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Collisionless magnetic field generation

in relativistic plasmas

Francesco Pegoraro

Abstract

At low frequencies and long time scales, magnetic fields emerge as the
dominant factor in the plasma dynamics as a consequence of the effective
cancellation of the electric forces due to plasma quasi-neutrality.

Conversely, at high frequencies and shorter time scales, magnetic fields
play an increasingly important role when the particle velocity approach
the speed of light c.
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Magnetic field generation [1]

Outline

A relativistic plasma exhibits new phenomena where the nonlinearity of the
relativistic particle kinematics and the nonlinearity of the magnetic part of the
Lorentz force become dominant.

In these relativistic regimes extremely large, quasi-stationary magnetic fields can
be generated in plasmas, e.g., by high intensity laser pulses. These fields can
change the plasma dynamics.

Relativistic regimes of interaction between a plasma and a laser pulse can be
characterized in terms of the dimensionless amplitude of the laser pulse by the
condition

a ≡ (eA/mec
2) > 1

where A is the amplitude of the pulse vector potential.
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I will discuss a fundamental mechanism of magnetic field generation through the
onset of a collective plasma instability.

This mechanism applies to high temperature - high energy plasma regimes
where collisions are weak in the case where the electron distribution function in
momentum space is anisotropic.

In this context I will discuss the main features of the Weibel instability of two
counter-streaming electron beams (also called Current Filamentation Instability).

This mechanism of magnetic field generation applies to plasmas ranging from
laboratory experiments to space plasma and cosmology.

Physics Department University of Pisa pegoraro@df.unipi.it



Magnetic field generation [3]

Plasma dynamics constraints

on the magnetic field generation

A direct link between the particle and the magnetic field dynamics in a plasma,
which can be applied to a variety of different plasma regimes, is obtained by
combining Faraday’s law and the mean electron momentum equation

∇× E = −1

c

∂B

∂t
(1)

men

[
∂ue

∂t
+ (ue · ∇)ue

]
= −∇ · Πe − ne

[
E +

ue

c
× B

]
+ C, (2)

where Πe is the effective electron ”pressure” tensor and C stands generically
for collisional effects (such as electron viscosity and, most important, electron
resistivity). For the sake of simplicity we start by using nonrelativistic equations.
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As long as the form and dependencies of the effective “pressure” tensor Πe are
not specified, Eq.(2) is general and is not based on any fluid model1.
Kinetic effects enter the expression of the pressure tensor which is defined in
terms of the electron distribution function by

Πe,jk ≡
∫

dv fe(vj − ue,j)(vk − ue,k), (3)

where

ue,j ≡ (

∫
dv fevj)/(

∫
dv fe).

In the absence of a fluid closure, the expression of Πe in Eq.(2) must be
determined independently as indicated in Eq.(3) from the electron distribution
function fe(x, v, t) obtained from the solution of the Vlasov equation.

1Aside for the dissipative term C, Eq.(2) corresponds to the first velocity moment of Vlasov’s equation for the

electron distribution function fe(x, v, t).
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In the case of low frequency, large scale phenomena in a magnetized plasma
described by the Magnetohydrodynamic equations, we can identify the electron
mean velocity ue with the plasma fluid velocity u and we can assume that the
pressure is isotropic, Πe → peI, and that it obeys a polytropic closure of the form
pe = pe(n).
For these low frequency phenomena, the effect of electron inertia on the l.h.s. of
Eq.(2) and of electron viscosity in the collisional term C can be neglected in most
cases.

Then, from Eqs.(1,2) we obtain

∇×
[
E +

u

c
× B

]
= ∇×

(ηc

4π
∇× B

)
, (4)

where η is the electric resistivity of the plasma.
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In the ideal limit η → 0, Eq.(4) reduces to the well known magnetic flux
conservation theorem2

dΦ

dt
= 0, (5)

where Φ is the magnetic flux through a surface moving together with the plasma,
i.e. with the plasma fluid velocity u. The flux conservation expressed by Eq.(5)
is generally referred to as the “freezing” of the magnetic field in the plasma.

