group, and two quotients by small subgroups

are complex–analytically isomorphic if the sub-

groups are conjugate in GL (2, C) . Hence, the

classification of quotient surface singularities

consists in the determination of the conjugacy

classes of finite small subgroups in GL (2, C) .
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This classification has been carried out by
BRIESKORN.

Recall that cyclic quotient surface singularities
of C2 are determined by two natural numbers
n, q with 1 ≤ q < n and gcd (n, q) = 1 . The
cyclic group Cn,q acting is generated by the
linear map with matrix

(
ζn 0

0 ζ
q
n

)
,

ζn = exp (2πi/n) an nth primitive root of unity .

Lemma Two cyclic quotients C2/ Cn,q and
C2/ Cn′,q′ are isomorphic if and only if

n′ = n

and

q′ = q or q q′ ≡ 1modn .
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For the general case, notice that we have a
surjective group homomorphism

ψ : ZGL2 × SL(2, C) −→ GL(2, C)

(ZGL2 denoting the center of GL(2, C) con-
sisting of all multiples aE , a 6= 0 , of the unit
matrix) defined by multiplication. It is not dif-
ficult to convince oneself that the following is
true:

Lemma Each noncyclic finite subgroup Γ of
GL(2, C) may be obtained from a quadruple
(G1, N1;G2, N2) , where
(a) G1 ⊂ ZGL2 and G2 ⊂ SL(2, C) are finite
subgroups, G2 not cyclic,
(b) N1 ⊂ G1 and N2 ⊂ G2 are normal sub-
groups such that there exists an isomorphism

ϕ : G2/N2
∼−→ G1/N1 ,

by the following construction:
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Γ := ψ(G1 ×ϕ G2) ,

where

G1×ϕ G2 := {(g1, g2) ∈ G1×G2 : g1 = ϕ(g2)} ;

(here, gi denotes the residue class of gi in

Gi/Ni , i = 1, 2 ).

Remark The conjugacy class of Γ in

GL(2, C) does not depend on the specific iso-

morphism ϕ . Therefore, we use the symbol

(G1, N1; G2, N2)

also as a name for the conjugacy class con-

taining the groups ψ (G1 ×ϕ G2) .

BRIESKORNS classification can now be given

in form of the following table (Z` de-

notes the group 〈ζ`E〉 ), where the symbol

(b;n1, q1, n2, q2, n3, q3) encodes the dual reso-

lution graph. (Of course, the pair n1 = 2 , q1 =

1 belongs to the upper (short) arm).
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−2
•

• . . . • • • . . . •
−b2r2 −b21 −b −b31 −b3r3where

ni

qi
= bi1 − 1 bi2 − · · · − 1 biri

, i = 2,3 .

Γ = (G1, N1;G2, N2) (b;n1, q1, n2, q2, n3, q3)

(Z2m,Z2m;Dn,Dn)
(Z4m,Z2m;Dn, C2n)

(b; 2,1,2,1, n, q) m = (b− 1)n− q =
{

odd
even

(Z2m,Z2m;T,T)
(Z2m,Z2m;T,T)
(Z6m,Z2m;T,D2)

(b; 2,1,3,2,3,2)
(b; 2,1,3,1,3,1)
(b; 2,1,3,1,3,2)

m = 6(b− 2) +

{
1
5
3

(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)
(Z2m,Z2m;O,O)

(b; 2,1,3,2,4,3)
(b; 2,1,3,1,4,3)
(b; 2,1,3,2,4,1)
(b; 2,1,3,1,4,1)

m = 12(b− 2) +

{ 1
5
7

11

(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)
(Z2m,Z2m; I, I)

(b; 2,1,3,2,5,4)
(b; 2,1,3,2,5,3)
(b; 2,1,3,1,5,4)
(b; 2,1,3,2,5,2)
(b; 2,1,3,1,5,3)
(b; 2,1,3,2,5,1)
(b; 2,1,3,1,5,2)
(b; 2,1,3,1,5,1)

m = 30(b− 2) +





1
7

11
13
17
19
23
29
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Remarks 1. The quotient surface singularities

are characterized by several finiteness condi-

tions: They are the only surface singularities

• having a finite fundamental group

• carrying only finitely many isomorphism

classes of indecomposable reflexive modules.

