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1 Introduction

The particle and energy confinement times in magnetically confined plasmas are anomalously short

compared with those expected from the classical collisional transport theories. The anomaly is

attributed to suprathermal fluctuations widely observed in the density, temperature, potential, and

magnetic field. The existence of turbulence in magnetically confined plasmas is well expected since

the pressure gradient, which is maintained by the magnetic Lorentz force through the force balance

= J×B, can act as a source of free energy that can be released through plasma instabilities.

Theoretical studies of the drift mode in magnetically confined plasmas have a long history,

and date back to the original work in the early 1960s. (For a review of the earlier work, see [1

Mikhailovskii].) The discovery of the drift instability was based on a local analysis in a shearless

slab geometry in which k the wavenumber along the ambient magnetic field, is well defined

and constant. A methodology was later developed for nonlocal analysis [2 Krall, 3 Pearlstein]

in sheared slab geometry and a criterion for suppressing the instability by magnetic shear was

found. More rigorous analysis in sheared slab geometry showed that the drift mode should be

stable no matter how weak was the magnetic shear [4 Ross-Mahajan, 5 Tsang et al.] However,

in the toroidicity induced drift mode [6, 7], shear stabilization is unable to overcome toroidicity

induced destabilization. (The slab mode considered in [4, 5] remains stable in toroidal geometry.)

Furthermore, in toroidal geometry, the stabilizing ion Landau damping can e ectively be suppressed

by the ion magnetic drift for modes propagating in the direction of the electron diamagnetic drift,

such as the toroidal drift mode. The toroidal ion temperature gradient (ITG) mode [8 Jarmen] is

driven by the resonance at the ion magnetic drift frequency and propagates in the direction of the

ion diamagnetic drift.

In tokamaks, a large number of drift-type modes driven by density and/or temperature gradi-

ents are expected to be unstable. Drift modes driven by trapped electrons and the ion temperature

gradient have been the subjects of extensive theoretical investigations because of their relatively

large growth rates and long wavelengths. The most rapidly growing mode is the electron tempera-

ture gradient (ETG) mode [9 Lee, Dong, et al.] which has a growth rate of the order of the electron

transit frequency ' where =
p
2 is the electron thermal speed and is the

connection length. In tokamaks and other magnetic confinement devices, various drift type instabil-

ities driven by pressure gradient can occur over a wide range of cross-field wavelengths. There are

numerous dimensionless parameters that characterize a tokamak discharge, including (magnetic
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shear), (safety factor), (= 2 0
2 electron beta factor), (= 2 0

2 ion beta factor),

= 2 (the ballooning parameter with the pressure gradient scale length), =

(inverse aspect ratio), (isotopic number), and so on. In drift stability analyses, dependence of the

growth rates on those parameters is of a primary interest, for it may open a path for stabilization.

The drift modes are predominantly electrostatic. In general, a finite ( = 2 0
2) has

stabilizing e ects on the ITG mode [10 Weiland/Hirose] but destabilizing e ects on the trapped

electron driven drift mode. Electromagnetic (finite ) e ects on the ITG mode can be analyzed

in terms of the same mode equation as used for the kinetic ballooning mode which caused some

confusion in the past.

In this lecture, the pressure gradient driven drift modes in magnetically confined plasmas (toka-

maks, in particular) are reviewed together with several methodologies frequently used in analyzing

the instabilities. Mixing length estimate for ion and electron thermal di usivities will be outlined.

The ultimate objective of studying drift modes is in gaining a better understanding of the roles

played by them in anomalous transport and, possibly, in finding means to suppress them.

2 Drift Mode Basics

The plasma equilibrium condition = J ×B yields the following current perpendicular to the

magnetic field,

J =
B×

2
(1)

This current flows in such a way as to reduce the magnetic field and is thus called the diamagnetic

current. It consists of electron and ion components,

J =
B×

2
=
B
2
× ( 0 + 0 ) (2)

The electron diamagnetic current has two parts, one due to the density gradient and another due

to the temperature gradient,

J =
B
2
× ( 0 ) =

B
2
× ( 0 + 0 ) (3)

The electron diamagnetic drift velocity is normally defined by

V =
2
0

0 ×B (4)
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where 0 is the electronic charge. (A neutral plasma with singly charged ions is assumed

throughout.) The diamagnetic current is not a result of guiding center drift. Rather, it is due to

an e ective mass flow created by the density imbalance in neighboring Larmor circles and the

diamagnetic current is in fact a part of the magnetization current due to nonuniformity in the

magnetic dipole moment density. For example, the electron magnetization current is by definition

J = ×
³

2
B
´
=
B×

2
+ 2

×B
3 2

×B (5)

In the RHS, the first term is the diamagnetic current and the second term is due to the nonunifor-

mity in the magnetic field. In a low plasma, it is exactly cancelled by the guiding center drifts

due to the magnetic gradient and curvature,

J = 0

¿
B×

3

1

2
2 +

B× (B · B)
4

2
k

À
' 2

B×
3

(6)

provided the magnetic gradient and curvature are equal ' B · B which holds in low

plasmas. Here h· · ·i indicates averaging over the velocity with Maxwellian weighting,

2
®
= 2

D
2
k

E
= (7)

(That the nonuniformity in a magnetic field does not produce a net current was elucidated by Tonks

[11]. A static magnetic field does not do any work on charged particles and thus will not modify

particle distribution functions.) In low plasmas, the third term, ×B 2 is negligible.

In toroidal devices such as tokamaks and stellarators, the magnetic field is nonuniform, and the

divergence of the diamagnetic current does not vanish,

· J = · J =
2
3

· (B× ) (8)

Then, the charge neutrality condition · J = · J + · Jk = 0 can be satisfied only if a current

parallel to the magnetic field Jk exists. This parallel current is called the rotational transform

current (also called Pfirsch-Schlüter current) and plays important roles in plasma confinement. (In

tokamaks, the rotational transform current flows in addition to the current externally driven (e.g.,

Ohmic current) to create the poloidal magnetic field k modifies the poloidal magnetic field

and causes a shift of the magnetic axis as will be shown.)

