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Outline

A. Some elements of numerical theory

B. Vlasov simulations – problems with filamentation

C. Fourier method in velocity space. 1D and 2D. Outflow
boundary conditions

D. Examples of numerical simulations

☛ Kinetic tunnelling (recurrence) effects
☛ Electron Bernstein waves (Bernstein-Landau paradox)
☛ Electromagnetic waves
☛ Coupling of nonlinear wave
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Solution of nonlinear equations

Ex: In linear theory, we often want to solve a dispersion f(ω) = 0,
where f can be a high-order polynomial of or some more
complicated function of ω. The standard method to do this is
Newton’s (Newton-Raphson’s) method: First make a reasonable
guess of the root, say ω = ω(0).

Then update ω iteratively as

ω ← ω + ∆ω

where ∆ω = −f(ω)/f ′(ω). The process converges when |∆ω| is
small enough.
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Solution of nonlinear equations
Example: We want to find the root to f(ω) = cos(ω)− ω = 0. Here, f ′(ω) = − sin(ω)− 1

and hence ∆ω = (cos(ω)− ω)/(sin(ω) + 1). Let the first guess be ω = ω(0) = 1. Then
we have

1. ∆ω = −0.24963613215976, ω = 1− 0.24963613215976 = 0.75036386784024

2. ∆ω = −0.01125097692888, ω = 0.73911289091136

3. ∆ω = −0.00002775752607, ω = 0.73908513338528

4. ∆ω = −0.00000000017012, ω = 0.73908513321516

and we have the solution ω = 0.739085133 with 9 significant digits. Newton’s methods

converges extremely fast (it doubles the number of significant digits in each iteration) if the

initial guess is good enough and if f ′(ω∗) �= 0, where ω∗ is the exact solution. If f ′(ω∗) = 0,

then Newton’s method converges more slowly. Note that Newton’s method also works for

complex ω (which is common in applications!)
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Solution of nonlinear systems of equations

Nonlinear systems of equations �F (�x) = 0 can also be solved with
Newton’s method: First make a reasonable guess of the root, say
�x = �x(0). Then update �x iteratively as

�x← �x+ ∆�x

where the correction term ∆�x is obtained by solving the linear

equation system ��J∆�x = −�f(�x), where ��J = ∂ �f
∂�x is the Jacobian

matrix of �F . The process converges when the norm ||∆�x|| is
small enough.
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Solution of nonlinear systems of equations

Here, we have used the matrix notation

�F (�x) =

⎡
⎢⎢⎣
F1

F2
...
FN

⎤
⎥⎥⎦ , �x =

⎡
⎢⎢⎣
x1

x2
...
xN

⎤
⎥⎥⎦ , ∆�x =

⎡
⎢⎢⎣

∆x1

∆x2
...

∆xN

⎤
⎥⎥⎦ (1)

and

��J =

⎡
⎢⎢⎢⎣
∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xN

∂F2
∂x1

∂F2
∂x2

...
... . . .

∂FN
∂x1

. . . ∂FN
∂xN

⎤
⎥⎥⎥⎦ (2)

The norm can for example be the Euclidian norm
||∆x|| = √

(∆x1)2 + (∆x2)2 + · · ·+ (∆xN)2
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Solution of nonlinear systems of equations
Example: We want to solve the nonlinear system of equations

F1(x1, x2) = x1x2 + sin(x2)− 0.1 = 0 (3)

F2(x1, x2) = x1 + x2 exp(x1) = 0 (4)

The Jacobian matrix is

��J =
∂ �F

∂�x
=

[
x2 x1 + cos(x2)

1 + x2 exp(x1) exp(x1)

]
(5)

First give some values on x1 and x2, say x1 = x2 = 0.1. To obtain values on ∆x1 and ∆x2,
solve the linear system of equations

x2∆x1 + (x1 + cos(x2))∆x2 = −(x1x2 + sin(x2) + 1) (6)

(1 + x2 exp(x1))∆x1 + exp(x1)∆x2 = x1 + x2 exp(x1) (7)

and then update x1 ← x1 + ∆x1 and x2 ← x2 + ∆x2, etc.
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Solution of nonlinear systems of equations (continued)
The first iterations give:

1. x1 = −0.09868723775962, x2 = 0.10916462918347, ||∆x|| = 0.19889848887465

2. x1 = −0.10077711054130, x2 = 0.11145795777505, ||∆x|| = 0.00310272852060

3. x1 = −0.10077814555465, x2 = 0.11146377694368, ||∆x|| = 0.0000059104971192

We thus have the solution x1 = −0.100778 and x2 = 0.111463 after three iterations.
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Some theory in numerical simulations

A numerical scheme for a well-posed problem should

❏ be consistent with the problem, i.e. it should approximate the
problem locally as the step size (space and time) goes to zero.

