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Synopsis

Plasmas, i.e. large ensembles of charged particles, consist a highly complex form of matter.
From a fundamental point of view, a plasma is often modelled as a many-body system which is
characterized by weak inter-particle (electrostatic) interactions (coupling). However, strongly-
coupled charged particle configurations have recently been produced in laboratory, either by
creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in gas discharge
experiments.

In this text, we aim at providing insight to the nonlinear aspects involved in the motion
of charged dust grains in a one-dimensional plasma monolayer (crystal). Different types of
collective excitations are reviewed, and characteristics and conditions for their occurrence in
dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are
shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well
as modulated envelope localized modes associated with longitudinal and transverse vibrations.
Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs)
— to occur is investigated, from first principles. The effect of mode-coupling is also briefly
considered. The relation to previous results on atomic chains, and also to experimental results
on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.

Keywords: Dusty (complex) plasmas, plasma crystals, solitons.
PACS numbers: 52.27.Lw, 05.45.Yv, 52.35.Sb



1 Introduction

Large ensembles of interacting charged particles (plasmas) occur in a wide variety of physical
contexts, ranging from Space (solar plasmas, interplanetary matter in plasma state) and stellar
environments (neutron stars, pulsars) to the Earth’s atmosphere (lightnings, magnetospheric
phenomena, waves in the ionosphere, noctilucent clouds) and from thermonuclear fusion reac-
tors (Tokamaks) and laboratory (discharge plasmas, laser plasmas) even down to household
applications (discharge light bulbs). A plasma, which is typically modeled as a collection of
electrons and positive ions, is a complex physical system characterized by rich dynamics, which
includes numerous collective effects (linear oscillation modes, nonlinear waves), instabilities, etc.
Typical e-i plasmas are tacitly thought of as weakly-coupled systems, given the high temper-
ature and low density values encountered in different natural plasma contexts [Balescu, 1988].
The strength of interparticle interactions is quantitatively expressed by the coupling parameter
I' = €%/(kpT < r >), which represents the ratio of the average potential-to-kinetic energy of the
charged particles; note that I' increases (decreases) with density n (temperature T'), since the

—1/3 is defined as the Wigner-Seitz radius of an elementary

mean interparticle distance < r >~ n
particle sphere volume, viz. 4773, 5/3 = 1/n (kp denotes the Boltzmann constant). For most
e-i plasmas of interest in space and laboratory, I" attains very low values (I' ~ 107° —107% <« 1)
justifying this weak-coupling hypothesis. However, strongly-coupled plasmas, so far thought to
exist only in exotic environments (such as neutron stars), have recently been created in lab-
oratory, e.g. ultra-cold plasmas of laser-cooled ions, in Penning traps and storage rings (see
[Killian, 2004] and Refs. therein), which freeze at ultra-low temperatures (7' < 1° K) to form
Wigner crystals, where I" attains high values (I' > 170 sets the theoretical crystallization limit
[Tkezi, 1986]; values as high as I' ~ 103 — 10* are today observed in all of the systems mentioned
here). A similar lattice ordering is exhibited by dusty plasmas (DP), produced during discharge
plasma experiments; this exciting mesoscopic system will atract our attention in the following.

Dusty plasmas (or complex plasmas) consist of electrons e~ (mass me, charge ¢ = —e),
ions it (mass m;, charge ¢; = +Z;e) and massive (My =~ 109mp7 typically, where m,, is the
proton mass), heavily charged (Qq = +Zge, where Zg ~ 103 — 10%, typically), micron-sized
(typical diameter 1072 — 10% um) defects, i.e. dust particulates d~ (or, less often, d¥). The
presence of the latter modifies the plasma properties substantially [Verheest, 2001; Shukla &
Mamun, 2002] and allows for new charged matter states, including liquid-like phases and even
solid (quasi-crystalline) configurations [Shukla & Mamun, 2002; Morfill et al., 1999; Morfill et
al., 2002], first realized independently by three experimental groups in 1994 [Chu & I, 1994;
Hayashi & Tachibana, 1994; Thomas et al., 1994].

Dust quasi-lattices are typically formed in the sheath region above the negative electrode in
discharge plasma experiments (see in [Morfill et al., 1997] for a review of the technical details
and main results), and remain horizontally suspended at a levitated equilibrium position (at
z = 29, say) where gravity and electric (and/or magnetic [Yaroshenko, 2004]) forces mutually
balance each other'. Typical lattice configurations include bee, fee and hep patterns, consist-
ing of roughly a dozen horizontal two-dimensional (2d) layers; simpler one-dimensional (1d)
arrangements were also produced in laboratory, by applying appropriate confinement potentials
[Misawa et al., 2001; Liu et al., 2003], and are thought to provide a basis for future applications.

From a fundamental point of view, these crystal-like structures are a most challenging phys-
ical system, since basic issues like the very nature of inter-particle interaction or the char-

it is worth mentioning that DP lattice experiments are also currently carried out in microgravity conditions,
in the International Space Station; we shall not focus in this issue here.



acteristics of oscillation modes are still being questioned. It appears to be established that
electrostatic interactions (typically thought to be of screened Coulomb, i.e. Debye-Hiickel type)
may be strongly modified by the supersonic ion flow towards the negative electrode and the
proximity of the crystal to the latter [Ignatov, 2003; Kourakis & Shukla, 2003]. Damping mech-
anisms due to dynamical dust charging, in addition to dust-neutral and dust-ion collisions, are
some of the issues to be taken into account in a realistic description of dust crystals [Shukla
& Mamun, 2002]. Interestingly, the low frequencies involved in dust lattice dynamics allow for
a visualization (and digital processing) of physical phenomena on the kinetic level, in view of
the study e.g. of nonlinear oscillations and waves, phase space functions (mean values), phase
transitions and non-equilibrium flows, to mention only a few [Merlino et al., 1997; Thompson
et al., 1999; Melandsg & Bjerkmo, 2000; Morfill et al, 2002]. Furthermore, notions from atomic
physics are thus efficiently simulated on a more familiar mesoscopic scale?, in an efficient (and
cost affordable) manner [Maddox, 1994].

The linear regime of low-frequency dust grain oscillations in DP crystals, in the longitudinal
(acoustic mode) and transverse (in-plane, shear mode as well as vertical, off-plane optical mode)
direction(s), is now quite well understood. However, the nonlinear behaviour of DP crystals still
remains mostly unexplored, and has lately attracted experimental [Melandsg, 1996; Nosenko
et al., 2002; Nosenko et al., 2004] and theoretical interest [Melandsg, 1996; Ivlev et al., 2003;
Kourakis & Shukla, 2004a; b; ¢; d; e].

