\qquad

AUTUMN COLLEGE ON PLASMA PHYSICS

5-30 September 2005

Numerical Vlasov Simulations: Problems and
Applications

B. Eliasson

Ruhr University, Bochum, Germany

Autumn College on Plasma Physics, Trieste, 5-30 September 2005

Numerical Vlasov Simulations: Problems and Applications

BENGT ELIASSON

RUHR-UNIVERSITÄT BOCHUM, GERMANY

Outline

A. Some elements of numerical theory
B. Vlasov simulations - problems with filamentation
C. Fourier method in velocity space. 1D and 2D. Outflow boundary conditions
D. Examples of numerical simulations

- Kinetic tunnelling (recurrence) effects
- Electron Bernstein waves (Bernstein-Landau paradox)
- Electromagnetic waves
- Coupling of nonlinear wave

Solution of nonlinear equations

Ex: In linear theory, we often want to solve a dispersion $f(\omega)=0$, where f can be a high-order polynomial of or some more complicated function of ω. The standard method to do this is Newton's (Newton-Raphson's) method: First make a reasonable guess of the root, say $\omega=\omega^{(0)}$.

Then update ω iteratively as

$$
\omega \leftarrow \omega+\Delta \omega
$$

where $\Delta \omega=-f(\omega) / f^{\prime}(\omega)$. The process converges when $|\Delta \omega|$ is small enough.

Solution of nonlinear equations

Example: We want to find the root to $f(\omega)=\cos (\omega)-\omega=0$. Here, $f^{\prime}(\omega)=-\sin (\omega)-1$ and hence $\Delta \omega=(\cos (\omega)-\omega) /(\sin (\omega)+1)$. Let the first guess be $\omega=\omega^{(0)}=1$. Then we have

1. $\Delta \omega=-0.24963613215976, \quad \omega=1-0.24963613215976=0.75036386784024$
2. $\Delta \omega=-0.01125097692888, \omega=0.73911289091136$
3. $\Delta \omega=-0.00002775752607, \omega=0.73908513338528$
4. $\Delta \omega=-0.00000000017012, \omega=0.73908513321516$
and we have the solution $\omega=0.739085133$ with 9 significant digits. Newton's methods converges extremely fast (it doubles the number of significant digits in each iteration) if the initial guess is good enough and if $f^{\prime}\left(\omega^{*}\right) \neq 0$, where ω^{*} is the exact solution. If $f^{\prime}\left(\omega^{*}\right)=0$, then Newton's method converges more slowly. Note that Newton's method also works for complex ω (which is common in applications!)

Solution of nonlinear systems of equations

Nonlinear systems of equations $\vec{F}(\vec{x})=0$ can also be solved with Newton's method: First make a reasonable guess of the root, say $\vec{x}=\vec{x}^{(0)}$. Then update \vec{x} iteratively as

$$
\vec{x} \leftarrow \vec{x}+\Delta \vec{x}
$$

where the correction term $\Delta \vec{x}$ is obtained by solving the linear equation system $\overrightarrow{\vec{J}} \Delta \vec{x}=-\vec{f}(\vec{x})$, where $\overrightarrow{\vec{J}}=\frac{\partial \vec{f}}{\partial \vec{x}}$ is the Jacobian matrix of \vec{F}. The process converges when the norm $\|\Delta \vec{x}\|$ is small enough.

Solution of nonlinear systems of equations

Here, we have used the matrix notation

$$
\vec{F}(\vec{x})=\left[\begin{array}{c}
F_{1} \tag{1}\\
F_{2} \\
\vdots \\
F_{N}
\end{array}\right], \quad \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right], \quad \Delta \vec{x}=\left[\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
\vdots \\
\Delta x_{N}
\end{array}\right]
$$

and

$$
\overrightarrow{\vec{J}}=\left[\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \ldots & \frac{\partial F_{1}}{\partial x_{N}} \tag{2}\\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & & \vdots \\
\vdots & & \ddots & \\
\frac{\partial F_{N}}{\partial x_{1}} & \cdots & & \frac{\partial F_{N}}{\partial x_{N}}
\end{array}\right]
$$

The norm can for example be the Euclidian norm
$\|\Delta x\|=\sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}+\cdots+\left(\Delta x_{N}\right)^{2}}$

Solution of nonlinear systems of equations

Example: We want to solve the nonlinear system of equations

$$
\begin{align*}
& F_{1}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\sin \left(x_{2}\right)-0.1=0 \tag{3}\\
& F_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \exp \left(x_{1}\right)=0 \tag{4}
\end{align*}
$$