Although the diamagnetic drift velocity V is not a guiding center drift, a density perturba-

tion created in a magnetically confined plasma propagates approximately at this velocity provided
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electrons obey the Boltzmann distribution (thermal equilibrium)

= 0 exp

µ ¶
= 0 exp

µ ¶
(9)

where is the potential energy of electrons. This occurs when the wave frequency is su ciently

low compared with the electron transit frequency ¿ k where k is the field gradient along the

magnetic field and is the electron thermal speed. In this case, electron temperature equilibration

along the magnetic field takes place rapidly, and the electron temperature is not perturbed. If

¿ the electron density perturbation is

= 0 exp

µ ¶
0 ' 0 (10)

To see the propagation of the drift mode in the electron diamagnetic direction, let us consider the

linearized lowest order continuity equation of the ions,

+ v · 0 + 0 · v = 0 (11)

where

v =
E×B

2
=
B×

2
(12)

is the × drift velocity with the scalar potential and v is the ion polarization drift velocity,

v = 2 E = 2 ( ) (13)

(In Eq. (11), magnetic curvature (toroidicity) and ion velocity perturbation along the magnetic

field are ignored.) These drift velocities can be found from the equation of motion for the ion in

the low frequency limit ¿

v
=

¡
E + v ×B

¢
(14)

In the lowest order, the time derivative can be ignored, and the × drift emerges,

v =
E ×B

B2
(15)

To find the velocity in the order let the magnetic field be in the direction and the time

varying electric field in the direction, Then,µ
2

2
+ 2

¶
= (16)
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and Eq. (13) follows. Assuming all perturbed quantities are proportional to (k·x ), we find from

Eq. (11),

=
( )2

0 (17)

where

= k ·V = (18)

is the electron diamagnetic drift frequency, is the radial density gradient scale length, is the

wavenumber in the azimuthal ( ) direction, and

=

p
(19)

is the ion Larmor radius with the electron temperature. Note that 2 = 2 + 2 = 2 2 2

Equating to (charge neutrality condition), we find a dispersion relation,

=
1 + ( )2

=
1 + ( 2 + 2) 2

À (20)

The wave propagates in the direction of (the electron diamagnetic drift velocity). A finite ion

temperature does not alter this basic picture. When À the above dispersion relation is valid

at arbitrary In an isothermal plasma with ' as tokamaks, a correction due to a finite

ion Larmor radius enters in the form

'
1 ( )2

1 + ( )2
( )2 ¿ 1 (21)

where =
p

is the ion Larmor radius. When ' ' and the dispersion

relation is valid only in the long wavelength regime ( )2 ¿ 1 Then, the drift wave frequency

remains close to

The progressive propagation of the drift wave in the direction 0 ×B is schematically illus-

trated in Fig. 1. The equilibrium density gradient is in the direction with 0 0 the

magnetic field in the direction, and the wave propagation in the direction. A potential pertur-

bation of 0 sin ( ) and electric field of = 0 cos ( ) are shown. The density perturbation

is proportional to The × drift in the positive electric field region is in + direction, and

the plasma moves from the higher density region to the lower density region. Therefore, the per-

turbation progressively shifts in the direction which is in the electron diamagnetic drift The
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situation is similar to the ion acoustic wave described by = in which electrons provide elas-

ticity through the pressure = 0 and ions provide inertia. The main di erence is that in the

case of ion acoustic wave, energy equipartition holds between the ion kinetic energy and potential

energy, while in the case of long wavelength drift mode, the ion kinetic energy is subdominant.

The ion kinetic energy density in the ion acoustic wave is 0
2 2 Substitution of the velocity

perturbation from

= = (22)

we readily find that the ion kinetic energy density is equal to the electron potential energy density,

1

2
0

2 =
1

2
0

µ
0

¶2
(23)

where = ( ) 0 is the electron density perturbation as in the case of the drift wave. In the

drift wave, however, such energy equipartition does not hold and energy density is dominated by

the potential energy, since the ion kinetic energy density is

1

2
0

2 =
1

2
0

µ ¶2
=
1

2

µ ¶2
0

2 =
1

2

µ ¶2
0 ( 0)

2 cos2 ( ) (24)

while the potential energy density is

1

2
0

µ
0

¶2
=
1

2

µ
0
¶2

0 sin2 ( ) (25)

The peak value of the kinetic energy density is smaller than that of the potential energy density by a

factor ( )2 (¿ 1) Here =
p

0
2

0 is the ion plasma frequency and ' ( )2 0 is

the cross field permittivity. In the drift mode, the region of small finite ion Larmor radius parameter

( )2 ' ( )2 ¿ 1 ( ' ) is of main concern, for long wavelength fluctuations are considered

to be more dangerous for plasma confinement. (A rough estimate of anomalous thermal di usivity

is ' 2 where is the growth rate and = 2 is the wavenumber.)
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x

y

n(x)

B

E

V*e

Fig. 1. Sinusoidal potential-density ( ) and electric field ( ) perturbations propagate

upward because in the region 0 (upward), × drift is from higher to lower density

region.

