

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1673/54

AUTUMN COLLEGE ON PLASMA PHYSICS

5 - 30 September 2005

Shear-driven fluctuations in magnetized plasma: theory and lab comparisons PART II

M. KOEPKE

Physics Dept., West Virginia University, Morgantown, USA

Shear-driven fluctuations in magnetized plasma: Space and lab comparisons

Mark Koepke

Physics Dept., West Virginia University, Morgantown, WV 26506 USA work supported by U.S. National Science Foundation

Useful discussions with J. Bonnell, P. Kintner, M. Andre, D. Knudsen, V. Gavrishchaka, G. Ganguli, C. Teodorescu, E. Reynolds, R. Hatakeyama, T. Kaneko, E. Scime, & R. Merlino are gratefully acknowledged.

Space observations Laboratory observations Space-lab interrelationship

Earth's magnetosphere

Spatial variation of ion beams at the plasma-sheet boundary layer

Regions of the ionosphere

Concept of shear implies orthogonal "flow" and "inhomogeneity" directions

- Fluid definition of shear allows for nonzero n⁻
 ¹d<nv_{dy,z}>/dx
- Kinetic definition of shear requires nonzero $dv_{dy,z}/dx$
- Concentrate on dv_{dy}/dx and dv_{dz}/dx , for – magnetic-field axis *z* (no *z* dependence)
 - inhomogeneity axis x, and
 - flow along either *y* axis or *z* axis.

Measurement of shear in space

- Perpendicular-flow shear
 - Measure the perpendicular electric field $E_{\perp}(t)$
 - Express rate of change in terms of ion flow E_{\perp}/B : $dE_{\perp}/dt = v_{dyi}dE_{\perp}/dx = (E_{\perp}/B)(dE_{\perp}/dx) = E_{\perp}dv_{dyi}/dx$

– Rearranging, $dv_{dyi}/dx = E_{\perp}^{-1} dE_{\perp}/dt$

- Parallel-flow shear
 - Measure ion beam energy
 - Express beam energy in terms of beam velocity
 - Translate between time and space coordinates

Measurement of shear in the lab

- Perpendicular-flow shear
 - Measure ion perp-velocity distribution $f_{0i}(r, v_{\theta})$
 - Determine radial profile of ion flow velocity $v_{d\theta i}(r)$
 - or use energy analyzer to infer $f_{0i}(r, v_{\theta})$
 - or use emissive probe to infer $v_{d\theta i}(r)$ from $E_r(r)/B$
- Parallel-flow shear
 - Measure ion parallel-velocity distribution $f_{0i}(r, v_z)$
 - Determine radial profile of ion flow velocity $v_{dzi}(r)$
 - or use energy analyzer to infer $f_{0i}(r, v_Z)$

Space values of perp-flow shear

- $0.1s^{-1} < (dv_{dyi}/dx) < 1s^{-1}$
 - Hilat satellite Tsunoda et al. [1989]

• $1s^{-1} < (dv_{dyi}/dx) < 5s^{-1}$

- AE-D satellite Basu et al. [1984]
- DE-2 satellite Basu et al. [1988]

FAST satellite McFadden et al

Freja satellite

Basu et al. [1988] McFadden et al. [1998] Hamrin et al. [2001] 400 km 400-900 km 4000 km 1700 km

800 km

• $5s^{-1} < (dv_{dyi}/dx) < 25s^{-1}$

- Javelin rocket *Kelley and Carlson* [1977]
- DE-2 satellite Basu et al. [1988]
- SCIFER rocket Bonnell et al. [1996]
- AT2 rocket *Pietrowski et al.* [1999]
- SCIFER rocket *Kinter et al.* [2000a,2000b]

400 km 400-900 km 400 km 400 km 400 km

Space values of parallel-flow shear

- $0.01s^{-1} < (dv_{dzi}/dx) < 0.1s^{-1}$ - Hawkeye satellite *Kintner* [1976] 125000km - DE-2 satellite *Loranc et al.* [1991] 300 km • $0.1s^{-1} < (dv_{dzi}/dx) < 5s^{-1}$ - DE-2 satellite *Heelis et al.* [1984] 900km - DE-2 satellite *Basu et al.* [1988] 400-900 km - Freja satellite *Knudsen and Wahlund* [1998] 1400km - Cluster *Nykyri et al.* [2003] 8R_E - Cluster Nakamura et al. [2004] 10R_E • $5s^{-1} < (dv_{dzi}/dx) < 500s^{-1}$
 - McFadden et al. [1998] Gavrishchaka et al. [2000]
 Koepke et al. [2003] FAST satellite 4000km
- Other space observations
- OGO 5 satellite *D'Angelo* [1973] 40R_E
- HEOS 2 satellite
- AE-C satellite
- EISCAT Radar

