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Abstract.

Transonically rotating toroidal plasmas occur at all scales in the plasma universe
and, recently, also in laboratory tokamak plasmas. This offers great opportunities
for new insights of the effects of transonic transitions on the background equilibrium
flows, and on the waves and instabilities excited.

Transfer of knowledge and computational methods on MHD and two-fluid waves
and instabilities in magnetically confined laboratory fusion plasmas to space and
astrophysical plasmas is seriously hampered though by two related difficulties:

(1) in contrast to laboratory plasmas, astrophysical plasmas always have sizeable
plasma flows so that they can never be described as a static equilibrium;
(2) these flows are usually ‘transonic’, i.e. surpass one of the critical speeds related
to the different flow regimes with quite different physical characteristics.

Based on previously obtained MHD results on the stationary states and instabili-
ties of transonically rotating accretion disks about compact objects, the extension to
two-fluid plasmas is initiated: A variational principle for the computation of two-fluid
stationary states is constructed which involves seven fields determining the different
physical variables, and six arbitrary stream functions that should be determined by
spatially resolved astrophysical observations. It exhibits all the intricacies due to the
electron and ion flow excursions from the magnetic flux surfaces. New hyperbolic
flow regimes are found with quite different properties than the MHD ones.
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1. Introduction

In the textbook Principles of Magnetohydrodynamics (Goedbloed and
Poedts, 2004) the main lines of the magnetohydrodynamic (MHD)
description of laboratory and astrophysical plasmas are presented to-
gether with some excursions into microscopic theories, in particular
the two-fluid theory. It is pointed out that the common description
of plasmas in the laboratory and astrophysics is possible due to one
of the most powerful properties of MHD, viz. its scale-independence.
That scale-independence breaks down on the microscopic scales of two-
fluid dynamics, which are relevant, e.g., for observed electron inertial
waves in the magnetosphere (Stasiewicz, 2004). In the present paper,
the consequences of this for the wave propagation and stationary states
of transonic two-fluid plasmas are presented.

'i“ © 2005 Kluwer Academic Publishers. Printed in the Netherlands.
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Basic questions concerning transonic MHD flows originated in an
attempt to generalize MHD spectroscopy of tokamaks (Goedbloed et
al., 1993) to astrophysical plasmas. The omnipresence of transonic flows
there forces one to consider the issue of what we have recently termed
the transonic enigma (Goedbloed and Keppens, 2005): At ‘transonic’
transitions (marked by one of the three characteristic MHD speeds), the
flow changes from elliptic to hyperbolic, standard equilibrium solvers
diverge, and signatures of the transitions appear in the spectrum of
waves and instabilities. As a consequence, computation of stationary
states becomes extremely complex (Belién et al., 2002), but excit-
ing new trans-slow continuum instabilities appear (Goedbloed et al.,
2004) that may be a source of anomalous dissipation and increased
angular momentum transport in rotating astrophysical plasmas like
accretion disks (Frank, King, and Raine, 2002). In contrast to the well-
know magneto-rotational instability (Velikhov, 1959; Chandrasekhar,
1960; Balbus and Hawley, 1991), the transonic instability operates at
arbitrary values of 3 = 2p/B? and just requires that the poloidal speed
surpasses the critical value of the slow magnetosonic speed.

Our MHD model is shown in Fig. 1: An axisymmetric configuration
of nested magnetic / flow surfaces with the magnetic field indicated by
the vectorial Alfvén speed b and the plasma velocity indicated by v,
both having toroidal and poloidal components, surrounds a compact
object of mass My in the origin.