2. It is conjectured that they are also exactly

the deformation finite surface singularities. A

proof of this would imply a positive answer to

the old conjecture that there are no rigid (nor-

mal) surface singularities.
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Let ρ be a representation of Γ on the vector

space V = Vρ . Γ operates on C2 × V via the

natural representation c and ρ , and the quo-

tient is a vector bundle on (C2\{0})/Γ whose

(locally free) sheaf of holomorphic sections ex-

tends to a reflexive sheaf Mρ on C2/Γ = XΓ :

Mρ := µ∗(OC2 ⊗ Vρ∗)
Γ ,

where µ denotes the canonical projection

C2 → XΓ and ρ∗ is the dual representation.

M is indecomposable if and only if ρ is irre-

ducible. - In fact, one gets all reflexive modules

M on XΓ in this manner:

Theorem (ESNAULT) There exists a one–

to–one correspondence between

• { (indec.) reflexive modules M on (X, 0) }
• { (Γ–indecomposable) free modules M̂ on

(C2, 0) with a Γ–action }
and

• { (irreducible) representations ρ of Γ } .
20



For the step invoking the minimal resolution,
we can study more generally any rational sur-
face singularity X and an arbitrary reflexive
module M on it. Let π : X̃ −→ X be a min-
imal resolution, and put M̃ := π∗M/ torsion .

Such sheaves on X̃ were baptized full sheaves
by ESNAULT. By local duality , one has the fol-
lowing

Theorem (ESNAULT) A sheaf F on X̃ is
full if and only if the following conditions are
satisfied:

1. F is locally free, i. e. (the sheaf of holo-
morphic sections in) a vector bundle,

2. F is generated by global sections, in par-
ticular H1 (X̃, F) = 0 ,

3. H1 (X̃, F∗ ⊗ ω
X̃
) = 0 , where ω

X̃
denotes

the canonical sheaf on X̃ .

Under these assumptions, M = π∗F is reflex-
ive and F = M̃ . Moreover , M∗ = π∗ (F∗) (but
F∗ is, in general, not a full sheaf ).
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Remark For quotient surface singularities XΓ
which are not KLEIN singularities one has al-
ways

# Irr EΓ < #Irr0Γ .

So we can’t expect MCKAY’s correspondence
literally true in this situation.

Definition A full sheaf M̃ /

a reflexive module M /

a representation ρ /

is called special (perhaps better exceptional),
if and only if H1 (X̃, (M̃)

∗
) = 0 (where M :=

Mρ in case of a representation ρ ).

Special full sheaves have been characterized by
WUNRAM, special reflexive modules and repre-
sentations by RIEMENSCHNEIDER. Notice that
in former articles, we associated the module
µ∗(OC2 ⊗ Vρ)Γ to a representation ρ instead
of µ∗(OC2⊗ Vρ∗)Γ . Dealing with the dual repre-
sentations fits better into the framework of the
ITO-NAKAMURA construction to be discussed
later.
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Theorem
1) M̃ special ⇐⇒ the canonical map

M̃ ⊗ ω
X̃
→ [(M ⊗ ωX)∗∗]˜

is an isomorphism.
2) M special ⇐⇒ M⊗ωX/ torsion is reflexive.
3) ρ special ⇐⇒ the canonical map

(Ω2
C2,0)

Γ ⊗ (OC2,0 ⊗ Vρ∗)
Γ → (Ω2

C2,0 ⊗ Vρ∗)
Γ

is surjective.

Here, of course, two stars denote the double
dual ( or reflexive hull ) of a coherent analytic
sheaf , Ωm

X is the sheaf of Kähler m–forms
and ωX := (Ω2

X)∗∗ the dualizing sheaf on a
complex analytic surface X .