The Jacobian matrix is

$$
\overrightarrow{\vec{J}}=\frac{\partial \vec{F}}{\partial \vec{x}}=\left[\begin{array}{cc}
x_{2} & x_{1}+\cos \left(x_{2}\right) \tag{5}\\
1+x_{2} \exp \left(x_{1}\right) & \exp \left(x_{1}\right)
\end{array}\right]
$$

First give some values on x_{1} and x_{2}, say $x_{1}=x_{2}=0.1$. To obtain values on Δx_{1} and Δx_{2}, solve the linear system of equations

$$
\begin{align*}
& x_{2} \Delta x_{1}+\left(x_{1}+\cos \left(x_{2}\right)\right) \Delta x_{2}=-\left(x_{1} x_{2}+\sin \left(x_{2}\right)+1\right) \tag{6}\\
& \left(1+x_{2} \exp \left(x_{1}\right)\right) \Delta x_{1}+\exp \left(x_{1}\right) \Delta x_{2}=x_{1}+x_{2} \exp \left(x_{1}\right) \tag{7}
\end{align*}
$$

and then update $x_{1} \leftarrow x_{1}+\Delta x 1$ and $x_{2} \leftarrow x_{2}+\Delta x_{2}$, etc.

Solution of nonlinear systems of equations (continued)

The first iterations give:

1. $x_{1}=-0.09868723775962, x_{2}=0.10916462918347,\|\Delta x\|=0.19889848887465$
2. $x_{1}=-0.10077711054130, x_{2}=0.11145795777505,\|\Delta x\|=0.00310272852060$
3. $x_{1}=-0.10077814555465, x_{2}=0.11146377694368,\|\Delta x\|=0.0000059104971192$

We thus have the solution $x_{1}=-0.100778$ and $x_{2}=0.111463$ after three iterations.

Some theory in numerical simulations

A numerical scheme for a well-posed problem should
\square be consistent with the problem, i.e. it should approximate the problem locally as the step size (space and time) goes to zero.
\square be stable, which means that the numerical solution should remain bounded as the step size goes to zero.
converge to the solution when the timestep goes to zero.

It is also desirable that the numerical is as accurate (high order) as possible.

Well-posedness, example 1

The problem

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}=0, \quad f(0)=0 \tag{1}
\end{equation*}
$$

is well-posed, while the problem

$$
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}=0, \quad f(1)=0
$$

is not. Proof of (1); non-increasing energy norm:

$$
\begin{gathered}
\frac{d}{d t}\|f\|^{2}=\frac{d}{d t} \int_{0}^{1} f^{2} d x=\int_{0}^{1} 2 f \frac{\partial f}{\partial t} d x= \\
-\int_{0}^{1} 2 f \frac{\partial f}{\partial x}=\int_{0}^{1} \frac{\partial f^{2}}{\partial x}=-\left(f(1)^{2}-f(0)^{2}\right)=-f(1)^{2} \leq 0
\end{gathered}
$$

Well-posedness, example 2

The problem

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f(0)=f(1)=0 \tag{1}
\end{equation*}
$$

is well-posed while the problem

$$
\frac{\partial f}{\partial t}=-\frac{\partial^{2} f}{\partial x^{2}}, \quad f(0)=f(1)=0
$$

is not. Proof of (1): similar as in previous example.

Consistency, example

Discretize the problem

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}=0, \quad f(1)=f(0) \tag{1}
\end{equation*}
$$

as $f\left(x_{j}, t_{k}\right) \approx f_{j}^{k}$ where $x_{j}=j \Delta x, j=0,1, N-1, \Delta x=L / N, t^{m}=m \Delta t$, $m=0,1, M-1, \Delta t=T / M$, and the scheme

$$
f_{j}^{k}=f_{j}^{k-1}-\frac{\Delta t}{\Delta x}\left(f_{j}^{k-1}-f_{j-1}^{k-1}\right)
$$

The scheme is consistent since $f_{j}^{k-1} \approx f(x, t-\Delta t) \approx f(x, t)-\Delta t f_{t}(x, t)$ and $f_{j-1}^{k} \approx f(x-\Delta x, t) \approx f(x, t)-\Delta x f_{x}(x, t)$ and $f_{j-1}^{k-1} \approx f(x-\Delta x, t-\Delta t) \approx f(x, t)-\Delta x f_{x}(x, t)-\Delta t f_{t}(x, t)$, and we recover
Eq. (1) as $\Delta t, \Delta x \rightarrow 0$ (with $\Delta t / \Delta x=\lambda=$ constant).