Vp, bp

Figure 1. Transonically rotating magnetized ‘thick’ disk about a compact object:
flow and magnetic surfaces coincide in the MHD model. [ Goedbloed et al. (2004) ]

In order to permit stationary MHD equilibrium, the accretion speeds
should be much smaller than the rotation speeds of the disk. In that
case, the flow is confined to the magnetic surfaces and the stationary
states are described by just two fields: the poloidal flux % and the
square of the poloidal Alfvén Mach number M? = pvz/Bz = )(’2/,07
where x (1) is the poloidal stream function.
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The stationary states are determined by minimization of the MHD
Lagrangian,

§ [ L (0, V0, M3 R, Z) dV =0, (1)
with cylindrical coordinates R, Z, ¢, and involving five arbitrary flux

functions A;(v), fixed by whatever observational evidence is available.
The Euler equations are a ‘Grad-Shafranov’ type PDE for (R, Z),

M2 -1
sz.( - w):---, )

and an algebraic Bernoulli equation for M?(R, Z). The solution of the
latter equation is of the form M? = M?(V4, - - ), so that insertion into
Eq. (1) yields a non-trivial criterion for hyperbolicity:

A ~

(M? = 1)2(M? — M?) < 0 : elliptic

(M? — MZ)(M? - MJ%) > 0: hyperbolic!

where the values 1, M2, M2, and MJ% correspond to the critical poloidal
Alfvén, cusp, slow and fast magnetosonic speeds, respectively.

The transonic enigma, due to the slow and fast hyperbolic flow
regimes and the Alfvén singularity M? = 1, is dealt with in the men-
tioned papers by Belién et al. (2002) and Goedbloed et al. (2004), which
also contain expositions of the associated numerical programs FINESSE
(stationary states) and PHOENIX (transonic instabilities).

Turning now to the two-fluid picture, we will demonstrate that, far
from resolving the transonic enigma (as implied by McClements and
Thyagaraja (2001)), new hyperbolic flow regimes appear there together
with a much more intricate dynamical structure (Goedbloed, 2004).
[Also see the comment of McClements and Thyagaraja (2005) and
the reply by Goedbloed (2005)]. The conclusion will be that two-fluid
theory is not to be used to ameliorate problems of MHD analysis, but
for its own sake, viz. the refined physics associated with the freedom of
the electron and ion motions relative to the magnetic surfaces. These
additional freedoms complicate the analysis even more.

2. Waves in two-fluid plasmas
To obtain the transonic transitions in two-fluid theory, the character-
istics associated with the large wave number (small-scale) asymptotics

should be studied. This can be one in full generality from the general
two-fluid dispersion equation, which is presented in Fig. 2 together with
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Figure 2. Dispersion equation for an ideal two-fluid plasma with asymptotic limits.

[ Goedbloed and Poedts (2004) ]

the asymptotics. The coefficients «,,, are explicitly known in terms of
the dimensionless parameters e = wpe/wy,, N = Q. fwy, v = v /e, i =
wyifwp, I = Q;fwy,,w = v;/c, where v.; are the respective thermal
speeds, and the direction k”/k of the wave vectors. This dispersion
equation is a polynomial of twelfth degree in &w = w/w, and of eighth
degree in k = k&, where § is the skin depth. The solution, together
with the asymptotics, is depicted in Fig. 3 for a particular case. The
important point to notice is that, compared to the three asymptotes of
MHD, there are two asymptotes now with characteristic speed ¢ and
two asymptotes (corresponding to the electron and ion sound waves)
that may give rise to hyperbolicity when the electron or ion flow speed
surpasses the respective wave speed: see Eq. (9) below.

3. Stationary states in two-fluid plasmas

The much more involved part of the transonic enigma in two-fluid
plasmas is the determination of the stationary states. This has not
yet been solved to the same degree of completeness (together with
numerical implementation) as in MHD. Here, we only outline the theo-
retical framework of the variational principle, analogous with the MHD
expression (1), and indicate the kinds of numerical problems that are
to be faced.

The general structure of the stationary states in two-fluid plasmas
is governed by the deviations of the electron and ion flow speeds u.;

GoedbloedGraz.tex; 17/09/2005; 11:00; p.4



Two-Fluid Plasmas 5

Debye length-1—

2L el. cycl. radius-1— @Q d
skin'depth-1— S S
ion cycl. radius-1— N >
o
I =— N
upper cutoff / B @ (\600(\
0 | i S
plasma freq. el. cycl. freq. el Zcycl. res.
1 L lower cutoff i
Dlog(w/mp)
2 (Z)H T
3 ion cycl. freq.
3t ‘ i
ioh eyl res:
_4 = -
&
5+ & N -
S
o
6 1 1 1 I 1 1
-6 -5 4 -3 -2 -1 0 1 2 3