As a Corollary to the next Theorem of
WUNRAM, one obtains the MCKAY correspon-
dence since for the KLEIN singularities one
has ωX

∼= OX (GORENSTEIN property) and
ω

X̃
∼= O

X̃
. Or in other words: For KLEIN sin-

gularities all reflexive modules etc. are special.
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Let F = M̃ be of rank r and full. Then one
can construct an exact sequence

0 −→ Or
X̃
−→ F −→ N −→ 0

with D := suppN a divisor in a neighbor-
hood of the exceptional set E which cuts E

transversally at regular points only. We call D

the CHERN divisor c1(F) .

Theorem (WUNRAM, 1987 - 1988) There
is a bijection

{special nontrivial

indecomposable reflexive modules}
l

{irreducible components Ej of E }
via

M 7−→ c1(M̃)Ek = δjk .

The rank of Mj equals the multiplicity rj of
the curve Ej in the fundamental cycle Z =∑

rj Ej .
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4. The construction of
ITO and NAKAMURA

In 1996 YUKARI ITO and IKU NAKAMURA con-

structed in joint work the minimal resolution

X̃Γ in the case of finite subgroups of the spe-

cial linear group SL (2, C) by invariant the-

ory of Γ acting on a certain HILBERT scheme.

They were able, again by checking case by

case, to produce the correct representations

from the irreducible components of E ⊂ X̃Γ

(and even more). Two years later, NAKAMURA

lectured in 1998 on this topic in Hamburg; I

soon became aware of how one should gener-

alize the statement to (small) subgroups of the

general linear group GL(2, C) and developed

some vague ideas how to prove this without

too many calculations.
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This conjecture could be checked in the case
of cyclic quotients by a simple computation
which depended on the concrete results in the
doctoral thesis of RIE KIDOH, written in Sap-
poro under the supervision of NAKAMURA.

I gave some lectures on this topic in Japan dur-
ing September 1999 and learned from AKIRA

ISHII in August 2000 that he succeeded in prov-
ing the conjecture via rephrasing the multipli-
cation formula of WUNRAM in terms of a func-
tor between certain derived categories. Besides
the general proof of A.ISHII which uses much
heavier machinery there exists now another in-
dependend proof in the cyclic case via toric
geometry by Y. ITO; she doesn’t use KIDOH’s
explicit construction but my characterization
of special representations.

Two years ago I published a manuscript on this
and the general theory of the so called special
representations at the Hokkaido Mathematical
Journal.
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Let Hilbn(C2) be the HILBERT scheme of all
0–dimensional subschemes on C2 of colength
n . It is well known that the canonical
HILBERT–CHOW–morphism

Hilbn(C2) −→ Symn(C2) = (C2)n/ Sn

is a resolution of singularities (FOGARTY), and
Hilbn(C2) carries a holomorphic symplectic
structure (BEAUVILLE). Let Γ ⊂ GL(2, C) be
a finite small subgroup of order n = ordΓ ,
and take the invariant part of the natural ac-
tion of Γ on Hilbn(C2) . The resulting space
Hilbn(C2)Γ is smooth and maps under the
canonical mapping

Hilbn(C2)Γ 7−→ Symn(C2)Γ ∼= C2/Γ

to XΓ . It may a priori have several compo-
nents, but there is exactly one which maps
onto XΓ and thus constitutes a resolution of
XΓ which will be denoted by

YΓ = HilbΓ(C2) .
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In fact, HilbΓ(C2) is equal to the open sub-

set of so–called Γ–invariant n–clusters in C2 ,

and the resolution is minimal (A. ISHII). The

last fact has been known before in the case

Γ ⊂ SL(2, C) by ITO-NAKAMURA and for cyclic

subgroups of GL (2, C) by KIDOH; it has been

conjectured for general finite small subgroups

Γ ⊂ GL(2, C) by GINZBURG-KAPRANOV.

In particular, a point on the exceptional set

E of YΓ may be regarded as a Γ–invariant

ideal I ⊂ OC2 with support in 0 . Now, let m

be the maximal ideal of OC2,0 , mX that of

OX,0 = OΓ
C2,0

and n = mXOC2,0 . Put

V (I) := I/ (mI + n) .

This is a (finite–dimensional) Γ–module.

28



For a (nontrivial) irreducible representation ρ ∈
Irr0 Γ := Irr Γ \ { ρ0 } with representation space
Vρ put

Eρ = { I : V (I) contains Vρ } .