In the case of fast phenomena that occur on times scales much shorter then
the ion dynamical time, we can assume that the ions remain at rest. Again, if
we assume an isotropic electron pressure with a polytropic closure and neglect
collisional effects, from Eqs.(1,2) we obtain

∇×
[
Ee +

ue

c
× Be

]
= 0. (6)

2see, e.g., N. Krall, A. Trivelpiece, Principles of Plasma Physics, (McGraw-Hill, New York, 1978), chapter 3.
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The “generalized ” electric and magnetic fields Ee, Be include the effect of
electron inertia, obey the homogeneous Maxwell’s equations and are defined by

Ee ≡ E +
me

2e
∇u2

e +
1

e
∇he +

me

e

∂ue

∂t
≡ −∇ϕe − 1

c

∂Ae

∂t
, (7)

Be ≡ B − mec

e
∇× ue ≡ ∇× Ae. (8)

Here ϕe and Ae are the generalized scalar and vector potentials,
Ae ≡ A + (mec/e)ue is related to the electron canonical momentum, and
∇he ≡ ∇pe/n is the gradient of the electron enthalpy
with pe the isotropic electron density.

Equation (6) expresses the freezing of the generalized magnetic field Be (often
called “generalized vorticity”, in contrast to the standard fluid vorticity ∇× ue)
in the electron fluid.
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In a uniform density plasma the generalized vector potential Ae can be written as
A − d2

e∇2A, where de ≡ c/ωpe, is the collisionless electron skin depth and ωpe is
the plasma frequency.
Thus, in the case of phenomena characterized by spatial scales larger than de,
the generalized vector potential Ae and the fields Ee and Be reduce to A, E and
B respectively.
In this limit, if the assumptions mentioned above Eq.(6) apply, the magnetic field
B is frozen in the electron fluid3.

These flux conservation theorems are widely used both in astrophysical and
laboratory plasmas as they are very convenient when describing the plasma
behaviour on space- and time-scales where dissipative effects are unimportant.

3see A.S. Kingsep, K.V. Chukbar, V.V. Yan’kov, 1990, Reviews of Plasma Physics, ed. by B. Kadomtsev,

(Consultants Bureau, New York, N.Y.) 16, 243.
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However these conservation theorems are based on two strong assumptions that,
as is well known, can be easily violated in a real plasma in particular when kinetic
effects become important:

a) that the effective pressure tensor Πe in Eq.(2) is isotropic
(we recall that, in the case of an anisotropic pressure tensor, ∇ × (∇ · Π) does
not vanish so that, in general, an anisotropic effective pressure tensor violates
magnetic flux conservation)

b) and, if Π = pI, that the scalar pressure p satisfies a polytropic closure
(∇× [(1/n)(∇p)] does not vanish unless p = p(n)).
This implies that the magnetic flux conservation is violated if the electron
temperature gradient is not parallel to the density gradient (baroclynic effect).
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Indeed all the mechanisms of magnetic flux generation that have been introduced
in the literature or investigated experimentally, can be viewed as violations either
of condition a) (non-potential ponderomotive force, electron anisotropy etc.) or
of condition b) (baroclynic effect).

J. Stamper, K. Papadopoulos, et. al., Phys. Rev. Lett., 26,1012 (1971)

J.A. Stamper, Laser Part. Beams 9, 841 (1991)

M.G. Haines, Can. J. Phys., 64, 912 (1986).

S.C. Wilks, W.C. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett., 69, 1383 (1992).

R.N. Sudan, Phys. Rev. Lett., 70, 3075 (1993).

V.Yu. Bychenkov, V.I. Demin, V.T. Tikhonchuk, Sov. Phys. JETP, 105, 118 (1994).

M. Tabak, Y. Hammer, et. al., Phys. Plasmas, 1, 1626 (1994);

R.J. Mason, M. Tabak, Phys. Rev. Lett., 80, 524 (1998).