10log(kd)

Figure 3. Dispersion diagram for the oblique waves (k) /k = 0.5) of an ideal two-fluid
plasma with the asymptotic limits: (1) k& — 0 (cutoff), (2) k¥ — oo (resonance),
(3) w&k — oo, w/k finite (local, HF), (4) w&k — 0, w/k finite (global, LF).
The latter limit is also the local, high frequency limit of the MHD model. Dashed
vertical and horizontal lines indicate characteristic length and time scales of the
different waves. [ Goedbloed and Poedts (2004) ]

from the magnetic surfaces. Further analysis shows that the two-fluid
variables in axi-symmetry are derived from seven fields, viz.:

— the poloidal stream functions y, determining the electron /ion flow
speeds:

U, = (paR) e, X Vo + tagpe, (a=ei),
— the poloidal flux function 1 determining the magnetic field:

B=~R'e,x V¢+Bse,,  B,=R I(xe;xXi),
— the electric potential ¢ etermining the electric field:
E=Ve, o=0xt0, ox=Qu/(4reVR2+72),
— the gravitational potential V determining the gravitational field:

g=VV, V=Vi+V, Vi=-GMy/VR*+272, (3)

— the electron and ion mass densities p, determined by the Bernoulli
functions, as indicated below.
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One of the intricate aspects of stationary states is the complete
freedom to specify arbitrary functions of the fluxes. In the two-fluid
case, this concerns siz (/) arbitrary functions of x. and x;:

— Bernoulli functions: H,(x«)

iAo+ YV + 2500 P = pas
P5"Pa = Pa
Ruge — 20 = uyy. (4)

— specific entropies:  S,(xa)

— specific ang. mom.: L,(xa)

Variational principle

Equilibria derive from the two-fluid Lagrangian (Goedbloed, 2004),

5/£TF(X&7VXa7pa7¢7V¢7$7 V$797V97R7Z) dV = 07 (5)

LTr = ﬁ ,05_1|VX6|2 + ﬁpi—HVXiP - 2M3R2 |V¢|2 + %60 |V¢|2

1 V3|2 1 2 1 1
50 VYV gom I+ pebe = 523p S+ pi By = 52597 S5y

where the nonlinear terms depend on the composite functions
I = RB, = Io+ po(5Xe — i—fxz') .
Fe = He_ﬁ(l/e_mie¢)2+mie(¢*+$)_v*_97

F;

H; — o (Li+ Z20)* = Z5 (64 + ) = Vi = V. (6)

The associated Euler equations are five PDEs for xe;, v, 5, and V:

V(e V) = al o[BS = (Lo = o)L = oS

V(W) = — Lol p[HY = (Lot Z0)L] - oS!,
BV (#V0) = Rip = 3= pelle = 500" + 2 pi(Li + Z29)°,
Vi = —1=2p. - Zop;,
VYV = p=ptoi, (7)

and two algebraic Bernoulli equations for pe;:
ﬁ|vxe|2_sze+%pew+lse:0 = Pes
sl VXl? = pP B+ 2208 =00 = pr (8)

Substitution yields the two-fluid version of the transonic enigma.
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Hyperbolicity

Substituting the solutions po (|Vxal, .. .) of the Bernoulli equations (8)
back into the PDEs (7)a,b for x, yields second order derivatives that
produce hyperbolicity when:

2

1 2 Uep
Ac=———2>0, or M =—-—2>1 forelectrons,
Mg -1 VPe/pe
2
_ 1 2 Wip :
Aj=———2>0, or M =—"—>1 forions. 9)
M7 —1 VPi/ pi

Hence, unmagnetized electron and ion flows, characterized by ordinary
(not poloidal!) Mach numbers M, ;, determine hyperbolicity in the two-
fluid picture. This hyperbolicity is quite different from that in MHD
because it originates from the asymptotic freedom of the electron and
ton flows from the magnetic surfaces. Since this occurs on skin-depth
length-scales, computational demands on resolution are enormous.

