

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1673/29

AUTUMN COLLEGE ON PLASMA PHYSICS

5 - 30 September 2005

Controlled Fusion by a Staged Z-pinch

H.U. Rahman

GTT International Inc. U.S.A. Controlled Fusion by a Staged Z-pinch

*H.U. RAHMAN*¹, P. Ney², F. J. Wessel, and N. Rostoker University of California, Irvine, USA

Phys. Rev Lett. **74**, 714(1995) Phys. Of Plasmas, **58**, 367(1997) Phys. Of Plasmas, **11**, 5595(2004)

1. GTT International Inc.

2. San Jacinto College

Outline

- Motivation from the experiments.
- 2D numerical simulation.
- Control and mitigation of RT-instability.
- Importance of high Z radiative liner.
- Possibility of breakeven in fusion energy.
- Experimental implementation.

PINCH INSTABILITIES

SAUSAGE m = 0

m = 0;

$$\gamma = \frac{C_A}{r_o} \frac{(kr_o)}{l'_m (kr_o)} ;$$

compressible, k -> 0;

$$\gamma = \frac{C_A}{r_o} \frac{(2 - \alpha^2)^{-1/2} kr_o}{\sim (50 \text{ ns})^{-1}}$$

RAYLEIGH TAYLOR

$$e^{2} = -kg + \frac{(\bar{k}\cdot\bar{B}_{o})^{2}}{4\pi\rho_{o}}^{2}$$
~ (10 ns)⁻¹

Staged Z-pinch

MAGNETO-INERTIAL FUSION

PINCH DYNAMICS

CURRENT DIFFUSES THROUGH HIGH Z LINER INNER LAYER OF LINER PEALS OFF PEALED OFF LAYER COMPRESSES TARGET UNSTABLE PART OF LINER STAYS BEHIND AT PEAK COMPRESSION, CURRENT TRANSFERS TO INNER STABLE LAYER.

BENEFITS

INERTIAL ENERGY TRANSFER TIMESCALES COMPRESSION IS RT STABLE BREAKEVEN FUSION IS PREDICTED

> 6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

STAGED Z-PINCH

Fusion Cross Sections

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

STABILIZATION OF LINEAR PINCH

End-on Kerr cell photos

Stability of RT-instability

Unstable pinch

Pinch stabilized with B_z and B_{Θ} fields

D.J.Albares, N. A. Krall and C. L. Oxley, "Rayleigh Taylor Instability in a Stabilized Linear Pinch Tube," Phys. Fluids 4, 1031(1961).

Electrical Signals

Numerical Simulation

- 2&1/2 dimensional, time-dependent, single fluid, MHD simulation code.
- Used in Eulerian mode.
- External capacitor bank circuit is modeled.
- Tabular (SESAME) equations of state.
- Implicit MHD with components of **B** and **U**.
- Multi-species plasma.
- Flux-limited, single group, implicit radiation diffusion.

Equation used in the simulation

MACH2

Continuity Equation:

 $\frac{\partial \rho}{\partial t} = - \bigtriangledown \cdot (\rho \vec{u})$

Momentum Equation:

$$\begin{split} \rho \frac{\partial v^i}{\partial t} &= -\rho v^j \bigtriangledown_j v^i + \bigtriangledown_j [-(P+Q+\frac{1}{3}u_R)\delta^{ji} + \frac{1}{\mu_0}(B^jB^i - \frac{1}{2}B^2\delta^{ji}) + \\ \sigma^d_{ji}] \end{split}$$

Electron Specific Energy Equation:

$$\rho \frac{\partial \epsilon_e}{\partial t} = -\rho \vec{v} \cdot \nabla \epsilon_e - P_e \delta^{ji} \nabla_i v_j + \eta J^2 - \vec{J} \cdot \left(\frac{\nabla P_e}{en_e}\right) + \nabla \cdot \left(\kappa_e \nabla T_e\right) - ac\rho \chi_{planck} \left(T_e^4 - T_R^4\right) - \rho c_{v_e} \frac{\left(T_e - T_i\right)}{\tau_{ei}}$$