D'Angelo et al. [1974]40 R_EPotemra et al. [1974]600 kmOksavik et al. [2004]250 km

Lab values of perp-flow shear

- $0.1 < (dv_{\rm dyi}/dx)/f_{\rm ci} < 0.5$
 - Kent et al. [1969]
 - *van Niekerk et al*. [1991]

Jassby [1972] Amatucci et al. [1994]

- Koepke et al. [1994, 1995, 1998, 1999]
- $0.5 < (dv_{\rm dyi}/dx)/f_{\rm ci} < 1$
 - Yoshinuma et al. [1999, 2001]
 - Kaneko and Hatakeyama [2005] Reynolds et al. [2005a]
- 1 < (dv_{dyi}/dx)/f_{ci} < 5
 Sato et al. [1986]

Carroll et al. [2003] *Reynolds et al*. [2005a]

Nielsen et al. [1992]

- $10 < (dv_{\rm dyi}/dx)/f_{\rm ci} < 100$
 - Yamada and Owens [1977]
 Peyser et al. [1992]

Mostovych et al. [1989] *Thomas et al*. [2005]

- $100 < (dv_{\rm dyi}/dx)/f_{\rm ci} < 1000$
 - Amatucci et al. [1996,1998] Walker et al. [1997]
 - Matsubara and Tanikawa [2000] Amatucci et al. [2003]

Fusion applications of perp-flow shear

- Wagner et al. [1982]
- Erckman et al. [1993]
- Sakai et al. [1993]
- Burrell [1997]
- Tynan et al. [2001]
- Ellis et al. [2001]

Tokamak Stellarator Mirror trap Tokamak CSDX MRX

Lab values of parallel-flow shear

- $0.1 < (dv_{dzi}/dx)/f_{Ci} < 0.5$
 - Wang et al. [1998]
 - Koepke et al. [2002]
 - Kaneko et al. [2003]

- Agrimson et al. [2001,2002] Teodorescu et al. [2002a,b] Reynolds et al. [2005b]
- $0.5 < (dv_{dzi}/dx)/f_{ci} < 1$
 - D'Angelo and von Goeler [1966] An et al. [1996]
 - Willig et al. [1997]

Merlino et al. [1998]

$$\sigma_{0i}^2 = 1 - (k_y/k_z) (dv_{dzi}/dx)/\omega_{ci}$$

$$\sigma_{ni}^2 = [1 - (k_y/k_z)(dv_{dzi}/dx)(1 - \{n\omega_{ci}/\omega\})/\omega_{ci}]$$

 k_y/k_z differs for drift, acoustic, and cyclotron waves

Kelvin-Helmholtz instability depends on second derivitive of perpendicularflow velocity

• Energy associated with flow velocity αv_v^2

$$=v_y(x_0) + v'_y(x_0) + v''_y(x_0)/2$$

$$< v_y(x_0+x_1) > 2 - < v_y(x_0) > 2 = v_y(x_0)v''_y(x_0) < x_1^2 > 2$$

Instability when $v_y v''_y < 0$

Shear effects

- Inhomogeneity results in discrete eigenmodes Extra eigenmodes have different k_y , k_z values, allowing Landau resonance to optimize. $\varepsilon = \rho_i/L$
- Parallel-velocity shear shifts mode frequency
- $\sigma_{0i}^2 = 1 (k_y/k_z)(dv_{dzi}/dx)/\omega_{ci}$ is dv_{dzi}/dx dependent and frequency changes as shear increases. $\omega = \sigma k_z c_s$

Landau resonance changes as frequency shifts.