In the course of this derivation, the assumption of adiabatic electron response immediately

yielded the electron density perturbation in terms of the potential Let us see if the density

perturbation is consistent with the electron continuity equation. (It should be.) Substitution of the

electron adiabatic response

= 0 (26)

into the electron continuity equation,

+ v · 0 + 0 · v k = 0 (27)

yields the electron flow along magnetic field,

k =
k

(28)

or the electron current perturbation along the magnetic field,

k =
0
2

k
( ) (29)

This is consistent with the electron parallel velocity expected from the perturbed electron distrib-

ution function [1],

=
k k

(30)
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where is the Maxwellian electron distribution function. In the limit ¿ k we indeed find

k = k

®
=

k
(31)

The parallel current k is thus redundant in electrostatic cases. (It is not needed.) If a vector

potential parallel to the magnetic field is perturbed, the electron current density in the same limit

¿ k becomes

k =
0
2

k

µ
( ) +

( ) ( ) +

k
k

¶
(32)

and plays a more prominent role. Here is the electron magnetic drift frequency due to nonunifor-

mity in the magnetic field and = ln ln 0 is the electron temperature gradient parameter.

The kinetic electron density perturbation can be found by integrating in Eq. (30) over the

velocity,

=

µ
1 +

k
( )

¶
0 (33)

where ( ) =
¡

k

¢
is the plasma dispersion function [12 Fried and Conte] defined by

( ) =
1
Z 2

(34)

If ¿ 1 then ( ) ' and we find

'

µ
1 +

k

¶
0 (35)

Then the dispersion relation becomes

( )2
= 1 +

k
(36)

which yields an unstable solution

'
1 + ( )2

+
2

k
( )2 (37)

Note that the necessary condition for the drift instability is that is, the cross field phase

velocity along the direction of be smaller than the electron diamagnetic drift velocity This

may be regarded as a Cerenkov condition and the instability is a result of inverse Landau damping

by electrons.
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3 Quasi-linear Fluxes

The quasilinear theory has originally been developed for velocity space instabilities such as the

beam-plasma instabilities. It is the lowest order nonlinear theory in the sense that mode coupling is

ignored entirely. As such, quasilinear theory is unable to accurately predict the energy spectrum of

fluctuations. In the case of velocity space instabilities, modification in the original linearly unstable

velocity distribution leads to saturation. However, in drift type modes which are driven by spatial

nonuniformities, the density and temperature profiles are maintained by external sources through

fuelling and heating and saturation must be invoked by other mechanism.

Let us consider low frequency electrostatic fluctuations which cause particles to undergo ×

drift,

v =
B×

2
(38)

The particle flux induced by the fluctuations can be calculated from the statistical average of the

following quadratic quantity,

= Re h v i (39)

where is the density fluctuation and h· · ·i indicates statistical ensemble average. In quasilinear

theory, the density fluctuation is approximated by the linear response which in the lowest order

can be found from the continuity equation,

+ v · 0 = 0

This yields

= 0 (40)

where = + is the complex frequency. Substituting this into Eq. (39), we obtain the following

expression for the radial flux,

=
X

2 + 2

µ ¶2
0 (41)

This is an anomalous particle flux due to exponentially growing mode, ( ) = (0) Of course,

in experiments, fluctuations are observed to be stationary on average and the linear growth rate

appearing in Eq. (41) must be modified somehow to be physically meaningful.
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Stationary fluctuations observed in experiments do not mean they are pure sinusoidal functions

of time. They grow and damp intermittently and only on time average they are stationary. Pure

sinusoidal fluctuations are characterized by an infinitely long correlation time. The correlation time

is a measure of average life time of each Fourier component and can be deduced from the auto

correlation function,

( ) = h ( ) ( + )i (42)

where h· · ·i indicates time averaging. The auto-correlation function often exhibits exponential

decay,

( ) = (0) cos( ) exp

µ ¶
(43)

is defined as the correlation time. As a rough approximation, may be estimated from the

linear growth rate,

'
1

(44)

and the flux in Eq. (41) may be used in steady state turbulence.

The particle di usivity defined by

=
0

(45)

takes the following form

=
X

2 + 2

µ ¶2
(46)

The fluctuation level in Eq. (46 is yet to be determined. As mentioned earlier, the quasilinear

theory is unable to predict the saturation level. In drift type modes, two dimensional × motion

leads to formation of vortices in which particles are trapped. Once trapped, the instability becomes

saturated because wave-particle interaction for wave growth is deactivated. The condition for vortex

formation is

× & ' (diamagnetic velocity). (47)

This yields

'
1

(48)
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and the di usivity becomes

=
X

2 + 2

1
'

X 1
(49)

provided ' ' Since the growth rate of drift modes peaks at a specific finite Larmor

radius parameter the di usivity may be written as

= const (50)

(For example, the growth rate of the toroidal ITG mode peaks at ' 0 3 ) This form of

di usivity is known as the gyro-Bohm di usivity (the Bohm di usivity = corrected for

the gyro-radius ) If, on the other hand, the cross-filed scale length 1 does not scale with the

Larmor radius, but with plasma size, 1 ' the resultant di usivity is Bohm-like,

= const (51)

Another estimate for saturation is based on

' (52)

where is the radial wavenumber. Physically, this condition implies that saturation occurs when

the nonlinear Doppler shift, becomes comparable with the growth rate. The saturated am-

plitude in this case is given by

'
2

(53)

and the di usivity by

=
X 3

2 + 2

1
2

(54)

In strong turbulence limit, we recover the familiar form,

=
X

2
(55)

4 E ects of Finite Ion Temperature

The basic mechanism of drift instability is wave amplification through the Cerenkov mechanism,

and for an instability to occur, the wave phase velocity in the direction of the electron diamag-

netic drift must be smaller than the electron diamagnetic velocity . The simple mode
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=
h
1 + ( )2

i
found in the preceding section is potentially unstable. A finite ion

temperature and toroidicity further reduce the frequency. Let us first find what e ective electric

field is seen by the guiding center of an ion undergoing cyclotron motion with a Larmor radius

= . If the electric field is uniform, the ion experiences the same field everywhere. However,

if the field has a sinusoidal spatial dependence in the direction perpendicular to the magnetic field,