To establish the two-fluid counterpart of MHD spectroscopy of as-
trophysical objects, accurate numerical methods to compute the sta-
tionary equilibria should be developed. Even if this entirely non-trivial
part of the problem is taken for granted, still the incredible logistic
problem remains of handling the two Bernoulli equations. First, one
has to specify the six arbitrary functions H,, L., Sa of x.. The only
meaningful approach appears to be the exploitation of spatially resolved
astronomical observations. Obviously, this part of the problem still lies
in a remote future. Next, one has to solve the Bernoulli equations on
each grid point and for each step of the nonlinear iteration. This may
result in the four following possibilities:

(1) no solution is found with the specified input = one has to restart
the iteration with a different choice of the input functions;

(2) one solution is found = one may proceed;

(3) two or more solutions are found = one should select one by some
physical identification and keep it for all grid points and iterations;
(4) the solution may have entered a hyperbolic regime = an entirely
different solver is needed.

One could summarize this by saying that the computation of two-fluid
stationary states involves the transonic and Bernoulli nightmares!

4. Conclusions

(a) The computation of transonic equilibria of accretion disks about
compact objects is a very complex problem because hyperbolic flow
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regimes upset the standard equilibrium solvers. Nevertheless, a large
class of highly localized MHD instabilities was found that become
explosive for large central mass (Goedbloed et al., 2004) and, hence,
constitute very viable candidates to produce the anomalous dissipation
required for transport of angular momentum in those systems.

(b) In order to generalize the methods of MHD spectroscopy to two-
fluid plasmas, a variational principle for the computation of two-fluid
stationary states was constructed that exhibits all the intricacies (in-
cluding hyperbolicity) due to the electron and ion flow excursions from
the magnetic flux surfaces (Goedbloed, 2004).

(c) The computation of transonic two-fluid stationary states should
only be pursued for its own sake, to describe details of electron and ion
motions, not because it would alleviate hyperbolicity problems in MHD
[see the reply by Goedbloed (2005) to a comment of McClements and
Thyagaraja (2005) ].

Acknowledgments This work was performed as part of the research
program of the Euratom-FOM Association Agreement, with support
from the Netherlands Science Organization (NWO).

References

Goedbloed, J. P., and Poedts, S., Principles of Magnetohydrodynamics, with Appli-
cations to Laboratory and Astrophysical Plasmas (Cambridge University Press,
Cambridge, 2004).
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521626072

Stasiewicz, K., J. Geophys. Res. 110, doi: 10.1029/2004JA010852 (2005).

Goedbloed, J. P., Huysmans, G. T. A., Holties, H., Kerner, W., and Poedts, S.,
Plasma Phys. Contr. Fusion 35, B277-292 (1993).

Goedbloed, J. P., and Keppens, R., Space Science Reviews, SPAC5RI1, to appear
(2005).

Belién, A. J. C., Botchev, M. A., Goedbloed, J. P., van der Holst, B., and Keppens,
R., J. Comp. Phys. 182, 91-117 (2002).

Goedbloed, J. P., Belién, A. J. C., van der Holst, B., and Keppens, R., Phys. Plasmas
11, 28-54 (2004).

Frank, J., King, A., and Raine, D., Accretion Power in Astrophysics, 3rd edition
(Cambridge University Press, Cambridge, 2002).

Velikhov, E. P., Soviet Phys.—JETP Lett. 36, 995 (1959).

Chandrasekhar, S., Proc. Nat. Acad. Sci. USA 46, 253 (1960).

Balbus, S. A, and Hawley, J. F, Astrophysical Journal 376, 214 (1991).

McClements, K. G., and Thyagaraja, A., Mon. Not. R. Astron. Soc. 323, 733 (2001).

Goedbloed, J. P., Phys. Plasmas 11, L81-1.84 (2004).

McClements, K. G., and Thyagaraja, A., Phys. Plasmas 12, 0647012 (2005).

Goedbloed, J. P., Phys. Plasmas 12, 064702—4 (2005).

GoedbloedGraz.tex; 17/09/2005; 11:00; p.8