Stability, von Neumann analysis, example

Apply the numerical scheme

$$
f_{j}^{k}=f_{j}^{k-1}-\frac{\Delta t}{\Delta x}\left(f_{j}^{k-1}-f_{j-1}^{k-1}\right)
$$

on the function $f_{j}^{k}=g^{k} \exp \left(i K x_{j}\right)$ where K is real constant while g is complex constant. This gives (after eliminating common factors)

$$
1=g^{-1}-\frac{\Delta t}{\Delta x}\left(g^{-1}-g^{-1} \exp (-i K \Delta x)\right)
$$

Solving for g, we have

Stability, von Neumann analysis, example

$$
g=1-\lambda(1-\exp (-i K \Delta x))
$$

where $\lambda=\Delta t / \Delta x$. The scheme is stable if $|g|<1$ and unstable (useless) if $|g|>1$ for $-\pi \leq K \Delta x \leq \pi$. Here,

$$
|g|^{2}=1+2 \lambda(\lambda-1)[1-\cos (K \Delta x)]
$$

and hence $|g| \leq 1$ for $\lambda=\Delta t / \Delta x \leq 1$.

Convergence

Convergence is more difficult to show in general, but fortunately we have the following Lax-Richtmyer equivalence theorem:

A consistent finite difference scheme for a partial (or ordinary) differential equation, for which the initial problem is well-posed, converges to the true solution if and only if it is stable.
(see J. Strikwerda, Finite Difference Schemes and Partial Differential Equations for a formal proof)

So we only have to worry about consistency, well-posedness and numerical stability - the convergence follows.

Some popular numerical methods

$$
\frac{\partial u}{\partial t}=f(u, t)
$$

Leapfrog scheme:

$$
u^{i+1} \leftarrow u^{i-1}+2 \Delta t f\left(u^{i}, t^{i}\right)
$$

Advantages: Simple to implement, is fast. Suitable for Hamiltonian systems like particle systems and Maxwell equations etc. Non-dissipative, symplectic integrator. Very efficient variants (Yee scheme) for Maxwell equations.
Disadvantage: Not suitable (unstable) for dissipative equations. Multi-step method, initial conditions on the two first time-steps.

Some popular numerical methods (continued)

4th order Runge-Kutta:

$$
\begin{aligned}
& k_{1} \leftarrow f\left(u^{i}, t^{i}\right) \\
& k_{2} \leftarrow f\left(u^{i}+k_{1} \Delta t / 2, t+\Delta t / 2\right) \\
& k_{3} \leftarrow f\left(u+k_{2} \Delta t / 2, t^{i}+\Delta t / 2\right) \\
& k_{4} \leftarrow f\left(u^{i}+k_{3} \Delta t, t^{i}+\Delta t\right) \\
& u^{i+1} \leftarrow u^{i}+(\Delta t / 6)\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Advantages: Simple to implement, robust. Suitable for both Hamiltonian systems and dissipative systems. High accuracy. Disadvantage: f must be calculated four times per timestep.

Finite difference methods

To approximate 1st spatial derivative:

$$
\begin{equation*}
\frac{\partial f}{\partial x} \approx \frac{f_{j+1}-f_{j-1}}{2 \Delta x} \tag{8}
\end{equation*}
$$

To approximate 2nd derivative:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}} \approx \frac{f_{j+1}-2 f_{j}+f_{j-1}}{\Delta x^{2}} \tag{9}
\end{equation*}
$$

where $x=j \Delta_{x}, j=0,1, \ldots N_{x}$, and $\Delta x=L / N_{x}$.