(r) = 0
k ·r (56)

an average over the Larmor orbit must be taken. Expansion of (r) about the guiding center

denoted by r yields

[r + ( )] = (r ) + ·
r
+
1

2

µ
·
r

¶2
+ · · · (57)

where ( ) is the instantaneous ion location relative to the guiding center. Averaging along the ion

orbit, we find an e ective electric field seen by a gyrating ion,

h i =

µ
1

1

4
( )2 +

1

64
( )4 · · ·

¶
0

k ·r = 0 ( ) 0
k ·r (58)

where 0 is the Bessel function of order 0 defined by

0( ) =
X
=0

( 1)

( !)2

³
2

´2
= 1

1

4
2 +

1

64
4 · · · (59)

Therefore, the e ective electric field experienced by the ion guiding center is given by further

averaging (average of the average) along the Larmor orbit which yields [13 Sato]

= 0
2
0 ( ) k ·r (60)

Averaging over the velocity with Maxwellian weighting, we find the e ective electric field experi-

enced by the ion fluid,

= 0
k·r

0 ( ) (61)

where

= ( )2 = 2
2 (62)

and use is made of the formula,Z
0

2 2 2
0 ( ) = 0 ( ) (63)
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In the long wavelength limit ¿ 1 the function 0 ( ) approaches 1 and we find the

e ective electric field experienced by the ion guiding center

' 0

£
1 ( )2

¤
k·r (64)

The × drift of ions is thus modified as

v =
£
1 ( )2

¤ B×
2

( )2 ¿ 1 (65)

Note that the correction to the × drift is proportional 3,

B×
2

( )2
3

Therefore, any other higher order ion drift up to order 1 3 should be retained to be consistent.

As shown earlier, the ion polarization drift

v = 2 E (66)

is of order 1 2, and introduces a correction to the dispersion relation similar to the finite ion

Larmor radius correction. Incorporating the e ective × drift and ion polarization drift in the

ion continuity equation, we obtain

+ ·
£
0v (1 2 2)

¤
+ 0 · v + 0 · vk = 0 (67)

where vk is the ion velocity perturbation along the magnetic field. We ignore vk for now, but will

consider it later in nonlocal analysis. The × drift is incompressible in a uniform plasma,

· v = 0 uniform (68)

In this case, the ion density perturbation is given by

=
[ + (1 + ) ] 2 2

0

=
[ + (1 + ) ] 2 2

0 (69)

where

=
ln

ln 0
(70)

is the ion temperature gradient parameter. From charge neutrality condition = = ( ) 0

we find

=
1 (1 + )( )2

1 + ( )2
(71)
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It should be noted that in a plasma with ' , the dispersion relation is valid only if ( )2 '

( )2 ¿ 1 that is, if the ion Larmor radius is su ciently small compared with the cross-field

wavelength. For arbitrary ( )2 kinetic theory must be used.

The ion flow along the magnetic field k in the continuity equation may be implemented as

follows. The ion equation of motion along the magnetic field is

0
k
= 0 k (72)

where k = k and is the ion pressure perturbation which approximately obeys the convection

equation,

+ v × · 0 = 0 (73)

Then the ion density perturbation in long wavelength limit ( )2 ¿ 1 becomes

=

µ
+
(1 + ) 2

3

¶
0 (74)

where = k is the ion acoustic transit frequency. In the limit of large , we thus obtain the

following dispersion relation,

3 ' 2 (75)

which has an unstable solution. This ITG instability in slab geometry was found by Rudakov and

Sagdeev [14]. In toroidal geometry, a toroidicity induced ITG mode with a larger growth rate

prevails.
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5 Drift Mode in Tokamaks

R

r

B
VDe

VDi

V*i

V*eB

z

Fig. 2. Tokamak geometry. The toroidal magnetic field is nonuniform 1 ( + cos ) which causes

magnetic drifts of ions (downward) and electrons (upward).

The basic geometry of a tokamak discharge is shown in Fig. 2. For simplicity we assume each

magnetic surface is circular but they may not be concentric. In addition to the toroidal magnetic

field which is nonuniform and curved with a curvature radius the toroidal plasma current

0 , which is driven externally, creates a poloidal azimuthal magnetic field The safety factor

against the MHD kink instability is defined by

( ) = (76)

and the magnetic shear parameter by

( ) = (77)

can be positive or negative depending on the radial profile of the toroidal current. The total

magnetic field is helical. The poloidal magnetic field provides the rotational transform which

is essential for magnetic confinement in toroidal geometry. (Recall that a simple toroidal field

alone cannot confine charged particles.)

The gradient in the toroidal magnetic field causes guiding center drifts of both electrons and

ions. In a low plasma, the gradient and curvature drifts can be combined as

V (v) =
×B
3

µ
1

2
2 + 2

k

¶
=

µ
1

2
2 + 2

k

¶
1
e (78)
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V (v) =
B×

3

µ
1

2
2 + 2

k

¶
=

µ
1

2
2 + 2

k

¶
1
e (79)

These drift velocities are shown in Fig. 2. Also shown are the electron and ion diamagnetic drift

velocities and in the direction. Note that in the region = 0 (the outermost region),

and are both upward, and and are both downward. In the region where the pressure

gradient drift and magnetic curvature drift are in the same direction, the plasma is vulnerable to

flute type or ballooning type instabilities.

