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Collaboration



arise when material ,usually gas, is being transferred 
from one celestial object to another.
"accretion" means collecting of additional material. 

Three major places where  accretion disks are  seen :

in binary star systems ,two stars orbiting each other 
and

In  Active Galactic Nuclei, around Black Holes.

Star and Planet forming regions.

Accretion Disks



Protostellar and Protoplanetary
Disks



Planet formation has been known

for many years to be tied to the 

accretion and evolution of gas and 

dust in disks around young stars.



A great cloud of gas and dust (called a nebula) begins to collapse because 
the gravitational forces that would like to collapse it overcome the forces 
associated with gas pressure that would like to expand it (the initial 
collapse might be triggered by a variety of perturbations---a supernova 
blast wave, density waves in spiral galaxies, etc



In the Nebular Hypothesis, a cloud of gas 
and dust collapsed by gravity begins to 
spin faster because of angular momentum 
conservation 



Because of the competing forces associated with gravity, gas 
pressure, and rotation, the contracting nebula begins to flatten into a
spinning pancake shape with a bulge at the center



Condensation of Protosun and Protoplanets

As the nebula collapses further, instabilities in the collapsing, 
rotating cloud cause local regions to begin to contract 
gravitationally. These local regions of condensation will become
the Sun and the planets, as well as their moons and other debris in 
the Solar System

While they are still condensing, the incipient Sun and planets are 
called the protosun and protoplanets, respectively



Disks In Binary Star Systems



Our Sun is unusual in that it is alone - most stars occur in multiple or 
binary systems. In a binary system, the higher mass star will evolve faster 
and will eventually become a compact object - either a white dwarf star, a 
neutron star, or black hole. When the lower mass star later evolves into an 
expansion phase, it may be so close to the compact star that its outer 
atmosphere actually falls onto the compact star
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If one star in a binary system is a compact object such as a 
very dense white dwarf star and the other star is a normal star 
like the sun, the white dwarf can pull gas off the normal star 
and accrete it onto itself.

Since the stars are revolving around each other and since the 
ANGULAR MOMENTUM must be conserved, this gas 
cannot fall directly onto the white dwarf, but instead spirals 
in to the white dwarf much like water spirals down a bathtub 
drain. 



Thus material flowing from the normal star to the white dwarf
piles up in a dense spinning accretion disk orbiting the 
white dwarf. 

The gas in the disk becomes very hot due to friction and
being tugged on by the white dwarf and eventually loses 
angular momentum and falls onto the white dwarf. 
Since this hot gas is being accelerated it radiates energy,
usually in X-Rays which  is a good signatures to identify
and study accretion disks
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Gas in each zone of the disk is coming toward, or receding from us 
with a similar velocity (they have very different sideways motion but that 
does not matter for Doppler shifts). 

Adding up contribution of all
the gas in each zone, we can calculate the emission line profile ---
the result is a characteristic double-horned shape

The 
origin of 
double-
horned 
structure, 
for an 
accretion 
disk in a 
binary.



Binaries systems can have very large separations, in 
which case the period, by Kepler's laws, is long.

Some binaries have separations that are comparable 
in size to the stars themselves, however. Such systems 
are called close binaries.

In close binaries the orbital period is small, and 
because the stars are so close together, matter may 
stream from one star onto the other star. These are 
called accreting binaries, and they lead to a broad 
range of very interesting phenomena. 

Accreting Binaries



One member of the binary is a neutron star and it has
a less-massive white-dwarf star companion.

Matter appears to be accreting from 
the white dwarf onto the neutron star. 



can be illustrated by plotting contours of equal gravitational
potential. The center of mass is marked with an "x". The point labeled 

L1 is called the inner Lagrange point; it is a point where
the net gravitational force vanishes.

This contour defines two regions, one around each star, 
called Roche lobes . Mass accretion can occur if one of the stars
fills its Roche lobe, allowing matter to spill over the 

inner Lagrange point onto the other star. 

Roche Lobes and Mass Accretion

Binary accretion



Wind Driven Accretion

Accretion in binary systems can also take the form of a wind from 
the surface of one star, as opposed to a thin accretion stream 
flowing through the inner Lagrange point. 

Then the second star accumulates matter from the first star as 
it moves on its orbit through this wind.

In complex situations, both winds and tidal accretion streams may 
play a role



Neutron star explosion reveals inner accretion disk.A massive and 
rare explosion on the surface of this neutron star -- pouring out 
more energy in three hours than the Sun does in 100 years --
illuminated the region and allowed the scientists to spy on details 
never before revealed. 