• Parallel-velocity shear destabilizes harmonics $\sigma_{0i}^2 = 1 - (k_y/k_z)(dv_{dzi}/dx)/\omega_{ci}$ depends on k_y . Higher harmonics have larger *m* number. $\lambda = 2\pi r/m$; $k_v = m/r$

Primary characteristics of shear-drivenwaves can be categorized by freq. and $k_{\theta}\rho_i$ $\underline{Perp.-velocity shear}$ ω_R $k_{\theta}\rho_i$ dv_{θ}/dr \underline{Prime} $\omega_e^* \pm k_{\theta}v_E$ 0.15 - 0.3 $<\omega_e^*$ \overline{ORIFT} $\omega_{e^i} \pm k_{\theta}v_E$ 0.4 - 1.5 $<\omega_{ci}$ ION-CYCLOTRON $\omega_{ci} \pm k_{\theta}v_E$ 0.4 - 1.5 $<\omega_{ci}$ LOWER-HYBRID $\omega_{LH} \pm k_{\theta}v_E$ 1.8 - 4 $> \omega_{LH}$

 $\begin{array}{ll} \underline{\text{Parallel-velocity shear}} & \omega_{\text{R}} & k_{\theta}\rho_{\text{i}} \\ D\text{RIFT} & \omega_{\text{e}}*/2 + \sqrt{\left[\left(\omega_{\text{e}}*/2\right)^{2} + \left(\sigma_{0}k_{z}c_{s}\right)^{2}\right]} & 0.3 \\ \text{ION-ACOUSTIC} & \sqrt{\left[\left(\sigma_{0}k_{z}c_{s}\right)^{2}\right]} & 0.5 \\ \text{ION-CYCLOTRON} & n\omega_{\text{ci}} + \sqrt[3]{\left[\left(\sigma_{n}k_{z}v_{\text{thi}}\right)^{2}n\omega_{\text{ci}}(\text{T}_{\text{e}}/\text{T}_{\text{i}})\Gamma_{\text{n}}\right]} & 1 - 1.5 \\ \sigma_{\text{n}}^{2} \equiv 1 - \frac{k_{y}}{k_{z}} \frac{dv_{diz}}{\omega_{ci}} \left[1 - \frac{n\omega_{ci}}{\omega}\right] \end{array}$

Perpendicular-Velocity Shear was found to cause:

- decrease in excitation-threshold current
- increase in the azimuthal wave-number
- large shifting and broadening in frequency
- increase in the oscillation amplitude.

Measurements of the linear properties of the mode verified the predictions from Ganguli's model and motivated detailed investigations of the model to significantly extend the range, detail, and interpretation of its predictions.

Parallel-Velocity Shear (1)

- The consequence of a spatially varying parallel drift speed was investigated theoretically for cases of sharply [*Chandrasekhar*, 1961] and smoothly [*D'Angelo*, 1965] inhomogeneous velocity profiles.
- *D'Angelo* [1965] predicted a purely growing, electrostatic, ion instability driven by parallel-velocity shear. *Lakhina* [1987] and *Gavrishchaka et al.* [1998] predicted dissipative instabilities driven by parallel-velocity shear.
- We measure frequency in the lab frame ω_{lab} , whereas, in the drifting ion frame, the frequency ω_1 is equivalent to $\omega_{lab} k_z v_{di}$. Using ω_1 , we can obtain the wave phase velocity $v_{\phi z}$ (= ω_{1r}/k_z) and compare $v_{\phi z}$ to velocities associated with positive and negative slope in the distribution function.
- Conceptually, introducing parallel-velocity shear causes a diagmagnetic drift similar to that caused by a density gradient [*Gavrishchaka et al.*, 1998].
- Smith and von Goeler [1968] express the shear-induced, off-diagonal elements of the pressure tensor and show that they contain the factor k_v.

Parallel-Velocity Shear (2)

- Even for large parallel electron drifts v_{de}/v_{ti} >>1, ion-acoustic waves are strongly ion-Landau damped in homogeneous, isothermal plasma.
- For inhomogeneous plasma, the frequency depends on velocity shear.
- D'Angelo's instability corresponds to $\sigma^2 < 0$. Shear-modified ion-acoustic waves are associated with $\sigma^2 > 0$, having parallel wave-phase speed σc_s .
- For higher frequency, the n>0 ion-cyclotron resonance, along with the n=0 Landau resonance, must be included in evaluating the wave-particle interaction [Lakhina, 1987; Gavrishchaka et al., 2000].
- For ion-cyclotron waves, it is possible for the factor containing shear to become negative, in which case ion-cyclotron growth contributes to the overall growth of the ion-cyclotron waves.