In toroidal geometry, the divergence of the diamagnetic current is nonvanishing,

· J =
2
3

· (B× ) (80)

To maintain charge neutrality · J = 0 · J must be compensated for by a current parallel to

the magnetic field,

· Jk =
1 k

=
2
3

· (B× ) =
2
¯̄̄̄ ¯̄̄̄

sin (81)

k ' =
2
¯̄̄̄ ¯̄̄̄

cos (82)

Therefore, in tokamaks, an extra toroidal current exists in addition to that externally driven, 0

which creates the poloidal magnetic field The parallel current in Eq. (82) is called Pfirsch-

Schlüter current. The ratio between the magnitude of the Pfirsch-Schlüter current and 0 is ap-

proximately given by

=
2
¯̄̄̄ ¯̄̄̄

0
= 2

¯̄̄̄ ¯̄̄̄
(83)

which is called the ballooning parameter. The poloidal magnetic field is accordingly modified as

( ) ' 0 ( ) (1 + ( ) cos ) (84)

where 0 is the lowest order poloidal magnetic field

0 =
0
Z
0

0 ( ) (85)

is related to the Shafranov shift of the magnetic axis , ' The shift is illustrated in

Fig. 3.
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r
r'

'

R

magnetic axis

magnetic
surfaces

Fig. 3. Eccentric magnetic surfaces resulting from the shift of the magnetic axis on which

= 0 The coordinates ( ) pertain to the origin chosen at the magnetic axis, while ( 0 0)

to the center of a circular magnetic surface. They are related through 0 = + sin 0 and

= 0 + sin

Likewise, in toroidal geometry, the magnetic curvature/gradient makes the cross-field ×

drift compressible,

· v =
2

3
· (B× ) 6= 0 (86)

in contrast to the slab geometry with straight magnetic field lines. The guiding center ion magnetic

drift,

V =
2

e (87)

also enters the continuity equation. Furthermore, trapped electrons make electron response non-

Boltzmann (nonadiabatic) and provide a source of strong destabilization for the drift mode. Another

important toroidicity e ect is the absence of stabilizing ion Landau damping in modes propagating

in the electron diamagnetic drift ( 0). This follows from the condition of ion kinetic resonance

as given by

+ k k = +
3

µ
1

2
2 + 2

k

¶
( ×B) · k k k = 0 (88)

where is the velocity dependent ion magnetic drift frequency. When 0, the domain in the

velocity space that satisfies the resonance condition is extremely narrow or even nullified, depending

on the finite ion Larmor radius parameter, .
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Noting that the × drift is compressible and incorporating the ion magnetic drift velocity

and ion velocity perturbation parallel to the magnetic field, the ion continuity equation now takes

the form µ
+V ·

¶
+ ·

£
0v (1 2 2)

¤
+ 0 · v + 0 · v k = 0 (89)

Here

V =
2

3
B× (90)

is the thermal ion magnetic drift, and vk is the parallel velocity associated with the ion acoustic

mode to be determined from the momentum balance along the magnetic field,

0

µ
+V ·

¶
vk = 0 k k (91)

where is the ion pressure perturbation. The ion polarization drift is to be evaluated with the

substantive derivative,

v = 2

µ
+V ·

¶
( ) (92)

It is noted that these equations are, strictly speaking, valid if the ion temperature gradient ( ) is

negligibly small. When is large, the perturbation in the ion temperature (and thus in the ion

magnetic drift) must be considered. The ion temperature gradient mode ( mode) will be discussed

separately. For now, we ignore , and approximate the ion pressure perturbation by

= (93)

Then,

k =
k

+
+

k

+ 0
(94)

where

k =
1
( )

is the gradient along the magnetic field in the tokamak magnetic geometry. Here is now understood

to be the poloidal angle along the helical magnetic field which extends from to unless on a

rational magnetic surface. Substituting this into Eq. (89), and noting the cancellation between the

following two terms,

( )2 · v 2 (V · ) 2 = 0 (95)
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we obtain forµ
+

1 2
k

1

+ k

¶
=

½
( + )( )2 + 2

k
1

+ k

¾
0

(96)

where = is the temperature ratio, and =
p

is the ion acoustic speed. It is noted

that the di erential operator k operates on ( ) and ( ) as well as on and where is the

extended poloidal angle. The perturbation is assumed to be in the form ( ) ( ) where is

the toroidal angle. Near a rational surface where = with and being integers, the cross

field di erential operator becomes

( ) ( ) = e +

µ
+

¶
e = [e + ( sin ) e ] (97)

where = and use is made of

'
1

sin = sin

(See Fig. 3.) Therefore,

2 = 2
£
1 + ( sin )2

¤
(98)

Likewise,

= k ·V =
2

[e + ( sin )e ] · e = 2 [cos + ( sin ) sin ]

(99)

where =

The density perturbation of electrons may be found from the integral of the kinetic equation,

=

¡
2
¢

(v) k k
(100)

where

¡
2
¢
= 1 +

µ 2

2

3

2

¶¸
(101)

in the energy dependent diamagnetic drift frequency. An approximate electron density pertubation

is

'

Ã
1 2

( 7
3 )( )

( 5
3 )2 10

9
2

!
0 (102)
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where

=
3
( ×B) · k =

1

2

is the magnetic drift frequency of trapped electrons satisfying 2 2
k Equating the electron

density to the ion density in Eq. (96), we obtain the following mode equation,µ ¶2 ½
1

+ +

¾
+ ( ) = 0 (103)

where

( ) =
1

1 +

µ
( ) ( + ) ( )

+ ( )

¶
(104)

= 1 2
( 7

6 )( ) 1
2

( 5
6 )2 5

18
2

(105)

( ) = ( )2
£
1 + ( sin )2

¤
(106)

and = has been assumed.

