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Jovian Atmosphere

Zonal flows in the Jovian atmosphere with large scale vortical structures::
2D turbulence, inverse cascade of energy.
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Magnetically confined plasma
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z

Figure  1

Radial coordinate : x,
velocity : u; ∇p along x

Poloidal coordinate : y, veloci-
ty : v also refered to as zonal
direction (geophysics)

Plasma turbulence quasi-2D perpendicular to B
Terminology: Zonal flows: small scale/amplitude flows mainly in the
core relates to transport barriers
Global poloidal flows/poloidal flows/poloidal spin-up : large
scale/amplitude sheared flows near the edge, instrumental in the
L-H transition.
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Shear flow and H-mode

High confinement mode - H-mode - (Wagner et al. PRL 1982; Asdex) is
essential for tokamak (stellarator) operation.
Connected with a sheared flow in the edge!
Experimental conditions well established; but still no full theoretical
explanation. Various generation mechanisms.
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Flows: how do they act?
Sheared flows do influence the turbulent transport:
Radial particle flux: Γ = 〈nu〉
The poloidal flow do not contribute to Γ!
Flows are said to suppress turbulence:
Turbulence shear decorrelation!
(Biglari et al Phys. Fluids B 2, 1 (1990))

ωshear > γinst

Flows generated by out of the turbulence due to inverse
cascade, → turbulent fluctuation energy will

Condensate in flow energy.
does not contribute to Γ.

Monitoring of energy transfer processes is crucial for
understanding the dynamics.
Review: Diamond et al PPCF 47, R35 (2005)
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Shear: Vortex tilting.

K.H. Burrell Phys. Plasma 4, 1499 (1997)

Elongated structures suffer shear enhanced dissipation: exp(−µt3/∆t),
∆t “tilting time”.
Garcia and Bian, Phys. Plasma 12, 014503 (2005)
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Shear flow stabilization?
Influence of a background shear flow V (x)ŷ on the classical
Rayleigh-Taylor (interchange) instability::
Benilov et al Phys. Fluids 14 1674 (2002)
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Taylor-Goldstein eq.:
V (x) = V0 tanhx,
V0 = 0, 0.5, 1.0, 2.0

Stability for 2π/Ly > kc
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Interchange turbulence
∂n

∂t
+ {φ, n} + K(n + T − φ) = ν∇2n ,

∂T

∂t
+ {φ, T} +

2

3
K(n +

7

2
T − φ) = κ∇2T ,

∂ω

∂t
+ {φ, ω} + K(n + T ) = µ∇2ω .

{f, g} = (∂f/∂x)(∂g/∂y) − (∂f/∂x)(∂g/∂y)
Vorticity ω = ∇2φ

The curvature operator

K = −∇ · B ×∇
B2

Solved numerically on a slab domain, outboard midplane:
periodic in y and bounded in x; α = Ly/Lx

Naulin et al. PRL 81, 4148 (1998); Phys. Plasma 10, 1075 (2003)
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Heat flux

0

t

10000

x0 10
0

t

10000

x0 10

Poloidally averaged heat flux ΓT = 〈uT 〉; α = Ly/Lx = 1;
ν = κ = µ = 10−3 (left) and 10−2 (right)
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Burst structure
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Spatio-temporal evolution of a
burst event, heat flux, ΓT , tempe-
rature gradient, poloidal flow
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Bursting and energy exchange
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Γθ flux; U,K energy in the flow, fluctuations
Garcia and Bian PRE 68, 047301 (2003)
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Flows: Reynolds stress

Momentum equation/vorticity equation:
∂ω

∂t
+ {φ, ω} + K(n + T ) = µ∇2ω .
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Flows: Reynolds stress

∂ω

∂t
+ {φ, ω} + K(n + T ) = µ∇2ω .

Reynolds decomposition (Reynolds (1894)):

ω = Ω + ω̃, φ = Φ + φ̃, v = V + ṽ

Ω = 〈ω〉 ≡ 1
Ly

∫ Ly

0

ωdy

Zonal velocity V = 〈v〉 ; U = 0
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Flows: Reynolds stress

∂ω

∂t
+ {φ, ω} + K(n + T ) = µ∇2ω .

Ω = 〈ω〉 ≡ 1
Ly

∫ Ly

0

ωdy

Zonal velocity V = 〈v〉 ; U = 0
Flow evolution: ∂V

∂t
= − ∂

∂x
〈uv〉 + µ

∂2

∂x2
V
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Flows: Reynolds stress

∂ω

∂t
+ {φ, ω} + K(n + T ) = µ∇2ω .

Ω = 〈ω〉 ≡ 1
Ly

∫ Ly

0

ωdy

Zonal velocity V = 〈v〉 ; U = 0

∂V

∂t
= − ∂

∂x
〈uv〉 + µ

∂2

∂x2
V

Quasilinear approximation: Contribution from the k’te wave-component:

∂x〈uv〉 = −2k∂x(|ψk|2∂xθk)

θk is the phase of ψk.
Flow generation for ∂xθk �= 0 Radial propagation
Diamond and Kim, Phys. Fluids B 3, 1626 (1991)
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Zonal flow in rotating fluid
Homogenization of potential vorticity (PV) in geophysical flows
P. Rhines The Sea (1977); (1979) Ann. Rev. Fluid Mech. 11, 401 (1979)

DΠ

Dt
=

D

Dt

(
ω + f

H(r)