In this paper, we shall focus on the nonlinear description of dust grain displacements in a
dust crystal. Considering the horizontal (~ %) and vertical (off-plane, ~ 2) degrees of freedom,
we shall review the various nonlinear dust grain excitations occuring in a 1d dust lattice. This
paper reviews relevant (more technical) theoretical studies [Kourakis & Shukla, 2004b; c; d; e]; it
complements recent experimental investigations of dust crystals [Nosenko et al., 2002; Nosenko
et al., 2004] and may hopefully motivate future ones. Although the results presented herein
refer to mesoscopic dust crystals, they can be applied in any one-dimensional strongly-coupled
lattice configuration characterized by electrostatic interactions.

2 A one-dimensional dust lattice: the model

Let us consider a quasi-1d dust layer, here assumed of infinite size, composed from identical
dust grains (equilibrium charge ¢ and mass M, both assumed constant for simplicity), located
at z, = nrg, (n = 0,1,2,...). The choice of (exact form for) both the particle interaction
potential Up(r) and the (anharmonic) vertical on-site potential ®(z) will be left open (to be
determined).

The Hamiltonian is of the form

1 dr,, \ 2
H=Y -M <> + > U(ram) + Peat(rn),
— 2 dt =,

where r,, is the position vector of the n—th grain; Uy, (rnm) = qé(z) is a binary interaction
potential function related to the electrostatic potential ¢(x) around the m—th grain, and ry,, =
|r,, — )| is the distance between the n—th and m—th grains. The external potential ®e.(r)
accounts for the external force fields in which the crystal is embedded; in specific, ®.,; takes
into account the forces acting on the grains (and balancing each other at equilibrium, ensuring

2The typical system size is of the order of a few centimeters or less, in laboratory, while inter-particle spacing
may range below or even up to 1 millimeter; the Debye radius Ap is roughly of the same order. Dust particle
temperature is approximately 300 ° K, i.e. room temperature!



stability) in the vertical direction (i.e. gravity, electric and/or magnetic forces); for completeness,
it might also include the confinement potential ensuring horizontal stability in experiments
[Samsonov, 2002].

Figure 1: Dust grain vibrations in the longitudinal (~ &) and transverse (~ %) directions, in a
1d dust lattice.

2.1 2d equation of motion

Considering the motion of the n—th dust grain in both the longitudinal (horizontal, ~ Z) and
the transverse (vertical, off-plane, ~ 2) directions (i.e. suppressing the transverse in-plane —
shear — component, ~ &; see Fig. 1), so that r, = (z,, 2,), we have the 2d equation of motion

dt? Yoar or,,

where Ej(x) = —0¢(r)/0x; is the (interaction) electrostatic field and Fipyj = —0®eri(r)/0x;
accounts for all external forces in the j-direction (j = 1/2 for x; = x/z); the usual ad hoc

w (Grn iy o5 Wenltn) ) = B P, ()

damping term was introduced in the left-hand-side of Eq. (1), involving the damping rate v due
to dust—neutral collisions.

2.2 Anharmonic vertical substrate potential

Assuming a smooth, continuous variation of the levitation (electric E.y; and/or magnetic Begy)
field(s) and of the grain charge ¢ (which varies due to charging processes) near the equilibrium
position zg, the electric and magnetic force(s) may be combined into an overall vertical force

Feut(2) = Foyym(2) = Mg = —0cpt(2) /02 = —M[wgézn +a (5zn)2 + 0 (5zn)3] + O[((Szn)4] (2)

(0zn = zn — z0) where the phenomenological substrate potential ®..¢(z) is of the form

o 15 4
3 (62) + 1 (62,)t| + O[(62,)7]. (3)

Recall that F, /m(zo) = Mg at equilibrium. The gap frequency w, and the phenomenological

1
D(2) ~ P(2) + M §w§5z§ +

anharmonicity coefficients « and [ are defined via (derivatives of) Ecy; and By (see in [Kourakis
& Shukla, 2004c; d] for the exact definitions).

The anharmonic potential ®¢,.(2) is depicted in Fig. 2, as it results from ab initio calcu-
lations [Sorasio, 2002]. It may, in priciple, be provided by experiments; see, for instance, Fig.
3.



Figure 2: The (anharmonic) sheath potential ®(z), as results from a numerical simulation of
low pressure discharge experiments (data in [Sorasio, 2002]) is depicted vs. the vertical distance
z from the negative electrode, for different values of the plasma particle density n (increasing
from bottom to top). Note that anharmonicity is higher for lower n (bottom, dashed line), while
for high n a locally parabolic form is obtained (top, solid line)(data courtesy of G. Sorasio).

2.3 Discrete equations of motion

Let (0xyn, 0z) = (zn, — m%o), Zn — 27(10)) denote the displacement of the n—th grain from the

equilibrium position (x%o), z,(LO)) = (nro, 0). Assuming small displacements from equilibrium,
one may Taylor expand the interaction potential energy U (r) around the equilibrium inter-grain
distance lrg = |n — m|rg (between [—th order neighbors, { = 1,2,...), i.e. around dz, ~ 0 and
0zp = 0, viz.

> 1d'U(r)
Ulrnm) = Z " drt

I'=0 r=Il|n—m|ro

(xn - $m>l, )

where I’ = 2 denotes the potential parabolicity, I’ = 3 denotes cubic nonlinearity in the interac-
tion, and so forth. Notice that the inter-grain distance

r=[(zn — xm)Q + (2n — Zm)2]1/2

also needs to be expanded near |z, — x,,| = lrg and z,, — 2z, = 0, viz.

oU(r) B 8U(r)ﬁ N
Ox;  or Ox; -

Retaining only nearest-neighbor interactions (I = 1), we obtain the coupled equations of motion

P(6ra) | d(o2)

7 1% dt = W(%’L (6$n+1 + 51:”_1 — 2(51}”)

—as |:((5.’L'n+1 — 5:Un)2 — (0xp, — 53:”_1)2}
+ asp |:((5$n+1 — 53:n)3 — (0xy — 5:Cn_1)3] + aga {(52;”“ — 5zn)2 — (0zn — 5zn_1)2}

—a12 [(5$n+1 - 5$n)(52n+1 - 5Zn)2 - (&Un - 5557171)(5211 - 52111)2] ) (4)
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Figure 3: The anharmonic potential V' (z) is depicted vs. the displacement = — see Eq. (3) — for
two sets of values (corresponding to different particle size) from the Kiel experiment [Zafiu, 2001]
(values adapted from Table I therein). Here, o' = ary /wg and ' = Bré /wg are dimensionless
parameters. The harmonic case (o/ = ' = 0) is also provided for reference. Note the existence
of a finite potential barrier, possibly accounting for the dust crystal dissociation (“melting”)

reportedly observed in experiments.