Equation (103) can be solved numerically with a complex shooting code. Fig. 4 shows the

dispersion relation, ( + ) vs. 0 = ( )2 when = 0 = = 0 4 = = 0 25

= 1 = 1 = 2. At 0 = 0 01 the eigenvalue is ( + ) ' 0 12 + 0 04. In the long

wavelength regime, ( )2 ' 0 01, coupling to the ion acoustic mode is evident since =

( ) is of order unity. However, in toroidal geometry, ion Landau damping is practically

absent, and the ion acoustic mode can be unstable being driven by the trapped electrons. It is

noted that the electron temperature gradient has a destabilizing influence because the instability

is driven by the interchange e ect associated with the trapped electrons. Also it has been found

that electromagnetic (finite ) e ects are destabilizing in contrast to the ion temperature gradient

(ITG) mode, which will be discussed in the following Section.
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Fig. 4. Normalized frequency (dotted line) and growth rate (solid line) of the collisionless

trapped electron drift mode vs. 0 = ( )2

6 Toroidal Ion Temperature Gradient Mode

In toroidal geometry with magnetic shear, the mode is driven largely by the interchange ef-

fect through the coupling of the ion pressure gradient with the unfavorable magnetic curvature.

Jarmén et al. [8] have made a detailed study on the toroidal mode within the hydrodynamic

approximation,

( )2 ¿ 1 + À k (107)

In the analysis by Jarmén et al., the ion pressure perturbation has been obtained from the Braginskii

heat balance equation

3

2
+
3

2
·( V) + ·V+ · q = 0 (108)

where is the ion pressure, V is the ion fluid velocity, and q is the cross field ion heat flux,

q =
5

2 2
B× (109)

The divergence of q is

· q =
5

2
(V V ) · (110)
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where

V =
B×

2
(111)

is the ion diamagnetic drift velocity, and

V =
2

3
B× (112)

is the ion magnetic drift velocity. Linearization of Eq. (108) by assuming

= 0 + e
yields

3

2

µ
+ 5
3V ·

¶ e 5

2

µ
+V ·

¶
v ·

µ
3

2

¶
= 0

(113)

or

e = 5

3

+

+ 5
3

+
+ 5

3

µ
2

3

¶
0 (114)

The perturbed ion diamagnetic current is thus given by

J =
B× e

2

Substituting this into the ion continuity equation,

+
1

· J + ·
©
v [1 ( )2] 0

ª
+ 0 · v = 0 (115)

where v [1 ( )2] is the ion × drift corrected for the finite ion Larmor radius e ect, and

¯ is the ion polarization drift,

v = 2

µ
+V ·

¶
( ) (116)

we readily find the ion density perturbation in terms of the potential

=
( + 5

3 )
©

[ + (1 + )] ( )2
ª ¡

2
3

¢¡
+ 5

3

¢2 10
9

2
0

(117)

This result qualitatively agrees with the ion density perturbation derived from the gyro-kinetic

analysis,

= 0 +

¿
+ b ( 2)

+ b (v) k k

2
0

µ ¶À
v

0 (118)
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provided the ion transit e ect
¡
k k

¢
is negligibly small. The ion magnetic drift frequency plays

double roles, one to cause a guiding center drift which is destabilizing through the interchange

a ect ( ) and another to cause a thermal spread ( 2 term in the denominator) which is

stabilizing.

If the trapped electrons are ignored, the electron density perturbation is Boltzmann,

= 0

The charge neutrality condition = thus yields a dispersion relation which is quadratic in

and the condition for the instability is given by

2

3
+
1

4

( )2 + 10
9

2

(119)

Approximating = 2 and = 2 we find

2

3
+
1

4

(1 2 )2 + 10
9 (2 )2

2
(120)

where = and = In the limit of flat density profile 1 we find

2

3
+
1

2

2 + 10
9

while in the case of steep density gradient 1

2

3
+
1

4

µ
2

+
20

9

¶
Also, it is noted that the critical increases as the ion temperature exceeds the electron temperature

1

As is evident in Eq. (119), the main drive of the toroidal mode comes from the interchange

term. An approximate dispersion relation is

2 ' ( ) (121)

where ' 1 is the critical ion temperature gradient. Trapped electrons further destabilize the ITG

mode [9],

2 ' ( ) 2 (122)

However, the toroidal ITG mode is subject to e ective stabilization by a finite [9].
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7 Local Kinetic Formulation for Electrostatic Modes

When kinetic resonance (Landau damping) is important, and one of the basic assumptions of

hydrodynamic approximation, ( )2 ¿ 1, becomes dubious, one has to resort to the kinetic

analysis based on the Vlasov equation for the velocity distribution function ,

+ v · + (E+ v×B) ·
v
= 0 (123)

and then evaluate the density perturbation from

=

Z
3 (124)

For low-frequency, drift-type modes with ¿ (¿ ), the e ects of higher harmonics of the

ion cyclotron frequency may be ignored.

In this Section, a procedure is outlined to solve the Vlasov equation for electrostatic modes,

described by E1= B1 = 0 (negligible magnetic perturbation). Linearizing Eq. (123) with

= 0 + 1 and singling out the × drift velocity, we obtain

1
+ v · 0 ·

0(
2 x)

v
= 0 (125)

where

= + v · + (v×B)·
v

(126)

is the substantive derivative along the unperturbed particle trajectory determined from the equation

of motion

v
= v×B v =

r
(127)

It is noted that the × drift term actually stems from the velocity derivative pertinent to a

nonuniform plasma in which the unperturbed distribution function 0 can be a function of the

canonical momentum,

r
× v
2

(128)

as well as the energy. (Strictly speaking, this quantity is an invariant only in a uniform magnetic

field and in nonuniform magnetic field, it is only approximately an invariant.) Nonuniformity in the

magnetic field introduces the magnetic drift,

V =
3

µ
1

2
2 + 2

k

¶
B× (129)
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which can be implemented in the analysis as an e ective Doppler shift. The velocity derivative can

be performed as follows:

v
0

µ
2 r

× v
2

¶
'

0( 2)

v
+
1
2

× 0

Then,

·

µ
0(

2)

v
+
1
2

× 0

¶
= ·

0(
2)

v
+ v · 0

where

v =
B×

2

is the × drift.