G. Askar’yan, S. Bulanov, F. Pegoraro, A. Pukhov, JETP Letters, 60, 240 (1994).

L. Gorbunov, P. Mora, T.M. Antonsen, Jr. Phys. Rev. Lett. 76, 2495 (1996).
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A. Pukhov, J. Meyer-ter-Vehn, Phys. Rev. Lett. 76, 3975 (1996).

L. Gorbunov, R. Ramazashvili, Sov. Phys. JETP, 87, 461 (1998).

M. Borghesi, A.J. Mackinnon, et. al., Phys. Rev. Lett. 80, 5137 (1998);

M. Borghesi, A.J. Mackinnon, et. al., Phys. Rev. Lett. 81, 112 (1998).

Y. Sentoku. K. Mima, S-i. Kojima, H. Ruhl, Phys. Plasmas, 7, 689 (2000).

An anisotropic electron distribution function leads according to Eq.(3) to an
anisotropic pressure tensor Πe which can generate a magnetic field due to the
development of a Weibel-type instability

E.W. Weibel, Phys. Rev. Lett., 2, 83, (1959).

In this lecture the explicit case of the magnetic field generation by the current
filamentation instability will be examined.
In this case the anisotropy of the effective pressure tensor Πe arises from the
relative motion of the two counterstreaming (cold) electron populations.
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Pressure anisotropy, repulsion of opposite currents

and magnetic field generation

I will briefly recall the physical mechanism that is at the basis of the Weibel
instability and derive the dispersion relation of the closely related “electromagnetic
current filamentation instability” (ECFI) that is of direct interest for explaining
the generation of a quasistatic magnetic field in the wake of an ultra short
ultraintense laser pulse propagating in a plasma4

4see G.A. Askar’yan, S.V. Bulanov, F. Pegoraro, A.M. Pukhov, JETP Letters, 60, 240 (1994)

G.A. Askar’yan, S.V. Bulanov, et. al., Comm. Plasma Physics Contr. Fusion, 17, 35, (1995);
G.A. Askar’yan, S.V. Bulanov, et. al., Plasma Physics Reports, 21, 835, (1995);
S.V. Bulanov, T.Zh. Esirkepov, et. al., Physica Scripta, T 63, 280 (1996);

F. Pegoraro, S.V. Bulanov, et. al., Physica Scripta, T 63, 262 (1996);
G.A. Askar’yan, S.V. Bulanov, et. al., Plasma Phys. Contr. Fusion, 39, 137 (1997);

S.V. Bulanov, T.Zh. Esirkepov,et. al., Phys. Rev. Lett., 76, 3562, (1996).
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The electromagnetic current filamentation instability occurs in the case of
two counterstreaming electron populations (with zero net total current) and
develops perpendicularly to the direction of the electron streams leading,
because opposite currents repel each other, to their spatial separation and to
the generation of a magnetic field.

The connection between the Weibel instability and the current filamentation
instability can be seen by observing that, in the framework of the mean electron
momentum equation (2), the effect of the relative velocity between the two
counterstreaming electron populations appears as a contribution to the effective
pressure tensor Πe.

This can be understood by referring, e.g., to an anisotropic electron distribution
with temperature Tx along the x-direction larger than the temperature T⊥ in the
y, z directions.
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By interpreting the portions of this distribution function with positive and with
negative velocity along x as corresponding to two different electron populations
with non zero, oppositely directed, net stream velocities, we can draw the analogy
with a distribution function which consists of two separate populations with
isotropic temperature equal to T⊥ and velocity separation δux ∼ 2(2Tx/me)

1/2.
Clearly this analogy is meaningful only if Tx is sufficiently larger than T⊥.

In the case of two counter propagating electron populations, the transverse
electromagnetic current filamentation instability is coupled to the two stream
electrostatic instability that develops along the x direction.

