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Outline
A. Some elements of numerical theory
B. Vlasov simulations — problems with filamentation

C. Fourier method in velocity space. 1D and 2D. Outflow
boundary conditions

D. Examples of numerical simulations

< Kinetic tunnelling (recurrence) effects

< Electron Bernstein waves (Bernstein-Landau paradox)
< Electromagnetic waves

< Coupling of nonlinear wave
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Solution of nonlinear equations

Ex: In linear theory, we often want to solve a dispersion f(w) = 0,
where f can be a high-order polynomial of or some more
complicated function of w. The standard method to do this is
Newton’s (Newton-Raphson’s) method: First make a reasonable
guess of the root, say w = w'?).

Then update w Iteratively as
W — w + Aw

where Aw = —f(w)/f'(w). The process converges when |Aw| is
small enough.
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Solution of nonlinear equations

Example: We want to find the root to f(w) = cos(w) — w = 0. Here, f'(w) = — sin(w) — 1
and hence Aw = (cos(w) — w)/(sin(w) + 1). Let the first guess be w = w® = 1. Then
we have

1. Aw = —0.24963613215976, w =1 — 0.24963613215976 = 0.75036386784024
2. Aw = —0.01125097692888, w = 0.73911289091136
3. Aw = —0.00002775752607, w = 0.73908513338528
4. Aw = —0.00000000017012, w = 0.73908513321516

and we have the solution w = 0.739085133 with 9 significant digits. Newton’s methods
converges extremely fast (it doubles the number of significant digits in each iteration) if the
initial guess is good enough and if f'(w*) # 0, where w* is the exact solution. If f'(w*) = 0,
then Newton’s method converges more slowly. Note that Newton’s method also works for

complex w (which is common in applications!)



TRIESTE, 5-30 SEPTEMBER 2005
Solution of nonlinear systems of equations

Nonlinear systems of equations F(Z) = 0 can also be solved with

Newton’s method: First make a reasonable guess of the root, say
7 = (O, Then update Z iteratively as

T — T+ Ax

where the correction term Ax is obtained by solving the linear
equation system JAZ = — f(#), where J = 2L is the Jacobian

matrix of F'. The process converges when the norm ||AZ|| is
small enough.
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Solution of nonlinear systems of equations

Here, we have used the matrix notation

b 1
- F: ol €T
3l = F T 2
Fn TN
and
- OF, OF,
8x1 8x2
J: 0xq 0x9
OF N
| Oz

BF N
Oz _

The norm can for example be the Euclidian norm

1Az]| = /(Az1)? + (Az2)? + - - + (Azy)?

_Ailj‘l
AQL‘Q

AmN

(1)

(2)
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Solution of nonlinear systems of equations
Example: We want to solve the nonlinear system of equations
(3)
(4)

Fl(azl, 332) = 1T -+ Sin(a:Q) —0.1=0

Fy(x1,x2) = 1 + z2exp(x1) =0

The Jacobian matrix is
=z OF T2 x1 + cos(x2)
el e (5)
O 1 4+ zoexp(xy) exp(x1)

First give some values on x; and x», say 1 = x> = 0.1. To obtain values on Ax; and Ax,,
solve the linear system of equations

(6)
(7)

xoAxy + (x1 + cos(xz))Axe = —(x122 + sin(xz) + 1)
(1 4+ zoexp(x1))Axy + exp(x1)Axs = 1 + T2 exp(x)

and then update x; «+— 1 + Ax1 and x5 «+— x5 + Az, etc.
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Solution of nonlinear systems of equations (continued)

The first iterations give:

1. 21 = —0.09868723775962, x> = 0.10916462918347, ||Az|| = 0.19889848887465
—0.10077711054130, 25 = 0.11145795777505, ||Az|| = 0.00310272852060
3. 21 = —0.10077814555465, x5 = 0.11146377694368, ||Az|| = 0.0000059104971192

2. |

We thus have the solution ;1 = —0.100778 and 5 = 0.111463 after three iterations.
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Some theory in numerical simulations

A numerical scheme for a well-posed problem should

1 be consistent with the problem, i.e. it should approximate the
problem locally as the step size (space and time) goes to zero.