and

d*(6z,) d(dzn)
a2 TV

= u"(2),T (25Zn - 5Zn+1 + (5an1) — w; Oz,

—a (0 = B(620)° + %2 | (Bomer = 520)° = (62 - 52“)3]

+2ap2 |:(5$n+1 —0xy) (0241 — 02) — (0, — 0p—1) (02, — 5,2”1)}
— a1 [((51‘““ — 5mn)2(5zn+1 —0zp) — (0xp — 5mn_1)2(5zn — 6zn_1)] . (5)

The longitudinal and transverse oscillation characteristic frequencies wp 7, and wo , as well as
the coupling nonlinearity coefficients a;j, are defined via (derivatives of) the interaction potential
U(r); in principle, they are positive quantities (see in the Appendix for definitions and details); in
particular, such is the case for the Debye potential Up(r) = (¢?/r) exp(—r/Ap) (where Ap is the
effective Debye charge screening length). Recall that w,, o and 3 are related to the (anharmonic)
form of the sheath potential ®. Typical frequency values are as low as: wp  ~ 30 — 60 sec!
[Nunomura et al., 2002] (i.e. for = wor/2m ~5—10 Hz !), wor ~ 20 sec™! and w, ~ 160
sec™! [Misawa et al., 2001], or even lower [Ivlev et al., 2000; Zafiu et al., 2001]. Typical values
for the transverse nonlinearity coefficients may be derived from [Ivlev et al., 2000]3:

' and B~0.07mm 2.

a/wé ~ —0.5mm"™

Details on the derivation of Egs. (4) and (5) can be found in [Kourakis & Shukla, 2004d].
As a general remark, retain that nonlinearity in dust grain dynamics in a crystals is induced by:

(a) electrostatic interactions (coupling),

(b) the plasma sheath environment (which imposes non-uniform electric/magnetic fields),
and

(c) coupling between different directions of vibration (geometry).

3However, the strong variation from, e.g., [Zafiu et al., 2001] suggests that appropriate experiments still need
to be carried out before one should attempt any predictions by relying on available values.



2.4 Continuum equations of motion

Adopting the standard continuum approzimation, one may assume that only small displacement
variations occur between neighboring sites, and replace the horizontal displacement dx,,(t) by a
continuous function v = wu(z,t). An analogous function w = w(x,t) is defined for ¢z, (t). The
discrete equations of motion (4) and (5) thus lead, after a long calculation [Kourakis & Shukla,
2004d], to a set of coupled continuum equations of motion in the form

2

.. . 2 CL .2 3 3
U+ VU — C] Ugy — ﬁroumm = —2a0T) Up Ugz + 20027) Wy Wey
— a2’y [(wz) Ugy + w$wzxux] + sasor (u;t) Uz , ( )
2 C% 2 2 2 3
W+ v+ Cp Wey +Er0wmm +wyw = —aw® — Bw
3
+ 2 ap2 To (ux Wee + Wy uzx)
3 2 4 2
+ 30,02 To (wa:) Wyre — A12 7T [(um) Wea + 2uxux:vw;t] ’ (7)

where higher-order nonlinear terms were omitted. We have defined the characteristic velocities
cr, = wo,r, o and e = wo  7o; the subscript denotes partial differentiation, i.e. (-), = 9(-)/0x,
so that ug Uz = (u2):/2 and (ug)? uze = (ud)./3.

An exact treatment of the coupled evolution Eqgs. (4), (5) — or, at least, the continuum
system (6), (7) — seems quite a complex task to accomplish. Even though Eq. (6) may be
seen as a Boussinesq—type equation, which is now modified by the coupling, its transverse
counterpart (7) substantially differs from any known nonlinear model equation. Therefore, we
shall limit ourselves to reporting this coupled system of evolution equations, keeping a thorough
investigation (analytical and/or numerical) of their nonlinear regime for future work. The
uncoupled continuum equations (obtained upon setting either u or w to zero) will be analyzed
in the following.

3 Modulated Transverse Dust Lattice Waves (TDLWs)

Let us study the vertical (off-plane) n—th grain displacement (i.e. for 6z, = 0), which obeys*

d26z, d(dzy,
72 +v (dt ) + w%’o (0znt1 + dzp—1 —202) + wg 6zn +a(62,)* + B (02:)2=0.  (8)

Notice the difference in structure from the usual nonlinear Klein-Gordon equation used to de-
scribe 1d one-dimensional oscillator chains: transverse dust-lattice waves (TDLWs) propagating
in this chain are stable only in the presence of the field force F,/,, (via w).

Linear transverse dust-lattice excitations, viz. dz, ~ cos ¢, (here ¢, = nkry — wt) obey the
optical-like discrete dispersion relation (setting v = 0)°

k
w2 = wg - 4w%0 sin? (;0) = wi(k). (9)

The TDLW dispersion curve is depicted in Fig 4. Transverse vibrations therefore propagate
as a backward wave [see that vy = Wi (k) < 0] — for any form of U(r) — in agreement with
recent experiments [Misawa et al., 2001]. Notice that the frequency band is limited between
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Figure 4: The dispersion relation of TDL vibrations — see Eq. Eq. (9): the frequency w (normal-
ized over wy) is depicted against the (reduced) wavenumber kry. The value of wy/w, (~ inter-
grain coupling strength) increases from top to bottom: € = w%/wg = 0.016, 0.02, 0.051, 0.181.
The uppermost (lowermost) curve, i.e. for e = 0.016 (0.181, respectively) correspond to the the
exact experimental data in [Misawa et al., 2001] ([Liu et al., 2003], respectively). The upper
curve(s) is (are) more likely to favor gap breathers, since the breather frequency easily satisfies
the existence condition (29).

WP min = (WS _ 4w%70)1/2 (at k = m/rg) and wrmer = wy, a feature which is absent in the
continuum limit (viz. w? ~ w} — wg k?rg, for k < o).