The effect of this latter instability is to transfer momentum from one electron
population to the other.
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For the sake of illustration we will recall here the linear dispersion relation of these
coupled instabilities in the two electron fluid approximation following the analysis
of 5

A. D. Steiger, C. H. Woods, Phys. Rev. A, 5, 1467 (1971)

V. Yu. Bychenkov, V. P. Silin, V. T. Tikhonchuk, Sov. Phys. JETP, 98, 1269 (1990).

F. Califano, F. Pegoraro, S.V. Bulanov, Phys. Rev., E 56, 963 (1997);

F. Califano, R. Prandi, et. al., Phys. Rev. E 58, 7837 (1998)

F. Califano, R. Prandi, et. al., J. Plasma Physics 60, 331 (1998) and ref. therein.

In the analysis of nonlinear phase of these instabilities it has been shown that the
saturation mechanism of these coupled instabilities is related to the formation of
vortex-like structures in phase space.

F. Califano, F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 84, 3602 (2000).

F. Califano, F et. al., 32nd EPS Plasma Physics Conf., Tarragona, Spain O4.023 (2005)

5This analysis has been extended to a kinetic treatment in F. Califano, F. Pegoraro, S.V. Bulanov, A. Mangeney,

Phys. Rev., E 57, 7048 (1998).
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Assuming the ions to be at rest and to provide a uniform neutralizing background,
the linear dispersion relation can be obtained by linearizing the relativistic
equations for the two counter-streaming cold electron populations together with
Maxwell’s equations:

∂nα

∂t
= ∇ · jα,

∂pα

∂t
= −uα · ∇pα − (E + uα × B), (9)

∂B

∂t
= −∇× E,

∂E

∂t
= ∇× B −

∑
α

jα, (10)

with uα = pα/(1 + p2
α)1/2, and jα = −nαuα, α = 1, 2.

In Eqs.(9,10) quantities are normalized on a characteristic density n̄, on the speed
of light c and on the plasma frequency ω̄pe = (4πn̄e2/m)1/2.

We consider a homogeneous plasma with velocities along the x direction u0,α,
such that the net current density is zero

∑
α n0,αu0,α = 0.
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We consider a perturbation with frequency ω and wavevector k = (kx, ky), such

that the perturbed magnetic field is in the z direction.

Defining Ωα = ω− kxu0,α and Γα = (1−u2
0,α)−1/2, the linear dispersion relation

reads:

(1 − Ω−2
2 )

[
k2

x(1 + Ω−2
4 ) − ω2(1 − Ω−2

1 ) − 2ωkxΩ−2
3

]
(11)

+k2
y

[
(1 − Ω−2

1 )(1 + Ω−2
4 ) + Ω−4

3

]
= 0,

with
Ω−2

1 =
∑
α

n0,α

ΓαΩ2
α

, Ω−2
2 =

∑
α

n0,α

Γ3
αΩ2

α

, (12)

Ω−2
3 =

∑
α

n0,αu0,α

ΓαΩ2
α

, Ω−2
4 =

∑
α

n0,αu2
0,α

ΓαΩ2
α

.
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When the perturbation propagates parallel to the mean electron streams, i.e.
ky = 0, the electrostatic two-stream instability amplifies the electric field Ex with
a growth rate obtained by solving the equation 1 − Ω−2

2 = 0.
No magnetic field is produced in this case.

In the opposite limit, kx = 0, the dispersion relation reduces to

ω2(1 − Ω−2
2 )(1 − Ω−2

1 ) − k2
y

[
(1 − Ω−2

1 )(1 + Ω−2
4 ) + Ω−4

3

]
= 0, (13)

which contains two oscillatory solutions and one purely growing electromagnetic
instability (the current filamentation instability) which amplifies the magnetic
field Bz with a growth rate that is linear on ky for kyde < 1 (in dimensional
units) and becomes approximately constant and of order ωpe for kyde > 1 when
the velocity on the two counterstreaming beams is close to the velocity of light.
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The fact that in the relativistic case the ECFI growth rate is of the order of the
Langmuir frequency indicates that this mechanism of magnetic field generation
can indeed be effective in the case of the interaction of an ultrashort, ultraintense
laser pulse with a plasma where most phenomena occur on timescales of the order
of the electron dynamical time ω−1

pe .
In this framework the two counterstreaming electron populations consist of a
smaller population of fast (relativistic) electrons, accelerated by the laser pulse
interacting with the plasma, and by a larger population of slow electrons that
provide the return current needed in order to maintain charge neutrality in the
plasma.