1 be stable, which means that the numerical solution should
remain bounded as the step size goes to zero.

1 converge to the solution when the timestep goes to zero.

It is also desirable that the numerical is as accurate (high order)
as possible.
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Well-posedness, example 1

The problem ; 4
f i o
Is well-posed, while the problem
of 8f

et 0 g S0

IS not. Proof of (1); non-increasing energy norm:

11117 = dt/ f?d:c—/ 2% iz =

- [ s f L (0 - 10 =

S HANI54D
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Well-posedness, example 2
The problem

f IO i &

IS well-posed while the problem

of 0% f ot i
=L 0)=f(1)=0

IS not. Proof of (1): similar as in previous example.

10
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Consistency, example

Discretize the problem

A i

2+ =0, f(1) = f(0) (1

as f(x;,tx) = f]’? Whereiw — ANl == 0715 N LN A=A APt = s X F,
m=0,1, M — 1, At =T/M, and the scheme

At
k k—1
S AR

(fjl'ﬂ_l i/ f]k—_ll)

The scheme is consistent since 7' ~ f(z,t — At) = f(z,t) — At fy(z,t) and
fj]'{;—l % f(fl] i ACE,t) a5 f(l',t) A Axfac(wi and

il s fle — Ax,t — At) = f(x,t) — Axf.(x,t) — Atf(z,t), and we recover
Eqg. (1) as At, Az — 0 (with At/Axz = )\ =constant).
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Stability, von Neumann analysis, example

Apply the numerical scheme

A

on the function f¥ = ¢" exp(iKx;) where K is real constant while
g 1S complex constant. This gives (after eliminating common

factors)
=9 — 3 (97 — g exp(~iKAz))

Solving for g, we have
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Stability, von Neumann analysis, example

g=1— X1 —exp(—iKAx))

where A = At/Ax. The scheme is stable if |g| < 1 and unstable
(useless) if |g| > 1 for —m < KAx < m. Here,

g]° =14+ 22 (A = 1) [1 — cos(KAz)]

and hence |g| < 1for A = At/Ax < 1.

13



TRIESTE, 5-30 SEPTEMBER 2005 14

Convergence

Convergence is more difficult to show in general, but fortunately
we have the following Lax-Richtmyer equivalence theorem:

A consistent finite difference scheme for a partial (or
ordinary) differential equation, for which the initial problem is
well-posed, converges to the true solution if and only if it is
stable.

(see J. Strikwerda, Finite Difference Schemes and Partial
Differential Equations for a formal proof)

So we only have to worry about consistency, well-posedness and
numerical stability — the convergence follows.
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Some popular numerical methods

ou

Leapfrog scheme:
Wl — - 2ALf(ul, )

Advantages: Simple to implement, is fast. Suitable for Hamiltonian systems
like particle systems and Maxwell equations etc. Non-dissipative, symplectic
integrator. Very efficient variants (Yee scheme) for Maxwell equations.

Disadvantage: Not suitable (unstable) for dissipative equations. Multi-step
method, initial conditions on the two first time-steps.
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Some popular numerical methods (continued)

4th order Runge-Kutta:

k1 < f(uzv )

ko «— f(u'+ k1At/2,t + At/2)
ks «— f(u h koAL/2,t" + At/2)
ky — fu®+ k3At, t* + At)

't — ut 4+ (At/6) (k1 + 2kg + 2ks + ky)

Advantages: Simple to implement, robust. Suitable for both Hamiltonian
systems and dissipative systems. High accuracy. Disadvantage: f must be
calculated four times per timestep.

16
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Finite difference methods

To approximate 1st spatial derivative:

af e P C ot
ox 201

To approximate 2nd derivative:

ﬁ Z el gl g itA s 24
Ox? Ax?

where z = jA,;, 7 =0,1, ... N, and Az = L/N,.