In the case of KLEIN singularities, i. e. for fi-
nite subgroups Γ ⊂ SL(2,C) , one has the fol-
lowing beautiful result of ITO and NAKAMURA

which opened up a new way to understand the
MCKAY correspondence completely in terms of
the binary polyhedral group Γ .

Theorem (ITO - NAKAMURA) For ρ ∈
Irr0 Γ , Eρ

∼= P1 . Moreover , Eρ ∩ Eρ′ is empty
or consists of exactly one point for ρ 6= ρ′ , and

E =
⋃

ρ∈Irr0Γ

Eρ .

More precisely , V (I) = Vρ for the ideals I ∈
Eρ corresponding to smooth points of E , and

Eρ ∩ Eρ′ 3 I ⇐⇒ V (I) = Vρ ⊕ Vρ′ .
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5. Cyclic quotient
surface singularities

The cyclic group Cn,q with gcd (n, q) = 1

operates on the polynomial ring C [u, v] by

(u, v) 7−→ (ζnu, ζ
q
nv) . A monomial uα vβ is in-

variant under this action if and only if

α + qβ ≡ 0 modn ,

e. g. for (α, β) = (n, 0) , (n− q, 1) , (0, n) .

The HIRZEBRUCH - JUNG continued fraction

n

n− q
= a1−

1

a2 − 1/ · · · = a1− 1 a2 −· · ·− 1 am

with aµ ≥ 2 gives a strictly decreasing se-

quence

α0 = n > α1 = n− q > α2 = a1α1 − α0 > · · ·
stopping with αm+1 = 0 , and a strictly in-

creasing sequence

β0 = 0 < β1 = 1 < β2 = a1β1 − β0 < · · ·
stopping with βm+1 = n .

30



It is well known that the monomials

uαµ vβµ , µ = 0, . . . , m + 1

generate the invariant algebra

An,q := C 〈u, v〉Cn,q = OC2/ Cn,q,0

minimally. In particular, embdimAn,q = m+2 ,

hence, multAn,q = m + 1 . The numbers aµ

are exponents in canonical equations for An,q .

On the other hand, the continued fraction ex-

pansion

n

q
= b1 − 1 b2 − · · · − 1 br , bk ≥ 2

gives invariants for the minimal resolution of

C2/ Cn,q whose exceptional divisor consists of

a string of rational curves with selfintersection

numbers −bk .
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Define correspondingly the decreasing se-
quence

i0 = n > i1 = q > i2 = b1i1 − i0

> · · · > ir = 1 > ir+1 = 0

and

j0 = 0 < j1 = 1 < j2 = b1j1 − j0

< · · · < jr+1 = n.

Theorem (KIDOH) Let (n, q) be given.
Then, HilbCn,q(C2) consists of the Cn,q–
invariant ideals

Ik(sk, tk)

of colength n = ordCn,q , which are generated
by the elements

uik−1−sk vjk−1, vjk−tkuik, uik−1−ikvjk−jk−1−sktk .

Here, 1 ≤ k ≤ r + 1 , and the parameters
(sk, tk) ∈ C2 are arbitrary.
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Remarks. 1. These are in fact Cn,q–invariant
ideals, since ik ≡ q jk modn and the functions
uik−1−ik vjk−jk−1 are invariant.

2. The (r+1) copies of C2 patch together to
form the minimal resolution of C2/ Cn,q , i. e.
Ik (sk, tk) = Ik+1 (sk+1, tk+1) ⇐⇒ sk+1 tk = 1

and tk+1 = t
bk
k sk .

3. The exceptional divisor E equals

I1 (0, t1) ∪
r⋃

k=2

{Ik (sk, tk) : sk tk = 0}
∪Ir+1 (sr+1, 0) .

4. It is not difficult to deduce KIDOH’s result by
induction using the well known partial resolu-
tion of cyclic quotient singularities constructed
by FUJIKI.
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What about the representations of Cn,q on the

V (Ik) ? For I1 (0, t1) the first generator ui0 =

un is an invariant. The third is such in all cases

anyway. So, Cn,q acts on V (I1 (0, t1))
∼= C as

the one dimensional representation χi1 where

χi : z 7−→ ζi
nz

(recall that qjk ≡ ik modn ). This remains

automatically true for I2 (s2, t2) with t2 =

0 , s2 6= 0 . The first normal crossing point

of the exceptional set is the ideal I2 (0, 0)

which is generated by ui1, vj2 and an invariant.