It is clear that the linear stability analysis in a homogeneous plasma sketched
above is not sufficient in order either to determine the efficiency of the conversion
of the kinetic energy of the fast electrons into magnetic energy, which require
a nonlinear saturation analysis, or the spatial structure of the magnetic field
generated in the wake of a laser pulse.
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A rough estimate of the magnitude of the generated magnetic field can be
obtained by observing that the ECFI growth rate reaches its maximum value
for wavenumbers of the order of the inverse collisionless electron skin depth
d−1

e ≡ ω−1
pe /c.

Thus we may expect that the characteristic transverse size of the current channels
produced by the nonlinear evolution of the ECFI be of the order of de.
Since the maximum current density in the current channel is given by

Jmax ∼ −enc
in the quasistatic approximation we obtain for the maximum dimensionless value
of the generated magnetic field

eB/(mecω) ∼ ωpe/ω.
Here ω is the carrier frequency of the laser pulse and the normalization is chosen
so as to follow the one generally adopted for the dimensionless amplitude a of the
laser pulse a ≡ |eA/(mec

2)| ≡ |eE/(mecω)|, where A and E are the amplitudes
of the vector potential and of the electric field in the pulse.
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In this estimate correction factors arising from the relativistic modification of the
electron mass have been disregarded.

For a relativistic laser pulse laser pulse, a > 1, with wavelength λ ∼ 1µm
propagating in a plasma with density, e.g., half its critical value, the amplitude B
of the generated quasistatic magnetic field is extremely large, ≈ 100MG.

A similar estimate can be obtained from energy considerations, by requiring that
the magnetic energy density be at most of the order of the kinetic energy density
of the fast electrons. Taking this latter to be roughly of order nmec

2, we obtain
e2B2/(m2

ec
2) ≡ Ωce < ω2

pe.
A more detailed estimate of the magnitude of the magnetic field and of the
efficiency of the conversion from kinetic to magnetic energy can be obtained by
studying the kinetic saturation of the ECFI 6.

6see F. Califano, F. Pegoraro, S.V. Bulanov, A. Mangeney, Phys. Rev., E 57, 7048 (1998)
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The overall result is that, in the case of two symmetric oppositely propagating
fast beams, the conversion efficiency can be rather large, leading to approximate
equipartition between kinetic and magnetic energy.
On the other hand, when the beams are non-symmetric, as is the case where the
velocity of the electrons in the return current is much smaller than that of the fast
electrons, the conversion efficiency drops significantly below energy equipartition.

In a number of cases of interest the fast electron beam is strongly localized in
the plane perpendicular to its direction of propagation and the separation between
the fast electron current and the return current is expected to lead to a strongly
inhomogeneous magnetic field.

The effect of the finite transverse with of the beam was investigated in 2-D in
F. Califano, F. Pegoraro, S.V. Bulanov, Phys. Rev., E 56, 963 (1997);

The magnetic field inhomogeneity along y is enhanced by the fact that the ECFI
has a resonant-type spatial behaviour.
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Resonant Weibel Instability

Let us assume that the beams inhomogeneity can be described as one
dimensional along the y axis and, for the sake of simplicity, let us consider the
symmetric (equal densities) case.

In the case of inhomogeneous stream velocities a singularity occurs in the
spatial structure of the Weibel instability.
This is best seen by taking at first one-dimensional perturbations with given
growth rate γ of the form Ex(y, t) = Exo(y) exp (γt). Then, the linearized
system of Eqs.(9,10) in the nonrelativistic limit can be cast as a second order
differential equation for the inductive electric field Ex.
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Magnetic field generation [24]

This differential equation reads

∂

∂y

{
[2v2

0(y) − γ2]
∂Exo(y)

∂y

}
+ γ2(γ2 + 2)Exo(y) = 0, (14)

where v2
0(y) = v2

0,1(y).
If γ < γmax, where γmax is the maximum growth rate computed for a uniform
plasma with the largest value of v2

0(y), the coefficient of the second order
derivative vanishes for purely growing modes.
A local Frobenius analysis7 of Eq. (14) shows that the solution is singular at the
point ȳ where 2v2

0(ȳ) = γ2. In the neighborhood this point we find
Exo ∝ ln |y − ȳ|

which leads to Bzo ∝ 1/(y − ȳ).