❏ be stable, which means that the numerical solution should
remain bounded as the step size goes to zero.

❏ converge to the solution when the timestep goes to zero.

It is also desirable that the numerical is as accurate (high order)
as possible.
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Well-posedness, example 1

The problem
∂f

∂t
+
∂f

∂x
= 0, f(0) = 0 (1)

is well-posed, while the problem

∂f

∂t
+
∂f

∂x
= 0, f(1) = 0

is not. Proof of (1); non-increasing energy norm:

d

dt
||f ||2 =

d

dt

∫ 1

0

f2 dx =
∫ 1

0

2f
∂f

∂t
dx =

−
∫ 1

0

2f
∂f

∂x
=

∫ 1

0

∂f2

∂x
= −(f(1)2 − f(0)2) = −f(1)2 ≤ 0
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Well-posedness, example 2

The problem
∂f

∂t
=
∂2f

∂x2
, f(0) = f(1) = 0 (1)

is well-posed while the problem

∂f

∂t
= −∂

2f

∂x2
, f(0) = f(1) = 0

is not. Proof of (1): similar as in previous example.
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Consistency, example

Discretize the problem

∂f

∂t
+
∂f

∂x
= 0, f(1) = f(0) (1)

as f(xj, tk) ≈ fkj where xj = j∆x, j = 0, 1, N − 1, ∆x = L/N , tm = m∆t,
m = 0, 1, M − 1, ∆t = T/M , and the scheme

fkj = fk−1
j − ∆t

∆x
(fk−1
j − fk−1

j−1 )

The scheme is consistent since fk−1
j ≈ f(x, t−∆t) ≈ f(x, t)−∆tft(x, t) and

fkj−1 ≈ f(x−∆x, t) ≈ f(x, t)−∆xfx(x, t) and

fk−1
j−1 ≈ f(x−∆x, t−∆t) ≈ f(x, t)−∆xfx(x, t)−∆tft(x, t), and we recover

Eq. (1) as ∆t, ∆x→ 0 (with ∆t/∆x = λ =constant).
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Stability, von Neumann analysis, example

Apply the numerical scheme

fkj = fk−1
j − ∆t

∆x
(fk−1
j − fk−1

j−1 )

on the function fkj = gk exp(iKxj) where K is real constant while
g is complex constant. This gives (after eliminating common
factors)

1 = g−1 − ∆t
∆x

(g−1 − g−1 exp(−iK∆x))

Solving for g, we have
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Stability, von Neumann analysis, example

g = 1− λ(1− exp(−iK∆x))

where λ = ∆t/∆x. The scheme is stable if |g| < 1 and unstable
(useless) if |g| > 1 for −π ≤ K∆x ≤ π. Here,

|g|2 = 1 + 2λ (λ− 1) [1− cos(K∆x)]

and hence |g| ≤ 1 for λ = ∆t/∆x ≤ 1.
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Convergence

Convergence is more difficult to show in general, but fortunately
we have the following Lax-Richtmyer equivalence theorem:

A consistent finite difference scheme for a partial (or
ordinary) differential equation, for which the initial problem is
well-posed, converges to the true solution if and only if it is
stable.

(see J. Strikwerda, Finite Difference Schemes and Partial
Differential Equations for a formal proof)

So we only have to worry about consistency, well-posedness and
numerical stability – the convergence follows.
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Some popular numerical methods

∂u

∂t
= f(u, t)

Leapfrog scheme:

ui+1← ui−1 + 2∆tf(ui, ti)

Advantages: Simple to implement, is fast. Suitable for Hamiltonian systems

like particle systems and Maxwell equations etc. Non-dissipative, symplectic

integrator. Very efficient variants (Yee scheme) for Maxwell equations.

Disadvantage: Not suitable (unstable) for dissipative equations. Multi-step

method, initial conditions on the two first time-steps.