Allowing for a slight departure from the small amplitude (linear) assumption, one may
employ a multiple scale (reductive perturbation) technique to obtain, in the quasi-continuum
limit® [Kourakis & Shukla, 2004c], the solution:

i 2 2|14 A gi 3
dzp me(Ae™ fcc)+ea|——5+ | ;5" +cc || +0(e). (10)
wy 3wy

Notice the generation of higher phase harmonics due to nonlinear self-interaction. The (modu-
lated) amplitude A obeys a nonlinear Schrodinger (NLS) equation in the form:
0A 0?A

’L‘i—i—PT

5T W+QT\A|2A:0, (11)

where {X, T} are the slow variables {e(z — vy 1t),€%t}. The dispersion coefficient Pr is related
to the curvature of w(k) as Pr = w//(k)/2 [to be readily computed from Eq. (9); cf. Fig. 4]. P
is negative/positive for low/high values of k. The nonlinearity coefficient

Qr=— (10“2—35) (12)

- 2wt 3w3

may be deduced from experimental values of « and (3; it turns out to be positive in (the few)
known experiments on nonlinear vertical oscillation, to date [Ivlev, 2000; Zafiu, 2001].

The NLS Eq. (11) is generic: it is encountered in may physical contexts, and its behaviour
has been studied since a few decades ago (see e.g. [Hasegawa, 1975; Remoissenet, 1994; Sulem,
1999]). Without going into too many details [Kourakis & Shukla, 2004c|, let us summarize
our current knowledge on modulational stability and localized solutions (transverse envelope

4The coupling anharmonicity is omitted in the right-hand side of Eq. (8), for clarity.

5The damping term is neglected in the following; for v # 0, an imaginary part appears, in account of damping,
in both dispersion relation w(k) and the resulting envelope equations.

5i.e. assuming a continuum variation of the amplitude, but keeping the carrier oscillation discreteness.



solitons) of Eq. (11), in the context of interest to us. In general, for PrQr < 0, i.e. in our case
(taking Q7 > 0) for long wavelengths A = 2w /k > 27/kc,, or small wavenumbers k < k., [where
ke is the zero-dispersion-point (ZDP), defined by w” (k) = 0], TDLWs will be modulationally
stable (see in the following paragraph for details), and may propagate in the form of dark/grey
envelope excitations (hole solitons or voids; see Fig. 5). On the other hand, for PrQr > 0,
i.e. here for k > k., (shorter wavelengths A\ < 27/k., in the first Brillouin zone), modulational
instability may lead to the formation of bright (pulse) envelope solitons (see Fig. 6). Analytical
expressions for these excitations can be found in [Kourakis & Shukla, 2004c|, and in relevant
literature [Fedele et al., 2002a; b]; these expressions are briefly summarized in the following, for
clarity.

-1 -1

Figure 5: Envelope solitons of the (a) black, and (b) grey type.

- VAVAQAQ/\U/\V{\J

-|Olf B

-20 -10 10 20
ﬂ -\0.2
- -0.4

Figure 6: Envelope solitons of the bright type, for two different (arbitrary) choices of the physical

parameters.

Let us note that the modulation of transverse dust grain oscillations clearly appears in
numerical simulations; see e.g Fig. 9a in [Sorasio, 2002].

4 Brief Intermezzo: Modulational Instability and Soliton Solu-
tions of the NLS Eq. (11)

For the sake of clarity, we may briefly review some of the known results on the generic NLS
Equation (11). We shall denote A = v, and will drop the index T, for brevity.
4.1 Modulational (in)stability analysis

It is known (see e.g. in [Hasegawa, 1975; Remoissenet, 1994]) that the evolution of a wave whose
amplitude obeys Eq. (11) depends on the coefficient product PQ, which may be investigated in



terms of the physical parameters involved. To see this, first check that Eq. (11) supports the
plane (Stokes’) wave solution

¥ = 1o exp(iQ|oo|*T) .

The standard linear analysis consists in perturbing the amplitude by setting: vy = o +
€110 cos (kX —OT) (the perturbation wavenumber k and the frequency @ should be distin-
guished from their carrier wave homologue quantities, denoted by k and w). One thus obtains
the (perturbation) dispersion relation:

@® = PR (PE* — 2Qj10/) . (13)

One immediately sees that if PQ > 0, the amplitude 1 is unstable for k < \/2Q/P|y1 of; i-e.
for perturbation wavelengths larger than a critical value. If PQ < 0, the amplitude ¢ will
be stable to external perturbations. This modulational instability mechanism is tantamount
to the well-known Benjamin-Feir instability, in hydrodynamics, and is also long recognized as
an energy localization mechanism in solid state physics and nonlinear optics [Hasegawa, 1975;
Remoissenet, 1994].

This type of analysis allows for a numerical investigation of the stability profile in terms of
the carrier wave number k, in addition to the physical parameters involved in the problem under
investigation.

4.2 Envelope excitations

The evolution equation (11) is known to be integrable; see e.g. in [Infeld & Rowlands, 1990;
Remoissenet, 1994] for a presentation of the related theory. Its localized solutions, which can be
rigorously obtained via the tedious Inverse Scattering Transform method, are properly speaking
solitons, in the sense that they satisfy an infinity of conservation laws; they have been shown
analytically (and confirmed numerically) to survive collisions between one another and also
exhibit a robust behaviour against external perturbations.

The modulated wave resulting from the above analysis is of the form” ¢ = 6@])6 cos(kr —
wt + 0) + O(e?), where the slowly varying amplitude 1% and phase correction © (both real
functions of {X,T}) are determined by (solving) Eq. (11) for ¢ = 1 exp(i©); see in [Fedele et
al., 2002a; b] for details. Some of the different types of solution thus obtained are summarized
in the following.

Bright-type envelope solitons. For positive P(Q), the carrier wave is modulationally un-
stable; it may either collapse, due to (possibly random) external perturbations, or lead to the
formation of bright envelope modulated wavepackets, i.e. localized envelope pulses confining the
carrier (see Fig. 6):

Py = (SZ) v sech(X_LveT> , 0= % [UEX + (Q — ?)T} (14)

[Fedele et al., 2002a; b]®, where v, is the envelope velocity; L and € represent the pulse’s
spatial width and oscillation frequency (at rest), respectively. We note that L and 1)y satisfy

"In fact, the potential correction amplitude here is 1% = 21&0, from Euler’s formula: e + e % = 2cosx
(x e R).
8These expressions are readily obtained from [Fedele et al., 2002a; b], by shifting the variables therein to our

notation as: ¢ — X, s—T, pm — po, @« = 2P, qo — —2PQ, A > L, E—Q, V) — u.

10



Lo = (2P/Q)'/? = constant (in contrast with KdV solitons (see below), where L%y = const.
instead). Also, the amplitude v is independent of the pulse (envelope) velocity v, here.

It may be pointed out that the bright (envelope) soliton phase bears a (slow) space and time
dependence, thus allowing for a slight deformation of the wave packet internal structure as it
propagates, whereas its envelope profile remains constant; see e.g. Fig. 7, where this effect is
pointed out.