7C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers McGraw-Hill,

New York, (1978), p. 70.
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The logarithmic singularity in Exo is mathematically analogous to the one which is
encountered at the Alfvèn resonance in the case of shear-Alfvèn waves propagating
in a weakly inhomogeneous plasma and for oscillations in inhomogeneous flows8.

The singularity in the spatial dependence of Bzo indicates that the magnetic
field generated by the Weibel instability in a nonuniform plasma is strongly
inhomogeneous, and that it is localized in the neighborhood of the resonant
point.
Around this point the field reverses its polarity, which corresponds to the formation
of a current sheet.

8see A. Hasegawa and C. Uberoi, The Alfvèn Wave, DOE Critical Review Series U.S. Dept. of Energy,

Washington, DC, (1982);
G. Bertin, G. Einaudi, F. Pegoraro, Comments Plasma Phys. Control. Fusion 17, 35 (1986);

A. V. Timofeev, Usp. Fiz. Nauk 102, 185 (1970) [Sov. Phys. Usp. 13, 632 (1971).
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Magnetic Vortices

The long time behaviour of the bipolar quasistatic magnetic field generated by
inhomogeneous beams has been shown ito develop vortex structures

S.V. Bulanov, T.Zh. Esirkepov,et. al., Phys. Rev. Lett., 76, 3562, (1996);

S.V. Bulanov, T. Zh. Esirkepov, et. al., Plasma Physics Reports 23, 284, (1997).

The bipolar magnetic ribbon develops an instability which tends to bend it
and to produce an electron velocity pattern similar to the von Karmàn row in
hydrodynamics. The resulting configuration of the magnetic field corresponds
that of an antisymmetric vortex street in the electron fluid velocity, where the
oppositely polarized vortices are shifted, one with respect to the other, along the
two chains.
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After the ECFI has saturated and the counterstreaming electron populations
have “thermalized”, the electrons can satisfactorily be described as a single cold
population.
In the absence of dissipation and of source terms and for relatively fast phenomena
such that the ions can be taken as immobile, the generalized vorticity

∇× [p − (e/c)A].
i.e. of the rotation of the canonical electron momentum field, is frozen in the
(cold) electron flow (see Eqs.(6).
If we further assume that the electron motion that sustains the quasistatic
magnetic field is slow compared to the Langmuir time and that its velocity is
much smaller than the speed of light c, the electron fluid can be regarded as
incompressible and the electron fluid velocity is related to the magnetic field as
v = −(c/4πen)∇× B.
Thus the domains where the magnetic field is stronger correspond to vortices in
the electron fluid motion.

Physics Department University of Pisa pegoraro@df.unipi.it



Magnetic field generation [29]

In a two dimensional configuration where the plasma currents flow in the x- y
plane, taking B to be along the z-axis, we obtain for B ≡ Bez

(∂/∂t + ẑ ×∇B · ∇) (∆B − B) = 0, (15)

where the time and space units are the inverse cyclotron frequency in the generated
magnetic field Ω−1

Ce, and de = c/ωp, the collisionless electron skin depth. Equation
(15) is known as the Hasegawa-Mima equation in the limit of zero drift velocity9.

Equation (15) admits point-like vortex solutions10. These solutions provide a
convenient tool for representing the antisymmetric vortex street, and for showing
that its propagation velocity is slow compared to the speed of light c when the
distance between the vortices becomes larger than de.

9A. Hasegawa, K. Mima, Phys. Rev. Lett. 39, 205 (1997); A. Hasegawa, K. Mima, Phys. Fluids 21, 87 (1978).
10W. Horton, A. Hasegawa, Chaos, 4, 227 (1994); G.Matsuoka, K.Nosaki, Phys. Fluids B,4, 551 (1992).
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Vortex dynamics is considered to be important in explaining a wide variety of
nonlinear processes in magnetized plasmas and to represent the final stage of the
development of turbulence11.