If the unperturbed distribution 0(v) is assumed to be Maxwellian, ( 2) which is reasonable

provided the confinement time far exceeds the collision time, the velocity derivative becomes

0

v
=

v
(130)

Assuming all perturbations are proportional to (k·r ), and noting

(v×B)·
v
= (131)

where

= tan 1

µ ¶
(132)

is the gyroangle, we may reduce Eq. (125) to

+ ( k ·V k · v) v · (v+V ) · = 0 (133)

where V is the velocity dependent magnetic drift velocity and v is the random velocity. The part

of independent of the gyroangle can be singled out as

= +

where satisfies

+ ( k ·V k · v) v · + = 0

If k is chosen to be k = e + ke we have k · v = cos + k k Solving for is e ected by

using the expansion,

± sin =
X
=

( ) ± (134)
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twice with the result

= +
X µ ¶ µ ¶

( ) ˆ

k ·V k k

' +
ˆ

k ·V k k

2
0

µ ¶
(135)

where ¿ is recalled and

b ( 2) =
2
(B× ln ) · k =

2
(B× ln 0) · k 1 +

µ
2

2

3

2

¶¸
(136)

k ·V =
3

µ
1

2
2 + 2

k

¶
(B× ln ) · k (137)

For ions, we define the energy dependent diamagnetic frequency by

b ( 2) = 1 +

µ
2

2

3

2

¶¸
(138)

where

=
2
( ln ×B) · k (139)

and the ion magnetic drift frequency by

b (v) = k ·V (v) (140)

Then, the perturbed ion distribution function is

= +
+ b

+ b k k

2
0

µ ¶
(141)

For electrons, with the definitions

b ( 2) = 1 +

µ 2

2
3
2

¶¸
=

2
( ln × ) · k

b (v) = k ·V (v)

we approximate the distribution function by

=
bb k k

(142)
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where = 0 for trapped electrons ( =
¯̄
k

¯̄
) and = 0 for untrapped electrons

( =
¯̄
k

¯̄
). In drift-type modes, the e ect of finite electron Larmor radius can be

ignored. The dispersion relation (or the mode equation) is thus found from the charge neutrality,Z
3 =

Z
3 (143)

or

1 + =

¿
+ b ( 2)

+ b (v) k k

2
0

µ ¶À
ion

+

¿ b ( 2)b (v) k k

À
electron

(144)

where h· · · i indicates averaging over the velocity with Maxwellian weighting, and = .

The kinetic dispersion relation derived in the preceding section is, strictly speaking, valid only

when the norm of the di erential operation k is known for eigenfunction (r) In tokamaks, most

drift-type modes are driven by the interchange e ect, and the eigenfunction is expected to peak in

the unfavorable curvature region. We therefore assume a trial function [15 Coppi, 16 Hirose]

( ) =

1

3
(1 + cos ) | |

0 | |

(145)

where is the extended poloidal angle along the helical magnetic field.

The norm of k can be evaluated from

D
2
k

E
=

1

( )2

Z 2

2

=
1

3( )2
(146)

Since the magnetic drift frequency in the ballooning space is

( ) =
³
1
2
2 + 2

k

´
(cos + sin ) (147)

its norm is

h i =
³
1
2
2 + 2

k

´ ¡
2
3 +

5
9

¢
(148)

and similarly

2
®
= 2

£
1 +

¡
1
3

2 5
2

¢
2
¤

(149)
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Of course, for eigenfunctions that cannot be approximated by the simple trial function in Eq. (145),

these norms become invalid.

Let us apply this semi-local kinetic dispersion relation to the mode, for which a rigorous

integral equation analysis has also been made. In Fig. 5, the growth rate found from Eq. (144) with

the norms in Eqs. (146)—(149) is compared with that obtained from a kinetic integral equation code

[17 Elia]

Fig. 5. (a) Growth rate vs. = ( )2 and (b) vs. of the toroidal ITG mode when = 0 1

= 2 = 2 In (a), = 1 and in (b), = 0 1 Solid line is from local kinetic analysis and dashed line

from the ballooning mode equation.

8 E ects of Magnetic Shear on the Drift Mode

In slab geometry with a sheared magnetic field

B ( ) =

µ
e + e

¶
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where is the radial distance from a magnetic surface on which k = 0 the parallel wavenumber

becomes a function of the distance

k ( ) = |B ( )|
B ( ) · =

is the magnetic shear length. Note that in slab geometry, variation along the axis is ignored.

Therefore, near the rational surface, the condition of adiabatic electron response, ¿ k may

be violated. (In toroidal geometry, k remains finite even at rational surfaces, since

k =
1
µ ¶

where takes into account slow variation of amplitude of eigenfunctions with the poloidal angle

)

In the limit of low ion temperature ¿ the ion density perturbation is given by

=

"
( )2 +

( k )2

2

#
0 = (150)

The electron density perturbation is

= 1 + ( )

¸
0 (151)

where

= ¯̄
k

¯̄ (152)

is the argument of the plasma dispersion function ( ) Noting

2 = 2
2

2
(153)

we obtain from charge neutrality = the following equation for ( )

2

2
( )2 +

2

2
2 [1 + ( )]

¸
( ) = 0 (154)

where = = and

=
| |

= (155)

is essentially the electron transit time over the shear length Eq. (154) can be solved nu-

merically (using shooting code). No bounded unstable solutions have been found. A finite electron

temperature gradient and finite ion temperature do not alter this conclusion.
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However, if the drift frequency is not constant but depends on being peaked at the rational

surface, an instability may set in. The case of Gaussian dependence,

( ) = 0 exp

µ 2

2

¶
(156)

has been analyzed by Hojo and Watanabe [18] with a conclusion that an instability can occur if

the length which characterizes the nonuniformity in ( ) profile, satisfies

or

as demonstrated in Fig. 6. This condition is similar to that found by Krall and Rosenbluth [2],

2

Fig. 6. Unstable drift mode in slab geometry when is nonuniform. Growth rate 0

vs. . 0 = 1 = 0 02

In tokamaks, magnetic shear has in general destabilizing e ects on drift type modes. This

tendency has been observed in the toroidal ITG and ETG modes and also in the toroidicity induced

drift mode. Fig. 7 shows shear dependence of the growth rate of short wavelength ITG mode. The

growth rate is approximately proportional to
p
| | which indicates that finite shear, either positive

or negative, is needed for the mode to be unstable. The case of ETG mode is shown in Fig. 8. In

general, weak magnetic shear may be favourable for suppression of the drift modes [19, 20].
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Fig. 7. Dependence of the ITG growth rate on the shear parameter Shear is destabilizing in both

positive and negative regions.