TRIESTE, 5-30 SEPTEMBER 2005 16

Some popular numerical methods (continued)

4th order Runge-Kutta:

k1← f(ui, ti)
k2← f(ui + k1∆t/2, t + ∆t/2)
k3← f(u + k2∆t/2, ti + ∆t/2)
k4← f(ui + k3∆t, ti + ∆t)
ui+1← ui + (∆t/6)(k1 + 2k2 + 2k3 + k4)

Advantages: Simple to implement, robust. Suitable for both Hamiltonian

systems and dissipative systems. High accuracy. Disadvantage: f must be

calculated four times per timestep.



TRIESTE, 5-30 SEPTEMBER 2005 17

Finite difference methods

To approximate 1st spatial derivative:

∂f

∂x
≈ fj+1 − fj−1

2∆x
(8)

To approximate 2nd derivative:

∂2f

∂x2
≈ fj+1 − 2fj + fj−1

∆x2
(9)

where x = j∆x, j = 0, 1, . . . Nx, and ∆x = L/Nx.
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Pseudo-spectral methods

Pseudo-spectral methods are used to approximate x derivatives
and are based on trigonometric interpolation

f(x) ≈ φ(x) =
Nx/2∑

j=−(Nx/2−1)

φ̂j exp(ikjx) (10)

where kj = 2πj/L and 0 ≤ x ≤ L. Differentiation of the
interpolating polynomial φ(x) gives

∂φ(x)
∂x

=
Nx/2∑

j=−(Nx/2−1)

ikjφ̂j exp(ikjx) ≈ ∂f(x)
∂x

(11)
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Pseudo-spectral method (continued)

The weights φ̂j are obtained from the Discrete Fourier Transform (DFT)

φ̂j =
1
Nx

Nx−1∑
m=0

φ(xm) exp
(
− i2πm j

Nx

)
(12)

Using the Fast Fourier Transform algorithm, the x derivatives are
approximated as

φ̂ = FFT(φ) Make DFT
ψ̂ = ikφ̂ Multiply by ik
φx = IFFT(ψ̂) Make inverse DFT

Normally the accuracy is superior compared to finite difference methods,

except for problems having discontinuities. Drawback: Requires periodic

solutions.
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Example, simulation in Matlab
main.m:

clear
N1=400; % Number of x intervals
Nt=8000; % Number of time steps
Nprints=200; % Number of times to save data
interval=Nt/Nprints;
L1=20000; % box length
dx1=L1/N1; % Delta x
x1=(0:(N1-1))*L1/N1-L1/2; % x
dt=0.5; % Time step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alpha=0.25; % n_e0/n_i0
eta=0.1; % Ti/Te



TRIESTE, 5-30 SEPTEMBER 2005 21

Example, simulation in Matlab (Continued)

main.m (continued):

%%%% Create Fourier weights %%%
% Calculate wavenumber k
jj=(0:(N1/2-1));
k1=2*pi/(N1*dx1)*jj; % Obs Real-valued!
k_minus=2*pi/(N1*dx1)*(jj-ones(1,N1/2)*N1/2);
k1=[k1 k_minus];
% Calculate kˆ2
kk1=k1.*k1;

%%% Initial conditions %%%%%%%%%%%
for i1=1:N1

N(i1)=1.5-0.5*tanh(3*sin(2*pi*x1(i1)/L1)+1.5);
u(i1)=F(N(i1),eta,alpha);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Example, simulation in Matlab (Continued)
main.m (continued):

for j=1:Nt
[N,u]=RungeKutta(N,u,dt,k1,kk1,eta,alpha);
if mod(j,interval)==0
subplot(2,1,1)
plot(x1,real(N));
title(’Density’)
subplot(2,1,2)
plot(x1,real(u));
title(’Velocity’)
pause(0.01);

end
end
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Implementation in Matlab, Runge-Kutta
RungeKutta.m:

function [N,u]=RungeKutta(N, u,dt,k,kk1,eta,alpha)

[R1_N, R1_u]=f(N, u,k,kk1,eta,alpha);
[R2_N, R2_u]=f(N+0.5*dt*R1_N, u+0.5*dt*R1_u,k,kk1,eta,alpha);
[R3_N, R3_u]=f(N+0.5*dt*R2_N, u+0.5*dt*R2_u,k,kk1,eta,alpha);
[R4_N, R4_u]=f(N+dt*R3_N, u+dt*R3_u,k,kk1,eta,alpha);