In a discrete vortex solution the generalized vorticity is localized at the points
r = rj:

Ω = ∆B − B =
∑

j

Γjδ(r − rj(t)).

Here Γj are constants and r = (x, y).

Then we have B =
∑

j Bj, Bj(r, rj(t)) = −(Γj/2π) K0(| r − rj(t) |).
Here and below Kn(ξ) are modified Bessel functions.

11V.I.Petviashvili, and O.M.Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach
Science Publishers (1992); R.L.Stenzel, J.M.Urrutia, and C.L.Rousculp,Phys. Rev. Lett. 74, 702, (1995); ‘

W.Horton, and A.Hasegawa, Chaos, 4, 227 (1994).
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The curves rj(t) are determined by the characteristics

ṙj = ẑ ×∇ ·
∑
k �=j

Bk(rj(t), rk(t)).

From these expressions we obtain the equation of motion of the vortices

ẋj = − 1

2π

∑
k �=j

Γk
yj − yk

rjk
K1(rjk), ẏj =

1

2π

∑
k �=j

Γk
xj − xk

rjk
K1(rjk), (16)

where rjk =| rj − rk |= [(xj − xk)
2 + (yj − yk)

2]1/2.

We will assume that all vortices have the same absolute amplitude and take
|Γj| = 1.
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We consider the problem of the stability of an infinite vortex chain.
In the initial equilibrium the vortices have coordinates
x0

j = js, y0
j = 0, −∞ < j < +∞ and amplitudes Γj = 1.

If the distance s between neighboring vortices is much smaller than one (in
dimensional units much smaller than the collisionless skin depth), for s � |y| � 1
the chain separates two subregions, an upper and lower one, with opposite electron
velocity along x, vx = ∓U = ∓1/(2s).
This is equivalent to a vortex film with uniform surface density of generalized
vorticity, −1/s. Far from the film, for |y| 
 1, both B and vx tend to zero
exponentially. This structure corresponds to two, oppositely directed, electric
current sheets that have a width of order one.

In the analysis of a vortex chain stability we follow the standard approach
developed in hydrodynamics12.

12H. Lamb, Hydrodynamics, Cambridge University Press (1932).
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We consider the motion of the j-th vortex with coordinates x = js + xj(t) and
y = yj(t). Due to the translational invariance of the initial configuration we
seek solutions of Eqs.16, linearized around the equilibrium configuration, of the
form xj = X exp[γt + i(jφ)], yj = Y exp[γt + i(jφ)], with 0 < φ < 2π.
If φ is small, the perturbation has the form of a sinusoidal wave with wavelength
λ = 2π/κ = 2πs/φ, where κ is the wavenumber. The perturbations grow
exponentially in time, and the growth rate γ is given by

γ =
1

π

{[ ∞∑
j=1

K1(js)

js
(1 − cos jφ)

][ ∞∑
k=1

(K2(ks) − K1(ks)

ks
)(1 − cos kφ)

]}1/2

.

(17)

If s � 1 and φ 
 2πs, λ < 1 and Eq.(17) gives γ = [φ(2π − φ)]/(4πs2). When
φ � 1, we have γ ≈ φ/(2s2) = κU , where U = 1/(2s), which coincides with the
growth rate of the Kelvin–Helmholtz instability.
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For s � 1 and φ < 2πs, i.e., for wavelengths greater than the width of the current
sheet (λ > 1), Eq.(17) gives γ = φ2/(πs3) = κ2U/(2π). In the long wavelength
limit the instability becomes slow compared to the Kelvin–Helmholtz instability.
In the limit s 
 1, when the distance between two neighboring vortices is larger
than one, Eq.(17) gives γ ≈ (1 − cosφ) exp(−s)/(s

√
2π) and the instability is

exponentially slow.