Therefore, the corresponding representation is

the sum

χi1 ⊕ χqj2 = χi1 ⊕ χi2 .
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The ideal I2 (0, t2) , t2 6= 0 , is generated by

ui1 , vj2− t2 ui2 and the invariant ui1−i2 vj2−j1 .

Now,

t2 ui1 = vj1 (ui1−i2 vj2−j1) − ui1−i2 (vj2 − t2 ui2)

∈ m I2 (0, t2) .

Therefore, the representation is just the one–

dimensional

χi2 = χqj2 .

It should be clear how this game goes on: We

get precisely the r representations χik , k =

1, . . . , r , resp. the correct sum of two of them

at the intersection points.

Due to a result of WUNRAM these are precisely

the special representations of the group Cn,q .

Hence, this gives a hint how the result of ITO–

NAKAMURA should be generalized to arbitrary

quotient surface singularities.
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The precise result of WUNRAM is the following.

Lemma For a given number i ∈ N between

0 and n − 1 , there exist uniquely determined

nonnegative integers d1, . . . , dr with

i = d1 i1 + t1 , 0 ≤ t1 < i1 ,

tk = dk+1 ik+1 + tk+1 , 0 ≤ tk+1 < ik+1 ,

1 ≤ k ≤ r − 1 .

Then, the CHERN divisor of the full sheaf as-

sociated to the one dimensional representation

χi is
r∑

k=1

dk Ek .

In particular, if i = ik , then this CHERN divisor

is equal to 1 · Ek .
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6. Interpretation
in terms of
derived categories

MCKAY correspondence may also be under-

stood as an equivalence of derived categories.

This has been worked out by KAPRANOV and

VASSEROT for SL (2, C) and by BRIDGELAND,

KING, REID in dimension 3. The last paper led

A. ISHII to study more closely the canonical

functor

Ψ : DΓ
c (C2) −→ Dc(YΓ)

where DΓ
c (C2) denotes the derived category of

Γ–equivariant coherent analytic sheaves with

compact support on C2 , Γ a finite small

subgroup of GL (2, C) , and Dc(YΓ) the de-

rived category of coherent analytic sheaves on

YΓ = HilbΓ(C2) with compact support.
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The main ingredient of his proof is WUNRAM’s

multiplication formula which generalizes the

one of ESNAULT and KNÖRRER. We denote

by M a reflexive module on X = C2/Γ , its

AUSLANDER-REITEN translate, i. e. the mod-

ule (M⊗ωX)∗∗ , by τ (M) , and finally, we write

NM = (M ⊗Ω1
X)∗∗ . Then we have:

Theorem (WUNRAM)

c1(ÑM) − c1(M̃) − c1(τ̃(M))

=





Ej , M = Mj special , j 6= 0 ,

Z , M = M0 := OX ,

0 , M nonspecial .

Here, Z denotes the fundamental cycle of the

minimal resolution of X .

A. ISHII first restates and proves once more

WUNRAM’s multiplication formula in the fol-

lowing form.
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Theorem (A. ISHII) Let ρ be an irreducible
representation of Γ ⊂ GL(2, C) and put O0 =
OC2,0/ m , where m denotes the maximal ideal

of C2 at the origin. Then

Ψ(O0 ⊗ Vρ∗)

=





OEj
(−1)[1] , ρ = ρj special , j 6= 0 ,

OZ , ρ = ρ0 ,

0 , ρ nonspecial .

He then explicitly constructs a right adjoint Φ
to Ψ . The resulting isomorphism

HomYΓ
(Ψ(∆), ∇) ∼= HomDΓ

c (C2) (∆, Φ(∇))

leads to the desired result when applied to
∆ := O0 ⊗ Vρ∗ , ∇ := Oy , y ∈ YΓ .