Ion Specific Energy Equation:

$$\begin{split} \rho \frac{\partial \epsilon_i}{\partial t} &= -\rho \vec{v} \cdot \bigtriangledown \epsilon_i + [-(P_i + Q)\delta^{ji} + \sigma^d_{ji}] \bigtriangledown_i v_j + \bigtriangledown \cdot (\kappa_i \bigtriangledown T_i) + \\ \rho c_{v_e} \frac{(T_e - T_i)}{\tau_{ei}} \end{split}$$

Radiation Energy Density:

$$\frac{\partial u_R}{\partial t} = -\rho \vec{v} \cdot \bigtriangledown u_R - \frac{4}{3} u_R \bigtriangledown \cdot \vec{v} + \bigtriangledown \cdot (\rho \chi_{ros} \bigtriangledown u_R) + ac\rho \chi_{planck} (T_e^4 - T_R^4)$$

Magnetic Induction:

$$\frac{\partial \vec{B}}{\partial t} = \bigtriangledown \times (\vec{v} \times \vec{B}) - \bigtriangledown \times (\eta \vec{J}) - \bigtriangledown \times (\frac{\vec{J} \times \vec{B}}{en_e}) + \bigtriangledown \times (\frac{\bigtriangledown P_e}{en_e})$$

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Elastic Stress:

$$\frac{\partial \sigma_{ji}^d}{\partial t} = 2\mu d_{ji}^d - v^k \bigtriangledown_k \sigma_{ji}^d$$

Fusion Neutron Production Rate and Energy Gain:

$$P_{DT} = 5.6 \times 10^{-13} \ n_D n_T (\bar{\sigma \nu})_{DT}$$
$$P_{DD} = 3.3 \times 10^{-13} \ n_D n_D (\bar{\sigma \nu})_{DD}$$

 $(\sigma \bar{\nu})_{DT}$ and $(\sigma \bar{\nu})_{DD}$ are determined from a table look up.

Elastic Stress:

$$\frac{\partial \sigma_{ji}^d}{\partial t} = 2\mu d_{ji}^d - v^k \bigtriangledown_k \sigma_{ji}^d$$

Fusion Neutron Production Rate and Energy Gain:

$$\begin{split} P_{DT} &= 5.6 \times 10^{-13} \ n_D n_T (\bar{\sigma\nu})_{DT} \\ P_{DD} &= 3.3 \times 10^{-13} \ n_D n_D (\bar{\sigma\nu})_{DD} \\ (\bar{\sigma\nu})_{DT} \text{ and } (\bar{\sigma\nu})_{DD} \text{are determined from a table look up.} \end{split}$$

Initial configuration for UCI Pinch

Ion density During run-in phase

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Current Density During run in phase

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Initial Configuration For Z-Facility

Dynamics of pinch During run-in Phase

Density

Ionization Charge state

Axial current density

ION DENSITY

Rayleigh-Taylor Instability

Growth of perturbations depend upon the radius of the pinch

Energy coupling

$$W = \int_{R_0}^{R} \frac{B_{\theta}^2}{8\pi} \bullet 2\pi R \bullet h dR$$

$$B_{\theta} = \frac{2I}{cR}$$

$$=h\left(\frac{I}{c}\right)^2\ln\left(\frac{R_0}{R}\right)$$

Final energy of the pinch depends weakly on the compression ratio!

ION DENSITY (Four initial radii)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Ionization charge state (four initial radii)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Profiles of charge state

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Axial current (four initial radii)

Profiles of axial currents

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Large Energy Production

- Xe liner is used
- Both the masses of the liner and the target are optimized
- Optimized parameters of the Z-facility are used
- Initial radius of 0.7cm is used
- Perturbation level of 0.1% is used
- 12 MJ of Energy is produced with a stored energy of 2 MJ.
- Real breakeven is possible with existing technology

Breakeven

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Energies

Ion Density (full run)

Ion Density (near peak)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Magnetic Field (Full run)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Magnetic field (near peak)

Axial current (full run)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Axial current (near peak)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Plasma ion temperature (full run)

Plasma ion temperature (Near peak)

6th Symposium on Current Trends in International Fusion Research: A Review, Washington DC 7-11 March 2005

Conclusions

- R-T instability can be controlled.
- Pinch current is amplified.
- Current rise time is reduced.
- Breakeven fusion (i.e., nuclear energy larger than stored energy) is possible.
- Reactor design is not yet considered.