The formation of a disk need not 
halt the infall. 

But once formed, it is the disk itself 
that mediates 

continued accretion. And the 
physical processes that regulate 

mass inflow will generally be very 
different in character 

from those that may have triggered 
the initial infall



Accretion Disks could be highly Ionized , Hot and 
Collisionless e.g.   Around Black Holes.

Accretion disks could be weakly Ionized ,Cold and 
Collisional e.g.  Protoplanetary Disks

Usually MagnetizedTURBULENT ?

Accretion disks can be separated into three broad 
categories:

(a) protostellar disks, where stars and planets form;

(b) disks formed by mass transfer in binary star systems, 
e.g., novae and compact x-ray sources; and 

(c) disks in active galactic nuclei (AGN).



Accretion Disks offer novel and efficient ways of 
extracting the Gravitational Energy 

A  blob of gas in an orbit around a central gravitating body 
will stay in that orbit.

If we then remove Energy and Angular Momentum from the 
blob, it will spiral inwards.

With this mechanism, the binding Energy of its innermost 
orbit can be extracted.

The Matter can move in only if the Angular Momentum 
moves out

The Sun has the most mass and the planets the most of 
the angular momentum!



Efficiency of Conversion,           ( Hydroelectric Power!)

Gravitation to Light

Luminosity

)/()/( 22 CRGMCMMRGML ∗∗∗∗ ==

Efficiency )/( 2CRGM ∗∗

White Dwarf, M=Msun, R= 1000 Km,  0.1%

Neutron Star, M=Msun, R= 10 Km., 10 %

Black Holes, 10%

Thermonuclear Reactions H burn, 0.7%,   heavy elements, 
0.1%

yearMsunM /1010 97 −− −≈



Density and temperature scales

The range of densities and temperatures both within disks
and from disk to disk is enormous.

Disks occupy the 
broad density scale gap between interstellar matter,

which is at most  10^6 cm^-3  in molecular cloud cores, 

and stellar interiors, have typically  10^25 cm^-3 .  



Disks in binary systems

generally have interior densities above 10^15 cm^-3
but well below the stellar regime. 

Considerable radiation comes from the disk atmosphere, 
which will typically have a density less than  10^15 cm^-3

but well above the molecular cloud core value. 

The innermost regions of an accretion disk can be very hot. 



If   10^37 ergs /s is emerging from a gas disk
over a region of radial dimension   10^6 cm
(i.e., neutron star dimension) 

and the gas is emitting as a blackbody, then its temperature 
will be of order  10^7 K.
It will be a plentiful sourceof keV photons, as compact x-ray
sources indeed are. 

The surface temperature decreases as one moves outward in
the disk. 
The local luminosity of a disk scales as 1/r  
and the radiated flux as 1/r^3 ,
which implies an r^-3/4 scaling law for the
surface temperature. 

The innermost regions of an accretion disk can be very hot.



Thus, on scales of  10^10 cm , the fiducial disk will have cooled
to  10^4 K.

Disks around white dwarfs get no hotter than 10^5 K or so in 
their innermost orbits, and they ought not to be powerful x-ray 
sources. 

This is the  general picture. 

However, the physics of the accretion process becomes complex
very near the stellar surface where such phenomena 
as standing shock waves are possible 

and harder x-rays may originate in such processes. 

A rich variety of eruptive outbursts are associated
with white dwarf accretion. 



Equilibrium Model
Rotating mass of gas in a cylindrically symmetric Potential Well of a 

point mass at the origin, the centre of the disc

Axis of Symmetry parallel to the Angular Momentum Vector
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Radial component of the force balance
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Equilibrium Model

The azimuthal component of the force balance

θθθ ν VRVVRVV RR
2// ∇=+∂∂

Describes conservation of the angular momentum in the absence of viscous 
forces

For 
RotationKeplerianforRVR ,2/,0 νν =≠

Thus additional torque is required to transfer angular momentum 
outwards and consequently mass flow inwards

0<RV



Transport  of the angular momentum
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Averaged over the vertical direction, in the steady disk, a constant inward 
flux

Search for shear stress T and viscosity coefficient,

AND INSTABILITIES , AND TURBULENCE

Infall



Time Scales
At a given radius

Shortest Disk time scale

By the rotation angular frequency

1/ −
Ω Ω== θVRT

Time scale over which the 
hydrostatic equilibrium is 
established in the vertical direction

Sz CHT /=

Time scale over which 
surface density changes, the 
viscous time scale

νν /2RT =

Ω
− >>≈ TTHRT z

21 )/(αν zTT ≈ΩSHCαν ≈
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Magnetohydrodynamics of Differentially Rotating Fully Ionized 
Plasmas

)]()([/)( BBVVtV ×∇×−×∇××∇=∂×∇∂

Curl of the Eq. Of motion

The Induction Eq.
],[/ BVtB ××∇=∂∂

The Continuity Eq.