(8)

9)

17
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Pseudo-spectral methods

Pseudo-spectral methods are used to approximate x derivatives
and are based on trigonometric interpolation

Ny /2

f(x) = o(x) = Z Egj exp(ik;x) (10)

j:_(Nx/Z_l)

where k; = 2mj/L and 0 < 2 < L. Differentiation of the
interpolating polynomial ¢(x) gives

% il £ %

j:_(Na?/2_1)
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Pseudo-spectral method (continued)

The weights ng are obtained from the Discrete Fourier Transform (DFT)

4 | Mozl :
O~ o Z O(Tp,) exp ( = iZWmNLx) (12)

m=0

Using the Fast Fourier Transform algorithm, the = derivatives are
approximated as

¢ =FFT(¢) Make DFT
Y =ik¢  Multiply by ik
¢, = IFFT(y)) Make inverse DFT

Normally the accuracy is superior compared to finite difference methods,
except for problems having discontinuities. Drawback: Requires periodic
solutions.
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Example, simulation in Matlab

main.m:

clear
N1=400; % Number of x interwvals
Nt=8000; % Number of time steps
Nprints=200; % Number of times to save data
interval=Nt/Nprints;
L1=20000; '% box length
dx1=L1/N1; % Delta x
x1=(0: (N1-1))*L1/N1-L1/2; % x
0.
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alpha=0.25; % n ¥
1 $ Ti/Te
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Example, simulation in Matlab (Continued)

main.m (continued):

$%%% Create Fourier weights %%%
% Calculate wavenumber k
J3=(0: (N1/2-1));
KT=2+p 1 aflNl* ax1 ) %757 F 5F Obs/ [Realsvalued!
k minus=2*pi/ (N1*dx1l)*(jj-ones(1,N1/2)*N1/2) ;
RS el kel paariasiirs
% Calculate k72
kkl=k1l.*k1;

o\°
o\°
o\°
o\°
o\°
o\°

$%% Initial conditions %%%%%
Fonl 7Y A TidN,
N (T RSl St /5 % Banti (34 s an' (28 Dol X 1. AU Ryt il ro
u(il)=F(N(il) ,eta,alpha);
end

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
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Example, simulation in Matlab (Continued)
main.m (continued):

AT ERN— . N
[N, u] =RungeKutta (N,u,dt,kl,kkl,eta,alpha) ;
if mod(j,interval) ==
subplioer(2s] 1, 1)
plot (x1,real (N)) ;
title(’'Density’)
subplot (2,1,2)
Plof (Xl aeadfa)),
title(’'Velocity')
pause (0.01) ;
end
end

22
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Implementation in Matlab, Runge-Kutta
RungeKutta.m:

function [N,u]=RungeKutta (N, u,dt,k,kkl,eta,alpha)

[R1 N, R1 ul=
[R2 N, R2 u]
[R3_N, R3 ul]
[R4 N, R4 u]

N, u,k,kkl,eta,alpha);

NAO#SRAEFR L, N, «lUs0/ B dE*RL il Ktk kL, &t aliphal).;
N+0.5*dt*R2 N, u+0.5*dt*R2 u,k,kkl,eta,alpha);
N+dt*R3 N, u+dt*R3 u,k,kkl,eta,alpha) ;

Hh rh Fh Hh

N=N+dt/6* (R1_N+2*R2 N+2*R3 N+R4 N) ;
u=u+dt/6* (R1 u+2*R2 u+2*R3 u+R4 u) ;

23
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Implementation in Matlab, the right-hand side

f.m:
fTuncEdorlRE N /R =t (N{ ouf ke kRlfel g .alipha)
diss=3;

R_N=real (-d1(N.*u,k)+10*d2 (N, kk1l)) ;
R u=real (-dl (u.”2/2+log(N+alpha-1)+1.5*eta*N."2,k)+10*d2 (u,kkl)) ;

Solves the system (dust ion-acoustic waves)