Pseudo-spectral methods

Pseudo-spectral methods are used to approximate x derivatives and are based on trigonometric interpolation

$$
\begin{equation*}
f(x) \approx \phi(x)=\sum_{j=-\left(N_{x} / 2-1\right)}^{N_{x} / 2} \widehat{\phi}_{j} \exp \left(i k_{j} x\right) \tag{10}
\end{equation*}
$$

where $k_{j}=2 \pi j / L$ and $0 \leq x \leq L$. Differentiation of the interpolating polynomial $\phi(x)$ gives

$$
\begin{equation*}
\frac{\partial \phi(x)}{\partial x}=\sum_{j=-\left(N_{x} / 2-1\right)}^{N_{x} / 2} i k_{j} \widehat{\phi}_{j} \exp \left(i k_{j} x\right) \approx \frac{\partial f(x)}{\partial x} \tag{11}
\end{equation*}
$$

Pseudo-spectral method (continued)

The weights $\widehat{\phi}_{j}$ are obtained from the Discrete Fourier Transform (DFT)

$$
\begin{equation*}
\widehat{\phi}_{j}=\frac{1}{N_{x}} \sum_{m=0}^{N_{x}-1} \phi\left(x_{m}\right) \exp \left(-i 2 \pi m \frac{j}{N_{x}}\right) \tag{12}
\end{equation*}
$$

Using the Fast Fourier Transform algorithm, the x derivatives are approximated as
$\widehat{\phi}=\mathrm{FFT}(\phi) \quad$ Make DFT
$\widehat{\psi}=i k \widehat{\phi} \quad$ Multiply by $i k$
$\phi_{x}=\operatorname{IFFT}(\hat{\psi}) \quad$ Make inverse DFT
Normally the accuracy is superior compared to finite difference methods, except for problems having discontinuities. Drawback: Requires periodic solutions.

Example, simulation in Matlab

main.m:

```
clear
N1=400; % Number of x intervals
Nt=8000; % Number of time steps
Nprints=200; % Number of times to save data
interval=Nt/Nprints;
L1=20000; % box length
dx1=L1/N1; % Delta x
x1=(0:(N1-1))*L1/N1-L1/2; % x
dt=0.5; % Time step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alpha=0.25; % n_e0/n_io
eta=0.1; % Ti/Te
```


Example, simulation in Matlab (Continued)

main.m (continued):

```
%%%% Create Fourier weights %%%
    % Calculate wavenumber k
    jj=(0:(N1/2-1));
    kl=2*pi/(N1*dxl)*jj; % Obs Real-valued!
    k_minus=2*pi/(N1*dx1)*(jj-ones(1,N1/2) *N1/2);
    k1=[k1 k_minus];
    % Calculate k^2
    kk1=k1.*k1;
%%% Initial conditions %%%%%%%%%%%
    for il=1:N1
        N(i1) =1.5-0.5*tanh(3*sin(2*pi*x1(i1)/L1)+1.5);
        u(i1) =F(N(i1), eta,alpha);
    end
```

$\% \%$

Example, simulation in Matlab (Continued)

 main.m (continued):```
for j=1:Nt
 [N,u]=RungeKutta(N,u,dt,kl,kkl,eta,alpha);
 if mod(j,interval)==0
 subplot(2,1,1)
 plot(x1,real(N));
 title('Density')
 subplot(2,1,2)
 plot(x1,real(u));
 title('Velocity')
 pause(0.01);
 end
end
```


## Implementation in Matlab, Runge-Kutta

## RungeKutta.m:

```
function [N,u]=RungeKutta(N, u,dt,k,kkl,eta,alpha)
```

```
[R1_N, R1_u]=f(N, u,k,kk1,eta,alpha);
[R2_N, R2_u]=f(N+0.5*dt*R1_N, u+0.5*dt*R1_u,k,kk1,eta,alpha);
[R3_N, R3_u]=f(N+0.5*dt*R2_N, u+0.5*dt*R2_u,k,kk1,eta,alpha);
[R4_N, R4_u]=f(N+dt*R3_N, u+dt*R3_u,k,kk1,eta,alpha);
N=N+dt/6*(R1_N+2*R2_N+2*R3_N+R4_N);
u=u+dt/6*(R1_u+2*R2_u+2*R3_u+R4_u);
```


## Implementation in Matlab, the right-hand side

f.m:

```
function [R_N,R_u]=f(N, u, k,kkl,eta,alpha)
 diss=3;
 R_N=real(-d1 (N.*u,k) +10*d2 (N,kk1));
 R_u=real(-d1 (u.^2/2+log(N+alpha-1)+1.5*eta*N.^2,k) +10*d2(u,kkl));
```

Solves the system (dust ion-acoustic waves)

$$
\begin{aligned}
& \frac{\partial N}{\partial t}=-\frac{\partial(N u)}{\partial x} \\
& \frac{\partial u}{\partial t}=-\frac{\partial}{\partial x}\left(u^{2} / 2+\log (N+\alpha-1)+1.5 \eta N^{2}\right)
\end{aligned}
$$

with some numerical dissipation. (Eliasson and Shukla, Phys.
Plasmas 12, 024502/1-4)

## Calculation of derivatives

## d1.m

\%Function for calculating $d / d x$. function $d l y=d 1(y, k)$