0.75 0.7 0.7
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0/25 0./25 0.25
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Figure 7: Bright envelope soliton propagation, at different times ¢; < --- < t5 (arbitrary

parameter values). See that, contrary to Fig. 6a (where L > )), the envelope width here is
comparable in order of magnitude to the carrier wavelength. Also notice the variation in internal
structure, due to the (slow) phase variation in time.

Black-type envelope solitons. For PQ < 0, the carrier wave is modulationally stable and
may propagate as a dark (black or grey) envelope wavepackets, i.e. a propagating localized hole
(a void) amidst a uniform wave energy region. The exact expression for dark envelopes reads:

X 0T
tank (=)

1 ;2 ’1)2
)| ©= gpleX + (2PQu - )T] (15)

Y
Yo =¥ 2P 2

[Fedele et al., 2002a; b]%; see Fig. 5a. Again, L'y = (2|P/Q|)'/? (=cst.).

Grey-type envelope solitons. The grey-type envelope (also obtained for PQ < 0):

X — T 1/2
o = ¢, [1 — d? sech? (L,ljeﬂ ;
and
1 1 9 L d tanh(X_ll)/ET)
@:HD{VOX —(21/02—2PQ1/1”0>T+®0} — S sin™! L 1/2-(16)

2 X—v.T
{1 — d?sech (L,/)

Here ©y is a constant phase; S denotes the product S = sign(P) x sign(ve — V). The pulse
width L” = (|P/Q|)/?/(dv" ) now also depends on the real parameter d, given by:

=1+ (ve—Vp)?/(2PQY"Y) < 1.
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The (real) velocity parameter Vg = const. satisfies [Fedele et al., 2002a; b]®:

Vo = V2IPQIY"S < ve < Vo + \/2|PQIYS

For d =1 (thus Vj = v.), one recovers the dark envelope soliton.

5 Longitudinal Envelope Excitations

The purely longitudinal dust grain displacements 6z, = x,, —nr¢ (i.e. for dz, = 0) are described
by the nonlinear equation of motion:

d*(6xy,) 5 d(6xy,)
dt? dt
—a20 [(&Un—i-l - 51'71)2 - (5$n - 51'71—1)2] + aso [(5$n+1 - 5wn)3 - (5wn - 5$n—1)3] ) (17)

= w%yL (0xpt1 + 0Tp—1 — 202y,

This is reminiscent of the equation of motion in an atomic chain with anharmonic springs, that
is the celebrated FPU (Fermi-Pasta-Ulam) problem (see e.g. in [Remoissenet, 1994] and Refs.
therein).

The resulting linear mode obeys the acoustic dispersion relation:

k
w? = 4w%’0 sin? <;()> = w? (k) (18)

(we take v = 0 again here). The longitudinal dust-lattice wave (LDLW) dispersion curve is
depicted in Fig 8.

Dispersion relation

1

0.8
i 2
mO-E J-.--.‘-
6 0.4 - N

\
0.2 \
.38 1 1.5 3 3.5 3

ia) wavenumber k r0

Figure 8: The longitudinal dust-lattice wave (LDLW) dispersion relation; cf. Eq. (18): frequency
wr, (normalized by wy, o) vs. reduced wavenumber krq (solid curve). We have also depicted: the
continuous approximation (dashed curve) and the acoustic curve (tangent at the origin).

The multiple scale technique (cf. above) now yields the solution
(1)

dxn = €|uyg 2

+ (uf? e 4 e + (W) €20 tee) + . (19)

(¢n, = nkro — wt); note the appearance (to order ~ €) of a zeroth-harmonic mode, describing a
constant (center of mass) displacement in the chain. The 1st-order amplitudes obey the coupled
equations [Kourakis & Shukla, 2004b]:

8u§1) 8211,(1) 1 1 pok? (1 8u(1)
; p 1 (12, (1) 0 (H9Uy 9
1 oT + £, 6X2 + QO ’ul | Uq + 2WL Uy 0X 0, ( O)
1
0X? US’L — w%ﬁr% ax 1t o
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where v, 1, = W (k); {X, T} are the slow variables {e(x — v, 1t),€%t}. The coefficients py and go
are related to quadratic and cubic force nonlinearities (i.e. pg ~ U" (r¢) and go ~ U""(r); see in
the Appendix). Egs. (20), (21) may be combined into a closed equation (for given, i.e. vanishing
or constant, conditions at infinity), which is identical to Eq. (11) (setting A — ugl) and T'— L
in the subscript, therein). Now, Pr, = w7 (k)/2 < 0 [to be computed from Eq. (18); cf. Fig. §],
so the form of Q1 > 0 (< 0) prescribes stability (instability) at low (high) k; see in [Kourakis
& Shukla, 2004b] for details. The existence of the zeroth mode now results in an asymmetric
form of the envelope excitations now obtained, namely rarefactive bright or compressive dark
envelope structures; see Figs. 9, 10. In specific, in order to obtain the exact expressions for the
excitations depicted in these figures, one may combine Eqgs. (20) and (21) into a closed NLS
Eq. in the form of Eq. (11) (for A = ugl)), solve it (cf. above), and then substitute into (21)
for u(()l); the exact formulae thus obtained can be found in [Kourakis & Shukla, 2004b] and are
therefore omitted here, for brevity.

uil vs. ul0 asymmetriec bright envelope solution
1 7N 93
9 0.5 / §
g 4 \ §
D 0 — ~ g |
- -~ | i
F g
pr i
§-0.5 © al
W
-1 E -2
-6 -4 -2 0 2 4 6

Ay -6 -4 -2 0 2 4 €
(a) position x b} position x

Figure 9: Bright LDL (asymmetric) envelope solitons: (a) the zeroth (pulse) and first harmonic
(kink) amplitudes; (b) the resulting asymmetric wavepacket.

L ryrerrrev e T veeYY
ST -

Figure 10: Dark LDL (asymmetric) modulated wavepackets of the (a) grey and (b) black type.

6 Longitudinal Solitons

Recall the (FPU) equation of motion (17), which describes the longitudinal motion of charged
grains in our crystal. Inspired by methods of solid state physics, one may opt for a continuum
description at a first step, viz. dx,(t) — u(x,t). This may lead to different nonlinear evolution
equations (depending on one’s simplifying assumptions), some of which are critically discussed
in [Kourakis & Shukla, 2004a]. What follows is a summary of the lengthy analysis carried out
therein.
The continuum variable u obeys Eq. (6), setting w = 0 therein, i.e.
2 cf
U+ viu— Cr, Ugy — é T(Q) Ugzrr = — PO Ug Uzz + G0 (Uz)z Ugy 5 (22)
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where the subscript denotes partial differentiation; c; = wr o70; po and qp are as defined above.