Dispersion Relation with Sheared Ion Flow

$$\begin{aligned} & Ion-acoustic \ waves \ (u = k_z/k_y):\\ & \sum_{n = -\infty}^{\infty} \left[\frac{\omega_1}{\sqrt{2k_z^2 v_{ti}^2}} Z \left\{ \frac{\omega_1 - n\omega_{ci}}{\sqrt{2k_z^2 v_{ti}^2}} \right\} + \frac{dv_{di}/dx}{2u\omega_{ci}} Z' \left\{ \frac{\omega_1 - n\omega_{ci}}{\sqrt{2k_z^2 v_{ti}^2}} \right\} \right] \Gamma_n(b_i) + \tau (1 + F_{0e}) + 1 + k^2 \lambda_{Di}^2 = 0 \\ & \sigma_i^2 + \sigma_e^2 \frac{T_i}{T_e} + \sigma_i^2 \frac{\omega - k_z v_{di}}{\sqrt{2k_z^2 v_{ti}^2}} Z \left\{ \frac{\omega - k_z v_{di}}{\sqrt{2k_z^2 v_{ti}^2}} \right\} + \sigma_e^2 \frac{T_i}{T_e} \frac{\omega - k_z v_{de}}{\sqrt{2k_z^2 v_{te}^2}} Z \left\{ \frac{\omega - k_z v_{di}}{\sqrt{2k_z^2 v_{ti}^2}} \right\} = 0 \\ & \text{where} \ \sigma_i^2 \equiv 1 - (dv_{di}/dx)/(u\omega_{ci}) \text{ and } \ \sigma_e^2 \equiv 1 + (dv_{de}/dx)/(u\omega_{ce}). \end{aligned}$$

Ion-cyclotron waves:

$$\sum_{n=-\infty}^{\infty} \Gamma_n(b_i) \left[\left(\zeta_0 + \frac{k_y dv_{di}/dx}{k_z \omega_{ci}} \right) \operatorname{Im} Z\{\zeta_{ni}\} \right] + \tau \left(1 + \frac{k_y dv_{de}/dx}{k_z \omega_{ce}} \right) \operatorname{Im} Z\{\zeta_{0e}\} = 0$$

$$\gamma/\omega_{ci} \propto \frac{\tau^{3/2}}{\mu^{1/2}} \left(\frac{k_z v_{de}}{\omega_{1r}} - 1 \right) - \sum_{n=-\infty}^{\infty} \Gamma_n(b_i) \left[1 - \frac{dv_{di}/dx}{u \omega_{ci}} \left(1 - \frac{n \omega_{ci}}{\omega_{1r}} \right) \right] \exp \left(- \frac{(\omega_{1r} - n \omega_{ci})^2}{2k_{||}^2 v_{ti}^2} \right)$$

Radial Profile of Velocity Shear

Harmonic Spectrum of SMIC in the laboratory [*Agrimson et al.*, 2002; *Teodorescu et al.*, 2002]

No Shear

Shear

Lowest frequency mode corresponds to *m*=1 azimuthal mode.

Middle-frequency mode corresponds to *m*=2 azimuthal mode.

Highest frequency mode corresponds to *m*=3 azimuthal mode.

Excitation shearthreshold (dashed line) for a specific mode depends on magnetic field, as expected from σ . Ignore bottom two lines.

Experimental results agree qualitatively with analytical theory predictions.

Conclusions

- Diagnostics sufficient for measuring shear
- Wide range of shear values in space/lab
- Width of shear profile also important
- Five effects of shear
 - KH mechanism from energy principle: $v_y v''_y < 0$
 - IEDD-reactive mechanism is like two-stream: $\omega(\omega k_y v_y)$
 - IEDD-dissipative mechanism alters dispersion: $\epsilon = \rho_i/L$
 - Shear modification shifts mode frequency: $\omega = \sigma k_z c_s$
 - Shear modification destabilizes harmonics: $\lambda = 2\pi r/m$; $k_v = m/r$
- Observational signatures indicate these effects
- Role of $\boldsymbol{\sigma}$ is experimentally verified via thresholds

 $\sigma_{\mathrm{ni}}{}^2 = [1 - (k_\mathrm{y}/k_\mathrm{z})(dv_\mathrm{dzi}/dx)(1 - \{n\omega_\mathrm{ci}/\omega\})/\omega_\mathrm{ci}]$