0.,tan =∇= Vtconsρ

And 0. =∇ B



The Equilibrium in Cylindrical Geometry
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Possibility  Of  A  Hydrodynamic  Instability

Perturb the system with
10 VVV +=

)]()([/)( 10011 VVVVtV ×∇×+×∇××∇=∂×∇∂

And linearize

)exp()(1 ikzimtirQV ++−= θωSolve for

Conclusion: Instability if the specific angular momentum is a decreasing 
function of the radial position

0)(/ 2 <Ωrdrd

So, Keplerian rotation is stable! Even though 0)(/ <Ωdrd



Magnetorotational Instability (Balbus & Hawley, 1991)

Assumptions:

Perturbations only in the plane of the disk of the form )exp( tikz σ+

The linearized Eqs.

0)2/(
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VikbRddb
Vikb
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Dispersion relation

0]ln/[)2( 2222222224 =+Ω+++ AAA VkRddVkVkκσσ

Rdd ln/4 222 Ω+Ω=κ



And derive the critical stability condition 0=σ

For Instability 0]ln/[ 2222 <+Ω AA VkRddV

For the Keplerian Rotation 32 / RGM=Ω

0/ <Ω dRd

Determines the maximum magnetic field.The maximum growth rate is
determined with respect to k from

0]ln/[)2( 2222222224 =+Ω+++ AAA VkRddVkVkκσσ

To be 16/15,ln/2/1 222 Ω=Ω AVkatRdd



BUGS!
Divergence Conditions Violated with the form 

0)/()(//1. =++∂∂=∇ ZR ikbbRimRbRRb θ

)exp( tikz σ+),( θbbb R=

Local Treatment ? Radial variation is the basis of the 
instability, should it be ignored?

Differentially rotating system is a nonautonomous system, 
cannot be Fourier analyzed as has been done by taking 
perturbations of the form ),( θbbb R= )exp( tRikikz R γ++

Recovery of the Rayleigh Criterion for B=0

Existence of the mode has not been investigated, 

only the instability conditions.



Some of these bugs can be removed, e.g. by retaining radial and or 
azimuthal variations  but one still remains within the limitations of 
the local treatment

Rayleigh Criterion can be easily recovered from the plus root of the 
quartic

0]ln/[)2( 2222222224 =+Ω+++ AAA VkRddVkVkκσσ

The minus root is identified with the MRI

A lot of work since 1991, including NonIdeal effects, such as 
the Hall effect, the dissipation and the ambipolar diffusion has 
been done. These are particularly important in weakly ionized 
accretion disks. But most of the work has the same bugs.



The Magnetrotational Instability,
Does it Exist in Keplerian disks ?



Weakly Ionized Rotating Plasmas



Because gas clouds have difficulty getting rid of excess angular 
momentum during a phase of dynamical collapse, there is reason to 
believe that all stars form with some sort of (accretion) disk surrounding 
them.

If a disk becomes sufficiently massive, compared to the central object 
that it surrounds, a gravitational instability in the system may cause the 
disk to accumulate into an off-axis, binary companion of the central 
object or to break into two or more pieces.

Weakly Ionized Plasmas are found in 
several astrophysical objects such as 
in circumstellar,and protoplanetary
Disks .

Observing the formation and evolution of circumstellar disks is crucial 
for understanding the star formation and planet-building processes.



These disks are:

~  100 AU in radius, tens to a few 
AU thick, of  masses ~  0.1 solar 
mass.

If 0.01  Msun is spread over a 
cylinder of radius 1 and height 0.01 
AU, this would have a mass density 
10^(-10)gm  cm-3.



Other charachteristics
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Total neutral number density

Magnetic field ~ 50 microGauss

Ionization Fraction ~ 10^(-4) - 10^(-7),



Couplings

Electron neutral collision 
frequency

12/110 sec108 −−×≈><≈ nTvn enen σν

Ion-neutral collision 
frequency

19 sec102 −−×≈><≈ nvn inin σν

Resistivity 122/1 sec.)/(234 −= cmTnn eη



THE MHD and THE HALL-MHD The Three –Fluid Model

ELECTRON  EQ.