6.1 KdV vs. extended KdV equations

Assuming near-sonic propagation (i.e. vsy & cr), one obtains from Eq. (22) the Korteweg -
deVries (KdV) equation
wr — sawwe + bweee = 0, (23)

(for v = 0) in terms of the relative displacement? w = uc; here ¢ = x — vygt; also, a =
Ipo|/(2¢c) > 0 and b = c;r3/24 > 0, while s is the sign of pg, i.e. s = po/|po| = £1. See that
only the lowest (quadratic) order in force nonlinearity is retained here [i.e. a ~ U" (rp)].

Since the original work of Melandsg [1996], who first derived and analyzed Eq. (23) for lattice
waves in Debye crystals, various studies have relied on the (abundant pre-existing knowledge
on the) KdV equation!® in order to describe the compressive structures subsequently sought
and indeed observed in experiments [Nosenko et al., 2002; Nosenko et al., 2004]. Indeed, the
KdV Eq. (23) possesses the (negative only here, since a > 0 in Debye crystals) supersonic pulse
(single-)soliton solutions for w, in the form

w(Ca 7—) = —SWm SeCh2 (C — T — CO)/LO ) (24)

where (o and v are arbitrary real constants. A qualitative result to be retained is the velocity
dependence of both soliton amplitude wy ,, and width Lo, viz.

wm = 3v/a = 6ver/|po|, Lo = (4b/v)"? = [c1/(6v)]rg.

We see that w,,,L3 = constant, implying that narrower/wider solitons are taller/shorter and
faster/slower. These qualitative aspects have recently been confirmed by dust-crystal experi-
ments [Samsonov, 2002].

Inverting back to the displacement variable u(x,t), one obtains the “anti-kink” solitary wave
form

u(x,t) = —suy, tanh [(a: — Vgort — xo)/Ll] , (25)

which represents a propagating localized region of compression. The amplitude u,, and the
width L of this shock excitation are
CcLTo 1/2

Um = T [6 CL (Usol - CL)] s Ly = TO[
[pol

cr, ]1/2 B crrd 1
6 (vsol - CL) |p0| Um ’

imposing ‘supersonic’ propagation (vs, > cr) for stability, in agreement with experimental
results in dust crystals [Samsonov, 2002]. Note that ¢y, in real DP crystals is as low as a few
tens of mm/sec [Samsonov, 2002; Nosenko, 2002].

Here is an important point to be made. Notice that s = +1 (i.e. pg > 0) if pure Debye
interactions are considered (see in the Appendix). Therefore, according to the above description,
the (negative pulse, for s = +1) KdV soliton w is interpreted as a compressive density variation
in the crystal (see Fig. 11), viz. n(z,t)/ng ~ —0u/0r = —w > 0. However, although laser

9The definition of the variable w here should obviously be distinguished from (and should not be confused
with) the one in Eq. (7) above.

%The N-soliton solutions wy of (23) are known to satisfy an infinite set of conservation laws [Karpman, 1975;
Drazin, 1989]; in particular, wy carry a constant ‘mass’ M ~ fwd§ (which is negative for a negative pulse),
‘momentum’ P ~ f w?dC, ‘energy’ P ~ f(wﬁ/2 + %) d¢, and so forth (integration is understood over the entire
x— axis); see e.g. Ch. 8 in [Davydov, 1985]; also [Drazin, 1989] and Refs. therein.
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triggering of compressive pulses seems easier to realize in the lab, nothing a priori excludes
the existence of rarefactive longitudinal excitations in dust crystals, a question which remains
open for future experiments. This apparent contradiction may be raised by a more sophisticated
theory, as we shall see in the following [Kourakis & Shukla, 2004d].

KdV-rel ated solutions, s = +1

tL

10F e -
B ——— \\
5 N\
=} \
_ 0
g \ N
A TS
-5 \\ N - '{)&
X N NI
g-m """""""""""
A -2 0 2 4

position Xx

Figure 11: Localized antikink (negative pulse) solutions, as obtained from the KdV Eq. (23),
for the displacement u(z,t) (relative displacement w(z,t) ~ du(x,t)/0x), for positive po, i.e.
s = 41 (for Debye interactions); v = 1 (solid curve), v = 2 (long dashed curve), v = 3 (short
dashed curve).

Let us see what happens if higher order nonlinearity is also kept in the description. One
thus obtains the extended KdV (eKdV) equation

wy — awwe + aw? we + bweee = 0, (26)

where the extra coefficient @ = ¢o/(2cr) > 0 is related to cubic force nonlinearities [i.e. a ~
U (rg)]. Contrary to Eq. (23), the eKdV Eq. (26) possesses both negative and positive pulse
solutions (solitons) for w, thus yielding positive and negative kink-shaped excitations for the
displacement u = [ wdx; see in [Kourakis & Shukla, 2004d] for details and analytical expressions.

It is straightforward to check that @ ~ 2a roughly, in a real Debye crystal (for k ~ 1). We
thus draw the conclusion that the KdV approach is not sufficient. Instead, one should rather
employ the extended KdV description, which accounts for both compressive and rarefactive
lattice excitations (cf. Fig. 12), sharing the same qualitative features as its simpler KdV

counterpart.

A
EKdV vs. KdV, s = +1
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Figure 12: Solutions of the eztended KAV Eq. (for gy > 0; dashed curves) vs. those of the KAV
Eq. (for go = 0; solid curves): (a) relative displacement u,; (b) grain displacement u.
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6.2 Boussinesq and Generalized Boussinesq equations

As an alternative to the approach presented in the previous paragraph, Eq. (22) can be reduced
to a Generalized Boussinesq (GBq) Equation

w — 'U[% Wey = h Wagre + p(w2)x:v + q (wg)xac (27)

(w=wug; p=—po/2 <0, q=qo/3>0). For ¢ ~ gy = 0, one recovers the Boussinesq (Bq)
equation, widely studied in atomic chains (and hydrodynamics, earlier). As physically expected,
the GBq (Bq) equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive
(only compressive, respectively) solutions; however, the (supersonic) propagation speed v now
does not have to be close to the sound velocity ¢z, (as in the KdV/eKdV cases). In any case,
all of the above theories share a qualitative soliton feature, namely the decrease of the soliton
width for higher velocity: the faster the soliton, the narrower it is; see Fig. 13 (also cf. Fig. 11).
A detailed comparative study of (and analytical expressions for) these soliton excitations
(omitted since too lengthy to reproduce here) can be found in [Kourakis & Shukla, 2004a].