Theorem (A. ISHII) The ITO-NAKAMURA

construction yields the same result as above
also for finite small subgroups Γ ⊂ GL(2, C)
if the set Irr0Γ of all nontrivial irreducible
representations is replaced by the subset
Irrspec0Γ ⊂ Irr0Γ of (non-trivial) special ones.
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7. Searching for a
more concrete version

Most questions being answered in a perfect

conceptual manner: Why does one need a

“more concrete” version?

First of all since mathematical physicists are

interested in non–supersymmetric configura-

tions of D–branes and their evolution via

tachyon condensation (c.f.: HE, YANG–HUI:

Closed String Tachyons, Non–Supersymmetric

Orbifolds and Generalized McKay Correspon-

dence, hep–th or Adv. Theor. Math. Phys 7,

2003). In the Abelian case the special rep-

resentations are associated to some D–brane

charges sitting on the HIGGS branch.

40



Problem Determine explicitly the special rep-
resentations for a given small subgroup Γ ⊂
GL(2, C) and attach them to the vertices in
the dual resolution graph of X̃Γ .

WUNRAM has this task carried out in full de-
tail only for cyclic quotients; for the remaining
cases he describes a method how one can in
principle compute the CHERN divisors and de-
tect the special representations in the MCKAY–
quiver.

He finds for the group (Z14,Z14; I, I) , i. e. for
the quotient surface singularity with resolution
graph -2

•

• • • • •
-2 -2 -2 -2 -3

the following MCKAY–quiver and the CHERN

divisors as indicated.
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Notice that the fundamental cycle in this ex-

ample is the following:

2
•

• • • • •
1 2 3 2 1

Remark This example shows that the irre-

ducible reflexive modules are not determined

by their CHERN divisor and their rank. This,

however, is always true for the special objects

(ESNAULT).
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A. ISHII’s result may be used to compute them

directly via invariant theory! Of course, one

has to determine HilbΓ(C2) in all cases and to

identify these spaces with the resolution X̃Γ ,

which might be tedious, but not so difficult.

Due to the construction, HilbΓ(C2) carries a

natural tautological bundle T with

HilbΓ(C2) 3 I 7−→ OC2/ I =: TI

with a canonical Γ–action (which is very simple

for 0 6∈ supp I ). By the so called normal basis

theorem, to each irreducible representation ρ

of Γ of rank rρ there exist OX–submodules

M
(1)
ρ

∼= · · · ∼= M
(rρ)
ρ of µ∗OC2 such that

µ∗OC2 =
⊕

ρ∈Irr Γ

(M(1)
ρ ⊕ · · · ⊕M

(rρ)
ρ ) .
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This decomposition given, there is an asso-

ciated decomposition of TI for each I ∈
HilbΓ(C2) which fits together to a decomposi-

tion of the vector bundle T :

T ∼=
⊕

ρ∈Irr Γ

(M̃(1)
ρ ⊕ · · · ⊕ M̃

(rρ)
ρ )

with

M̃ρ
∼= M̃

(1)
ρ

∼= · · · ∼= M̃
(rρ)
ρ .

Corollary One can describe the vector bundles

M̃ρ via invariant theory as subbundles of T on

HilbΓ(C2) . In particular, the CHERN divisor of

M̃ρ can be constructed in these terms, such

leading to a concrete description of the oppo-

site direction of the MCKAY–correspondence,

i.e. associating to a nontrivial special represen-

tation a generic ideal in the exceptional set E .
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A final remark

I am completely aware of the fact that the main

trend in what is nowadays called MCKAY corre-

spondence was to treat the higher dimensional

case Γ ⊂ SL(n, C) under the slogan: If XΓ has

a crepant resolution X̃Γ , i. e. if the canonical

sheaf of X̃Γ is trivial, then there should be a

bijection

Irr0Γ ←→ basis of H∗(X̃Γ, Z)

which - in case n = 2 - is just a rephrasing

of the result for finite subgroups in SL (2, C) .

(C. f. some notes of REID).

But this is a completely different story and

needs at least two more hours (and a speaker

who is much more familiar with this subject

than I am).
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Mathématiques de France, Astérisque
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