)()(]/[0 ieeeieeeneee VVVVcBVEenp −−−−×+−−∇= ρνρν

)]()()([)( 11
ieeeieeeneee VVVVpenBVcE −−−−∇−×−= −− ρνρν

)( eie VVenJ −=

For Inertialess electrons (m_e = 0 ) ,



)()(]/[0 VVVVcBVEenp iiineiiieiei −−−−×++−∇= ρνρν

The Inertialess Ion Eq.

Substitute for E from the inertialess electron eq. To find for
ie nn =

]//)(/[)( enieinie enJppcBJVV −+∇−×=− ρνρν

AND

)](/[)()( 1
einii ppcBJVV +∇−×=− −ρν



Neutral Fluid Dynamics

φρρνρνρ ∇−−−−−−∇=∇+∂∂ )()(]).(/[ eneini VVVVpVVtV

Substituting for the velocity differences

( ) φρρ ∇−×+++−∇=∇+∂∂ cBJpppVVtV ei /]).(/[

Behaves like a charged fluid due to strong coupling 
with the charges



The Induction Equation
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For typical parameters in protostellar disks



Normalizations
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Hall-MHD  of  Rotating Disks

)]()/()([/)( BBVVtV i ×∇×−×∇××∇=∂×∇∂ ρρ

Curl of the Eq. Of motion of the neutral fluid (dimensionless)

The Induction Eq.

L
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The Continuity Eq.

0.,tan =∇= Vtconsρ

And 0. =∇ B



The Equilibrium in Cylindrical Geometry
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101 , VVVBeB z +=+=

Perturb the system with

])()[(/ 11110111 BBVBVeBVtB z ××∇−+×+××∇−×∇=∂∂ εε

)]()(
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110011
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Linear system

])[(/ 10111 BVeBVtB z ×+××∇−×∇=∂∂ ε

)]()()([/)( 110011 BeVVVVtV z ×∇×−×∇×+×∇××∇=∂×∇∂ α

Solve with
)exp()(
)exp()(

1

1

ikzimtirQV
ikzimtirPB

++−=
++−=

θω
θω

Balbus & Terquem,  (Ap.J.552,247,2001 ) assume
0/,0/ =∂∂=∂∂ θr

This again violates divergence conditions
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Linear Analysis for 
uniform rotation

const=Ω
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With the solution
11 BB ±± =×∇ λ

11 )( BV mωελ −=And

Alfven limit

11,/,0,0 BVkm ααωωε ±=±→=→Ω→
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And eigenfunctions as the Chandrasekhar-Kendall functions:
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The Dispersion Relation is:

2

22/1222

)2(
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µ is the radial wavenumber



To see if 0,0/ ==∂∂ mr exists

11 BB ±± =×∇ λWrite the components of the eigenvalue equation 

for  d/dr=0
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The only consistent solution is:
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With the corresponding dispersion relation

)2/1()(2)2()( 222 Ω−ΩΩ−±=Ω+−Ω− kk εωεαω



)2/1()(2)2()( 222 Ω−ΩΩ−±=Ω+−Ω− kk εωεαω

0,0/ ==∂∂ mrThus Does not exist !!

Consequences
e.g. Nature of the Hall instability changes

)2/1()(2)2()( 222 Ω−Ω±=Ω+− kk εωεαω

Balbus and Terquem

Dispersion 
Relation

Ap.J.552,247,2001
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Exact Nonlinear Solution
Recall
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Nonlinear terms vanish!



Conclusion

Hall- MHD of a weakly ionized uniformly rotating plasma 
submits to an exact nonlinear solution representing waves 
of arbitrary amplitude with dispersion relation:

)2/1()()(2)2()( 22/12222 Ω−+ΩΩ−±=Ω+−Ω− −
± kkkmkm εµωεαω

And eigenfunctions as C-K functions
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Inclusion of Resistivity along with the Hall Effect

The dispersion Relation is

02)2(]2[ 222 =Ω+Ω+−+−
Ω

+ kikikk
mm ηλεαηλελ

λ
ωω

Linear damping of nonlinear waves

Nonlinear damping of linear waves

For heating and ionization purposes

In contrast to

Again with m=1 for radially symmetric eigenfunction



Summary

Exact nonlinear solution of incompressible resistive Hall MHD 
of partially ionized uniformly rotating plasmas has been found.