1 ,‘\ 10 !
i \ o !
— 0.8; =
So0 = o
Soe N RN
c \\ ~ c \
S0.4 e~ o AN\
S ? — - = __ - \\\
8 0 2 ------------------ 8 2 \“\______§

1.5 2 2.5 3 3.5 4 4.5 5 1.02 1.04 1.06 1.08 1.1
Mach nunber M = v/cO Mach nunber M = v/cO

Figure 13: The (reduced) soliton length L/rq is depicted vs. the soliton Mach number M = v/cg,
as results from the GBq and the EKAV theories: lower (short-dashed) and upper (long-dashed)

curves, respectively. The right figure depicts the near-sonic region, i.e. near M = 1, where the
two theories practically coincide.

7 Intrinsic Localized Modes

Increasing interest has been manifested in the last decade in highly localized periodic nonlinear
excitations occurring in discrete lattices; these Intrinsic Localized Modes (ILMs) were later

termed Discrete Breathers (DBs), due to their “breathing” oscillatory character; their form
reads:

o0
up(t) = Z A i exp(ikwt), (28)
k=—o00

where one assumes A, (k) = A} (—k) for reality and |A, (k)| — 0 as n — £oo, for localization.
Thanks to the substrate or coupling nonlinearity (which induces an amplitude-dependence in
the oscillation frequencies) and to the crystal discreteness (resulting in a finite phonon frequency
band), DBs have been proved (and, lately, experimentally confirmed, in various systems) to be
remarkably long-lived and robust, with respect to external perturbations; see in [Campbell et
al., 2004] for an introductory level review; also see [Flach & Willis, 1998] for a more exhaustive
account. One might therefore naturally anticipate the existence of DBs in a dust crystal, which
is intrinsically gifted with the two ingredients of the recipe: discreteness and nonlinearity.

16



Following the pioneering analytical and numerical considerations of ILM existence due to
coupling anharmonicity (in discrete FPU chains) by Sievers, Takeno, Page and coworkers [Siev-
ers & Takeno, 1988; Takeno & Sievers, 1988; 1989; Page, 1990] presented in the late 1980’s (also
see [Kiselev et al., 1995; Bickham et al., 1997] for a review), the existence of DB modes has
been rigorously proven in the past, for a wide class of nonlinear discrete lattices. Two main
axes of proof have been suggested so far, namely: (i) the analytic continuation from the uncou-
pled ( “anti-continuous”) limit to a weakly interacting oscillator chain [MacKay & Aubry, 1994;
Aubry, 1997], and (ii) the relation of DB existence to (intersection points of) the homoclinic
orbits in the phase space defined by the Fourier component amplitudes {4, } [Flach, 1995] (also
see [Bountis, 2000]). As a matter of fact, (i) supposes (and depends on) the existence of non-
linear oscillatory solutions in the anti-continuous limit, and is thus applicable only in systems
where nonlinearity is induced by an anharmonic on-site (substrate) potential, and where linear
waves obey an optical dispersion law (i.e. mot in simpler chains of nonlinearly coupled oscilla-
tors, characterized by an acoustic mode). The main idea of Aubry et al. was later revisited by
Koukouloyannis & Ichtiaroglou [2002] who used a different continuation approach (based on a
method dating back to the work of Poincaré; see in the latter Ref.). Technique (ii) does not
imply such an assumption, and thus applies in acoustic lattices as well. A recent original formal
proof of DB existence in FPU systems [James, 2001] is also worth noting.

In a general manner, the existence of DBs in a system relies on the condition:

nwp # w(k), Vn e N (29)

implying the (physically transparent) constraint that the breather frequency wp (and its mul-
tiples nwp) should not enter into resonance with the linear frequency w(k) (a function of the
wavenumber k); otherwise, breather localization and longevity is destroyed, since energy is in-
evitably distributed among a variety of linear modes.

7.1 Discrete localized oscillations in the transverse direction

Our basis will be Eq. (8), which governs transverse vibrations in our crystal. From first princi-
ples, the existence of DBs related to transverse grain vibrations in dust lattices seems to be an
inevitable reality. First, the discrete TDLW dispersion relation (9) generally predicts a very nar-
row frequency band W7 min, WT maz], since the two limit frequencies wr ez = wy and wr min =

1 and

(wg — 4w)'/? (see Fig. 4) are very close, in dust crystal experiments; e.g. wg ~ 155sec™
WT,min =~ 150 sec™! (derived from Fig. 3a in [Misawa, 2001]), viz. wro =~ 20 sec”!; note that
w%}o / wg ~ 0.016, implying a very weak coupling. The non-resonance condition (29) is therefore
easily fulfilled, in principle. Now, the form of the on-site potential ®(z) defined in (3) — to be
in principle provided by experiments — suggests a high anharmonicity, characterized by a finite
cubic term (due to its obvious asymmetry (cf. Fig. 2); for instance, the experiment by Ivlev
[2000] provides: a/w? = —0.5mm™" and 8/w? = 0.07mm? (for a lattice spacing, say typically,
of the order of 79 ~ 0.5 — 1.5 mm). Note that the damping coefficient v therein was very low:
v/2m ~ 0.067sec™! and w,/2m ~ 17sec™}, so that v/w, ~ 0.004. Similar data can be obtained
from [Zafiu, 2001; Liu, 2003], although the respective experiments studied single-grain oscilla-
tions (and thus provide no information e.g. on inter-grain coupling, under the given plasma
conditions).

A first approach (to be extendedly reported elsewhere) relies on the discrete NLS (DNLS)
equation [Eilbeck & Johansson, 2003], which can be derived from Eq. (8) in the weak-coupling
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limit: d
du
Z#+P(Un+1+un—1 = 2up) + Q [un|* un = 0, (30)

where z, is assumed of the form 6z, ~ eu, coswpt + O(e?) and the breather frequency is close
to (and above) wp ~ wy; we have defined the smallness parameter € = wr/wy, and

P=-wi/(2wg) <0, Q= (100%/3w} —35)/2w, . (31)

See that P < 0. The sign of (), on the other hand, depends on the sheath characteristics and
cannot be prescribed. As a very preliminary remark, existing experimental values for «, 3 seem
to suggest that Q > 0 (see e.g. the Ivlev values in §2.3 above above)!!; bright (dark) DBs are
thus intuitively expected to exist below (above) the linear frequency band.