ON  O(Nu)
ot ox
ou 7 0,

e —%(u2/2 + log(N +a—1) + 1-577N2)

with some numerical dissipation. (Eliasson and Shukla, Phys.
Plasmas 12, 024502/1-4)
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Calculation of derivatives
dl.m

$Function for calculating d/dx.
function dly=dl (y, k)

Al =LEE G %
diys 1 QIRFRKS %
iz 4 T () © -5 i

d2.m

Make FFT

Multiply by i*k element-wise
Make inverse FFT

o

o

Function for calculating d"2/dx"2.
function d2=d2 (y,kkl)

d2=fft (y) ; %
d2=-d2.*kkl; %
d2=ifft (d2); %

Make FFT

Multiply by -k"2 elementwise
Make inverse FFT
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Electron phase space distribution
"U

t=0 t="7 t="70 f

15 =

— 10 ==

—15 4
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Closeup of solution
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Fourier transformed Vlasov-Poisson system

Ouf AR i OF

E"‘U%— %—0, %:1_/_Oof(x7vvt)dv (13)

The Fourier transform pair

f(x,v,t) > /_ fv(xanat)e_im) d777 f(xanat) 7 %[ f('ravat)einv dv
(14)

gives

of o

ot  O0x0n

OFE(x,t) ~

+ Enf =0, - =1-2nf(zn,t)y=0  (15)
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Boundary conditions
Study the reduced problem

~

S
Fourier transform i space (0/0x — ik) gives
A 4 LI
F ka—n =0 (17)

where we know that a well-posed boundary condition is to set fto zero at

N = Nmaz \f £ < 0. This idea has been used for 1D and 2D (2 spatial and 2
velocity dimensions) Vlasov equation. (B. Eliasson: J. Scientific Computing,
16(1), pp. 1-28 (2001); J. Computational Physics, 181(1), pp. 98-125 (2002);
Computer Physics Communications 170(2), pp. 205-230)

30
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Numerical recurrence effects

1074 i

1079 |

0%

lﬂ'_T -

10-%

20

Reflections of waves against the boundary » = .-

Fig. 1.
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Buneman instability

32
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U.l'lt'lh
5 o

Kinetic tunneling effects

) = Ty =

33
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Magnetlzed plasmas, undamped UH waves

VE /e = 04/10
1 r

¥
| Y 3
¥
i
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il
il

h’* «l'WWWWMWﬂW%W

52.5 70 87.5 105

1' — ! Wes/ Wpe = I/I
F' .
2 of “'LJU:J J{”H 1h i ]jwrl H[“]l i A |
u NP SN SN S - F _lu_ 10 2 30 10 50 60
a2 u[,[3£/2ﬂ

Left Fig. from Stubbe & Sukhorukov, PoP 4, 2497 (1997). Right Fig. from B.
Eliasson (http://www.it.uu.se/research/reports/2002-028/)
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Electron Bernstein and upper-hybrid waves

—1.0 —0.5 0.0 0.5 1.0
J!-'f']_) ’I‘h-f'; ™D

il (wpe)Qexp(—kQT%)/ﬁ sin(Yw /wee ) sin(v) exp[—k?r% cos(1))] i = 0

Wee e sin(mw/wee)
Left panel: F W. Crawford & J. A. Tataronis, J. Appl. Phys. 36, 2930 (1965).
Right panel: B. Eliasson, (http://www.it.uu.se/research/reports/2002-028/
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Electromagnetic waves
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Magnetosonic and lower hybrid waves
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Experiment

38
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Nonlinear wave coupling

@, /i =07, mim =400, {ime span: 0 i 1952 5231 & o =407, mim =400, {ime span: 0 1o 18582 5231

L [

Q
-0z -0aF D -D0B kﬂ Q05 0. 015 02 -Hak D1 D0k HO 0.05 a.a 015
= D = 0
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Summary

A. Numerics: Well-posedness, consistency, stability,
convergence. Some methods.

B. Vlasov simulations — problems with filamentation

C. Fourier method in velocity space. 1D and 2D. Outflow
boundary conditions

D. Examples of numerical simulations, unmagnetized and
magnetized plasmas