```
dly=fft(y); % Make FFT
dly=i*dly.*k; % Multiply by i*k element-wise
dly=ifft(dly); % Make inverse FFT
d2.m
```

\% Function for calculating $d^{\wedge} 2 / d x^{\wedge} 2$.
function $\mathrm{d} 2=\mathrm{d} 2(\mathrm{y}, \mathrm{kk} 1)$

```
d2=fft(y); % Make FFT
d2=-d2.*kk1; % Multiply by -k^2 elementwise
d2=ifft(d2); % Make inverse FFT
```

Electron phase space distribution


Fourier transformed velocity space


## Closeup of solution



## Fourier transformed Vlasov-Poisson system

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}-E \frac{\partial f}{\partial v}=0, \quad \frac{\partial E}{\partial x}=1-\int_{-\infty}^{\infty} f(x, v, t) d v \tag{13}
\end{equation*}
$$

The Fourier transform pair

$$
\begin{equation*}
f(x, v, t)=\int_{-\infty}^{\infty} \widetilde{f}(x, \eta, t) \mathrm{e}^{-i \eta v} d \eta, \quad \tilde{f}(x, \eta, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x, v, t) e^{i \eta v} d v \tag{14}
\end{equation*}
$$

gives

$$
\begin{equation*}
\frac{\partial \tilde{f}}{\partial t}-i \frac{\partial^{2} \tilde{f}}{\partial x \partial \eta}+E \eta \tilde{f}=0, \quad \frac{\partial E(x, t)}{\partial x}=1-2 \pi \tilde{f}(x, \eta, t)_{\eta=0} \tag{15}
\end{equation*}
$$

## Boundary conditions

Study the reduced problem

$$
\begin{equation*}
\frac{\partial \tilde{f}}{\partial t}-i \frac{\partial^{2} \tilde{f}}{\partial x \partial \eta}=0 \tag{16}
\end{equation*}
$$

Fourier transform i space $(\partial / \partial x \rightarrow i k)$ gives

$$
\begin{equation*}
\frac{\partial \widehat{f}}{\partial t}+k \frac{\partial \tilde{f}}{\partial \eta}=0 \tag{17}
\end{equation*}
$$

where we know that a well-posed boundary condition is to set $\widehat{f}$ to zero at $\eta=\eta_{\text {max }}$ if $k<0$. This idea has been used for 1D and 2D (2 spatial and 2 velocity dimensions) Vlasov equation. (B. Eliasson: J. Scientific Computing, 16(1), pp. 1-28 (2001); J. Computational Physics, 181(1), pp. 98-125 (2002); Computer Physics Communications 170(2), pp. 205-230)

## Numerical recurrence effects



Fig. 1. Reflections of waves against the boundary $\eta=\eta_{\text {max }}$.

## Buneman instability



## Kinetic tunneling effects



## Magnetized plasmas, undamped UH waves



Left Fig. from Stubbe \& Sukhorukov, PoP 4, 2497 (1997). Right Fig. from B. Eliasson (http://www.it.uu.se/research/reports/2002-028/)

## Electron Bernstein and upper-hybrid waves



$$
1+\left(\frac{\omega_{p e}}{\omega_{c e}}\right)^{2} \exp \left(-k^{2} r_{L}^{2}\right) \int_{\psi=0}^{\pi} \frac{\sin \left(\psi \omega / \omega_{c e}\right) \sin (\psi) \exp \left[-k^{2} r_{L}^{2} \cos (\psi)\right]}{\sin \left(\pi \omega / \omega_{c e}\right)} \mathrm{d} \psi=0
$$

Left panel: F. W. Crawford \& J. A. Tataronis, J. Appl. Phys. 36, 2930 (1965).
Right panel: B. Eliasson, (http://www.it.uu.se/research/reports/2002-028/

## Electromagnetic waves




## Magnetosonic and lower hybrid waves



## Experiment



## Nonlinear wave coupling



## Summary

A. Numerics: Well-posedness, consistency, stability, convergence. Some methods.
B. Vlasov simulations - problems with filamentation
C. Fourier method in velocity space. 1D and 2D. Outflow boundary conditions
D. Examples of numerical simulations, unmagnetized and magnetized plasmas