This method was elegantly formulated in [Morgante, 2000]'? and in preceding studies of
standing waves in lattices [Kivshar & Luther-Davies, 1998], so that long known results may apply
(upon modification to account for inverse dispersion). Although this is only an approximate
approach to the problem, it captures the essential physics; this method describes the well-known
tendency of nonlinear discrete systems towards energy localization via modulational instability
[Kivshar & Peyrard, 1992; Daumont et al., 1997; Peyrard, 1998], which may possibly lead to the
formation of either bright (see Fig. 14) or dark (see Fig. 15; cf. [Alvarez et al., 2001]) type ILMs
with frequencies outside the linear TDLW band; see [Kourakis & Shukla, 2005]. Still, values for
the nonlinearity parameters should be supplied by refined, appropriately designed experiments
before any conclusions are drawn.

(a) (b)

Figure 14: Localized DB excitations of the bright type (heuristic sketch): (a) odd-parity solution;
(b) even-parity solution.

Figure 15: Localized DB excitations of the dark type (heuristic sketch): (a) black-type solution;
(b) grey-type (phase-twisted) solution.

A more detailed study should incorporate a multi-mode description of transverse DBs [see
Eq. (28)], via a refined analytical and numerical investigation. In specific, the requirements
for (transverse) DB existence may be elegantly quantified via the frequency (square) ratio € =
w3 /wg, which qualitatively expresses the strength of the inter-grain (electrostatic) coupling in

"Relying on these (preliminary) values, ®(z) comes out to be a soft potential, i.e. nonlinear oscillation frequency
will tend to lower with amplitude.
125ee that A therein is ~ —Q here.
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comparison with the substrate potential-related (single grain) oscillation eigenfrequency (see the
definitions above). The limit € — 0, which defines the so-called anti-continuum limit [MacKay
& Aubry, 1994; Aubry, 1997], as mentioned above, describes a chain of independent oscillators
(trivial localized solution). Some of the studies which are on the way regard the existence
of transverse multibreathers for finite € [Koukouloyannis & Kourakis, 2005], as well the exact
numerical computation of such solutions via a sophisticated analytical and numerical method
(which actually consists in searching for points of intersection among the homoclinic orbits in
a multidimensional phase space) [Basios et al., 2005]. Furthermore, at a later step, one should
add effects like damping (i.e. v # 0) and coupling nonlinearities. These studies are on the way,
and progress will be reported later.

7.2 Discrete localized oscillations in the longitudinal direction

As already mentioned, the longitudinal evolution Eq. (17) has long been studied in the context
of FPU lattice theory. Following earlier pioneering works [Sievers & Takeno, 1988; Takeno &
Sievers, 1988; 1989; Page, 1990] (also see in [Kiselev et al., 1995; Bickham et al., 1997] and
Refs. therein), the existence of DBs in FPU chains was rigorously proven in [James, 2001];
see in [Sanchez-Rey et al., 2004; Flach & Gorbach, 2004] for two recent studies, establishing
the existence of bright and dark breathers in FPU chains. According to James [2001], small
amplitude breathers with frequency slightly above the phonon band will exist if

B= %V”(O)V””(O) VO > 0 (32)

and will not exist otherwise. Now, expressing Eq. (17) as

6z,
dt?

one comes up with the effective (horizontal) coupling potential

1 1 1
V(y) = 5“’%,01/2 - §a2oy3 + 1%094,

m =V (6xpns1 — 0zn) — V'(0xp — d20-1),

(33)

which yields B = 3a30w%70 — 4a3, (see that B does not depend on the sign of agp). Given the
definitions of the coefficients wr, o, azp and agp in our case (see in the Appendix), one may obtain
B as a function of the dust lattice parameter x, and then study it numerically: a first numerical
check provides a negative B (Vk), hence non-existence of DBs in a (Debye) dust crystal. Of
course, this conclusion depends on the form of the potential and definitely deserves further
investigation (left for a more detailed report).

8 Conclusions

We have reviewed various aspects regarding the nonlinear motion of charged particles (grains) in
a (1d) dust mono-layer. We have shown that the self-modulation of lattice vibrations in either the
transverse or longitudinal directions, due to the sheath and electrostatic coupling nonlinearity,
may lead to modulational instability and to the formation of modulated envelope localized
structures (envelope solitons). Furthermore, localized excitations (solitons) may propagate in
the lattice; both compressive and rarefactive longitudinal excitations (kink-shaped solitons)
are predicted by soliton theories via a continuum approach. Finally, discrete (breather-type)
excitations (intrinsic localized modes) may in principle occur in both longitudinal and transverse
directions, provided that their frequency lies outside the linear (harmonic) frequency band.
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The existence and properties of these localized excitations may be investigated (and hopefully
confirmed) by appropriately designed experiments.
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Appendix
A. Definitions: characteristic frequencies and coefficients
We have defined the longitudinal/transverse oscillation characteristic frequencies
wop = U"(ro)/M, Wiz =—U'(ro)/(Mro), (34)

(both assumed to be positive for any given form of U; such is the case for the Debye potential: see below)
and the quantities

1 1
a0 = =53 U"0) s ane == [U/(0) = ol ()]
1 1 1
om = g7 U"0). 2 =~ [U7(r0) = rol (o) 73 5 U7 0)] (39)

which are related to coupling nonlinearities. The gap frequency w, and the nonlinearity coefficients «
and ( are related to the form of the sheath anharmonic potential ® via

W= "(20)/M,  a=d"(x)/(2M), B =" (z)/(6M). (36)

The prime denotes differentiation, e.g. U"(rg) = dQU(T)/dTQ‘T:r .

The continuum description involves the definitions: py = —r3U" (ro)/M = 2agor3 and qo = U"" (ro)rd/(2M)
= 3azora; see that both are positive quantities of similar order of magnitude for Debye interactions (see
in [Kourakis & Shukla, 2004a] for details).

B. Form of the coefficients for the Debye interaction potential

Consider the Debye potential (energy) Up(r) = qép(r) = ¢>e~"/*P /r. Let us define the (positive real)
lattice parameter k = ro/Ap, which expresses the ratio between the lattice spacing rg and the Debye
(screening) length Ap. Applying the above definitions, one straightforward has

K3
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where the prime denotes differentiation and [ = 1,2,3,... is a positive integer. Now, combining with
definitions (34, 35), we have:

2¢> . 1+rK+k?)2 @ _1+k
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Note that k is of the order of unity in experiments (roughly, x ~ 0.5 — 1.5); therefore, all coefficients turn
out to be of similar order of magnitude, as one may check numerically.

Let us retain, for later use, the characteristic dust lattice frequency scale wo = [¢%/(M\3,)]/? which
naturally arises from the above definitions; in real experiments, this is of the order of XX Hz.
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