N=N+dt/6*(R1_N+2*R2_N+2*R3_N+R4_N);
u=u+dt/6*(R1_u+2*R2_u+2*R3_u+R4_u);
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Implementation in Matlab, the right-hand side
f.m:

function [R_N,R_u]=f(N, u, k,kk1,eta,alpha)
diss=3;
R_N=real(-d1(N.*u,k)+10*d2(N,kk1));
R_u=real(-d1(u.ˆ2/2+log(N+alpha-1)+1.5*eta*N.ˆ2,k)+10*d2(u,kk1));

Solves the system (dust ion-acoustic waves)

∂N

∂t
= −∂(Nu)

∂x
∂u

∂t
= − ∂

∂x
(u2/2 + log(N + α− 1) + 1.5ηN2)

with some numerical dissipation. (Eliasson and Shukla, Phys.
Plasmas 12, 024502/1-4)
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Calculation of derivatives
d1.m

%Function for calculating d/dx.
function d1y=d1(y,k)

d1y=fft(y); % Make FFT
d1y=i*d1y.*k; % Multiply by i*k element-wise
d1y=ifft(d1y); % Make inverse FFT

d2.m

% Function for calculating dˆ2/dxˆ2.
function d2=d2(y,kk1)

d2=fft(y); % Make FFT
d2=-d2.*kk1; % Multiply by -kˆ2 elementwise
d2=ifft(d2); % Make inverse FFT
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Electron phase space distribution
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Fourier transformed velocity space
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Closeup of solution
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Fourier transformed Vlasov-Poisson system

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= 0,

∂E

∂x
= 1−

∫ ∞
−∞

f(x, v, t) dv (13)

The Fourier transform pair

f(x, v, t) =
∫ ∞
−∞

f̃(x, η, t)e−iηv dη, f̃(x, η, t) =
1
2π

∫ ∞
−∞

f(x, v, t)eiηv dv

(14)

gives

∂f̃

∂t
− i ∂

2f̃

∂x∂η
+ Eηf̃ = 0,

∂E(x, t)
∂x

= 1− 2πf̃(x, η, t)η=0 (15)
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Boundary conditions
Study the reduced problem

∂f̃

∂t
− i ∂

2f̃

∂x∂η
= 0 (16)

Fourier transform i space (∂/∂x→ ik) gives

∂f̂

∂t
+ k

∂f̃

∂η
= 0 (17)

where we know that a well-posed boundary condition is to set f̂ to zero at

η = ηmax if k < 0. This idea has been used for 1D and 2D (2 spatial and 2

velocity dimensions) Vlasov equation. (B. Eliasson: J. Scientific Computing,

16(1), pp. 1-28 (2001); J. Computational Physics, 181(1), pp. 98-125 (2002);

Computer Physics Communications 170(2), pp. 205-230)
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Numerical recurrence effects
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Buneman instability
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Kinetic tunneling effects



TRIESTE, 5-30 SEPTEMBER 2005 34

Magnetized plasmas, undamped UH waves

Left Fig. from Stubbe & Sukhorukov, PoP 4, 2497 (1997). Right Fig. from B.

Eliasson (http://www.it.uu.se/research/reports/2002-028/)
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Electron Bernstein and upper-hybrid waves

1 + (
ωpe
ωce

)2 exp(−k2r2L)
∫ π

ψ=0

sin(ψω/ωce) sin(ψ) exp[−k2r2L cos(ψ)]
sin(πω/ωce)

dψ = 0

Left panel: F. W. Crawford & J. A. Tataronis, J. Appl. Phys. 36, 2930 (1965).

Right panel: B. Eliasson, (http://www.it.uu.se/research/reports/2002-028/
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Electromagnetic waves
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Magnetosonic and lower hybrid waves
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Experiment



TRIESTE, 5-30 SEPTEMBER 2005 39

Nonlinear wave coupling
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Summary

A. Numerics: Well-posedness, consistency, stability,
convergence. Some methods.

B. Vlasov simulations – problems with filamentation

C. Fourier method in velocity space. 1D and 2D. Outflow
boundary conditions

D. Examples of numerical simulations, unmagnetized and
magnetized plasmas