Let us consider a double chain of opposite vortices in which the coordinates
and the amplitudes of point vortices are equal to

x0
j = js + Ut, y0

j = 1
2q, −∞ < j < +∞, Γj = −1

for the upper chain, and
x0

k = (k + σ)s + Ut, y0
k = −1

2q, −∞ < k < +∞, Γk = 1
for the lower chain respectively. The distance between neighboring vortices in a
chain is s, the distance between the chains in the y-direction is q, and the lower
chain is shifted along the x-direction by σs: σ = 0 and σ = 1/2 correspond to
the symmetrical and to the antisymmetrical configurations respectively.
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Here

U =
q

π

∞∑
k=0

K1(ρ
′
k)

ρ′k
, ρ′k = [(k + σ)2s2 + q2]1/2 (18)

is the global velocity of the double chain in the x-direction. When s � 1
and q � 1 we recover known results: U = (1/2s) coth(πq/s) for σ = 0, and
U = (1/2s) tanh(πq/s) for σ = 1/2. Far from the vortex row the magnetic
field and the electron fluid velocity tend to zero exponentially. For q < 1 this
configuration corresponds to an electron current sheet with thickness q surrounded
by two opposite current sheets with thickness of order one.

From Eqs.(16) we can obtain the linearized equation of motion of the vortices.
Looking for solutions of the form xj = X exp(γt + i(jφ)), yj = Y exp(γt +
i(jφ)), x′

k = X ′ exp(γt + ikφ)), y′
k = Y ′ exp(γt + i(kφ)), for the perturbations

of the coordinates of vortices from the upper and the lower chain, respectively,
we find the dispersion relation.
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2πγ = −i
X

k

(k + σ)sq

ρ′2
k

K2(ρ
′
k) sin(k + σ)φ ±

j»X
j

K1(ρj)

ρj

(1 − cos jφ)+

X
k

 
K1(ρ

′
k)

ρ′
k

−
q2K2(ρ

′
k)

ρ′2
k

!
(1∓cos(k+σ)φ)

– »X
j

„
K1(ρj)

ρj

− K2(ρj)

«
(1−cos jφ)

+
X

k

 
K1(ρ

′
k)

ρ′
k

−
(k + σ)2s2K2(ρ

′
k)

ρ′2
k

!
(1 ± cos(k + σ)φ)

–ff1/2

. (19)

The symmetrical, σ = 0, vortex row is always unstable.
In the limit s � q � 1 and q � 2πs/φ � 1, we recover Rayleigh’s result for the
growth rate Re(γ) = φU(qφ)1/2/s3/2 = κU(κq)1/2 of the bending instability of
a finite width, fluid stream.
When the perturbation wavelength is larger than one and q (q < 1 < 2πs/φ), we
can estimate the instability growth rate as Re(γ) ≈ κ2U(κq)1/2.
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If the distance between neighboring vortices is larger than one, s > 1, the growth
rate is exponentially small:
2πRe(γ) ≈ [2e−s/2/(2πs3)1/4] [K1(q)/q]1/2(1 − cosφ)1/2.

In the case of the antisymmetrical vortex row with σ = 1/2 we expect a more
complicated behavior of the perturbations, compared to that of the symmetrical
configuration.
In standard hydrodynamics the antisymmetrical von Karman’s vortex row is stable
for q/s ≈ 0.281.
In the hydrodynamic case a point vortex is described by (Γj/2π) ln |r − rj(t)|
instead of the Bessel function K0(|r − rj(t)|).
We can see by direct inspection that for large distance between neighboring
vortices the antisymmetric vortex row is stable.
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Conclusions

Quasistatic magnetic fields and magnetic vortices are a generic feature of
relativistic plasmas.

These coherent structures can be studied with analytical tools, as exemplified
in this presentation, and with the help of high dimensionality kinetic simulations
of the plasma dynamics.

Particle in Cell simulations have shown that the asymptotic evolution of a finite
length laser pulse in a plasma corresponds to the excitation of high amplitude
electron vortices and of low frequency solitons.

N. M. Naumova, J. Koga, et. al., Phys Plasmas, 8, 4149 (2001).
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