)
= 0

D/Dt ≡ ∂/∂t + v · ∇v, ω is the relative vorticity of a fluid element, f is
background vorticity, H(r) is the depth of the fluid layer.
Movement towards deeper regions stretch the vortices and enhance ω;
towards shallower regions compress the vortices and decrease ω.
Mixing of Π → low relative vorticity over shallow regions and higher
relative vorticity over deeper regions.
Plasma case: Ion vorticity equation (cold ions):

DΠi

Dt
=

D

Dt

(
ω + ωci

n(r)

)
= 0
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Rotating fluid experiment

Experimental setup, rotating tank with a rigid lid. R = 19.4 cm, D = 20 cm,
η = 5 cm, rotation rate 12 rpm.
Π = ω + κr (expansion H(r) = 1 − κr, κ < 0)
Mixing: periodically pumping water in and out of two holes (diameter
2 cm). Forcing period: TF (TF = 6.6 s) Diagnostics: particle tracking:
instantaneous velocity field.
Expect ω < 0 around the center: Anticyclonic flow.
Rasmussen et al, Physica Scripta, in press (2005)
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Vorticity field

Velocity field shown by arrows and vorticity contours averaged over 10
forcing periods. An anticyclonic circulation is observed
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Azimuthal velocity

The azimuthal velocity averaged over 20 forcing periods. Blue designates
negative velocity, i.e. anti-cyclonic motion and red positive velocity
Flow generated by rectification of symmetrically forced small scale
structures. Rachet effect: bottom topography is symmetry breaking.
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Potential vorticity
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Azimuthally averaged vorticity and potential vorticity. Local flattening of
potential vorticity.
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Averaged azimuthal velocity
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Numerical results

The forced quasi-geostrophic vorticity equation on a disk with no-slip
boundary conditions at the walls.

∂ω

∂t
+

1
r
[φ, ω] − κ

r

∂φ

∂θ
= −νω +

1
Re

∇2ω + F , (1)

Length is scaled as R, time as f−1, and κ by f/R. ν =
√

E, Ekman
number E = µ/D2Ω with a spin down time τE ≈ 90 s.

The forcing is modeled by localized vorticity sources with alternating
positive and negative vorticity:
F = A0[G(x, y; r1) sin(σF t) + G(x, y; r2) sin(σF t + π)], G(x, y, r1,2)
localized at the positions of the two holes.

For the experimental condition the scaled values of κ = −0.256 and
E = 4.55 × 10−4. While Re ≈ 80.000 and volume viscosity is negligible.
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Vorticity field

Numerical solution for the same parameters as in the experiment. Vorticity
field averaged over 20 forcing periods for the case of a conical bottom.
Red: positive vorticity and blue: negative.
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Averaged azimuthal velocity
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Numerical solution for the same parameters as in the experiment.
Averaged azimuthal velocity.
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Zonal bands

Decaying turbulence.

The number of bands and their width depends on κ and turbulence level

The Rhines scale length (Rhines, JFM 69 417 (1975)), k−1
κ determines the

cross over from nonlinear behavior to wavelike behavior:
balancing [φ, ω] with κ∂φ/∂θ.

kκ =
√

κ/2Urms

Similar for drift waves in plasmas (Naulin, New J. Phys. 4 28 (2002)).
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Flow in toroidal hot plasmas

Drift-Alfvén turbulence in 3D flux tube geometry,
(Naulin Phys. Plasma 10, 4016 (2003), Naulin et al Phys. Plasma 12, 052515 (2005))

Vorticity equation:

∂ω

∂t
= −vE · ∇⊥ω + K(n) + ∇‖J + νω∇2

⊥ω,

Curvature operator: K = −ωB(sin s ∂x + cos s ∂y), and

∇‖J =
∂J

∂s
− {β̂A‖, J} =

∂J

∂s
+ β̂{A‖,∇2

⊥A‖}

∇ × B̃ = Jb and B̃ = ∇A‖ × b → J‖ = −∇2
⊥A‖

β̂ = (2µ0pe/B
2)(qR/L⊥)2.
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Flow in toroidal hot plasmas
Mean poloidal flow, V0, generation, averaging over a
flux-surface:

∂tV0 = −∂x〈uv〉 + β̂∂x〈B̃xB̃y〉 + 〈K(n)〉 + νΩ∂xxV0.

u = −∂yφ, v = ∂xφ and B̃x = ∂yA‖ and B̃y = −∂xA‖

Re ≡ 〈uv〉: Reynolds stress; Ma ≡ 〈B̃xB̃y〉 Maxwell stress.

MHD-limit (high β) it can be shown that A‖ ≈ φ/

√
β̂:

thus Ma cancels Re

Energy exchange:

∂U

∂t
=

∫
〈uv〉∂V0

∂x
dx−β̂

∫
〈B̃xB̃y〉∂V0

∂x
dx−ωB

∫
〈n sin s〉V0dx−νω

∫
(∂xV0)2dx.
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Maxwell vs Reynolds stress

Small β
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Maxwell vs Reynolds stress
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Large β
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Maxwell vs Reynolds stress
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At high β-values Ma cancels Re Vianello et al Nucl. Fus. 45, 763 (2005)

Gams: Geodesic acoustic modes are always important, geometry effect!
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Conclusions
Poloidal flows indeed limit the turbulent flux

Self-generated flows take energy out of fluctuations,
they do not quench fluctuations

Flows are generated by Re-stress in anisotropic
turbulence

In hot plasmas finite β effects tends to cancel the zonal
flows: the Ma-stress counteracts the Re-stress, here
the GAMs become important

Externally added shear flows may control turbulence,
redistribution, but not really stabilize. Finite system size
and viscous effects are important

Flow generation in “simple” systems are well
understood. However, effects of real toroidal geometry
and shaping are still not explored.
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