Fig. 8. (a) Mode frequency and growth rate of the ETGmode vs. shear (b) Dependence

on the safety factor
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9 Electromagnetic Formulation

The plasma factor defined by

=
2 2 0

is an important economic figure of merit of fusion power reactor. It is equally important in plasma

stability, for some instabilities (e.g., the ballooning mode) set in if the factor exceeds a threshold

value. In drift mode analysis, the primary interest will be in whether a finite tends to further

destabilize predominantly electrostatic drift type modes, or not. In addition to the scalar potential

the parallel vector potential k enters as the second field to introduce the shear Alfven mode.

(In low plasmas, the third field k associated with the magnetosonic perturbation may still be

ignored.)

The Alfven mode is characterized by magnetic field line bending which causes particle drift

k
B

(157)

This is still an E×B drift with a motional electric field given by

E0 = vk ×B (158)

which yields

E0 ×B
2

= k
B

(159)

Combining with the electrostatic E×B drift, we thus find the total perturbed drift,

v =
B×

2
+ k

B
(160)

Noting

E =
Ak

(161)

and following the same procedure as developed in the preceding section, we obtain

= +
bb k k

¡
k k

¢
2
0 ( ) (162)

with =

The basic equations to govern low frequency, long wavelength modes are the charge neutrality

condition

= or

Z
v =

Z
v ¿ (Debye wavenumber), (163)
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and parallel Ampere’s law,

2
k = 0 k = 0

Z
k( ) v (164)

where the perturbed ion distribution function can be found from Eq. (162),

= +
+ b
k k + b 2

0

µ ¶¡
k k

¢
(165)

with

b ( 2) =
2
1 +

µ
2

2

3

2

¶¸
[ (ln 0)×B0] · k (166)

b (v) =
3

µ
1

2
2 + 2

k

¶
( ×B0) · k (167)

We assume that the mode frequency is much larger than the ion transit frequency | | À k

This is well satisfied in the toroidal ITG and ballooning modes which are our main interest. Then

the ion density perturbation becomes electrostatic and the ion current parallel to the magnetic field

is ignorable,

' ( 1 + ) 0 (168)

where the function defined by

=

Z
+ b
+ b 2

0

µ ¶
v (169)

involves ion kinetic resonance at + b (v) = 0

For the electrons, the finite Larmor radius e ect may be ignored. The perturbed electron dis-

tribution function can be written down analogously,

=
b

k k b ¡
k k

¢
(170)

where

b ¡
2
¢
=

2
1 +

µ
2

2

3

2

¶¸
[ (ln 0)×B0] · k (171)

b (v) =
3

µ
1

2
2 + 2

k

¶
( ×B0) · k (172)

In Eq. (170), e ects of trapped electrons are ignored. They have relatively weak stabilizing influence

on the ballooning mode through a reduction in the electron parallel current.
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In the low frequency limit | | ¿ k the electron density perturbation can be approximated

by

= 0

* b ¡
2
¢

+ b (v) k k

¡
k k

¢+
v

0

'

µ
k

k

¶
0 (173)

The parallel current is largely carried by the electrons, and can be evaluated from the 1st order

moment of the perturbed electron velocity distribution function,

k =

Z
k v

'
0
2

k
( ) +

( )( ) +

k
k

¸
(174)

Substituting the ion and electron density perturbations into the charge neutrality condition,

=

and the parallel electron current into Ampere’s law,

2
k = 0 k

we obtain

( 1 + ) 0 =

µ
k

k

¶
0 (175)

and

2
k =

0 0
2

k
( ) +

( )( ) +

k
k

¸
(176)

These two equations form a closed set for the two unknowns, and k. The parallel Ampere’s law

can be rearranged as

k
2

k
k

k
=

2

2

½
( ) +

( )( ) +

k
k

¾
(177)

where 2 = 0
2

0 is the square of the electron Debye wavenumber. Eliminating k between

Eqs. (175) and (177) yields the following kinetic ballooning mode equation [21 Hirose PRL],

k
2

k
b+ 2

2

( )2

1 +
( ) ( )

¸ b= 0 (178)
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where b is a reduced scalar potential defined by
b= (1 + ) (179)

After ballooning transformation, Eq. (178) is converted into a di erential equation,½
[1 + ( sin )2]

¾
+
4 (1 + )

½
( 1)[ ( )] + ( )

( 1)2

2 ( )

¾
= 0

(180)

where = and = = have been assumed and the mode frequency is normalized by

electron diamagnetic drift frequency, = In the MHD limit | | À and ( )2 ¿ 1

we readily recover the MHD ballooning mode equation. It is noted that the safety factor is

absorbed in the ballooning parameter

= 2 [ (1 + ) + (1 + )]

and does not appear explicitly in the mode equation. This is because the ion acoustic transit

e ect has been ignored by assuming À k ' k ( ' ) When this condition becomes

marginally satisfied, an integral equation approach must be employed.

Finite e ects on the toroidal mode can still be analyzed by Eq. (180) as long as the ion

transit frequency is negligible, | | k In this limit, the ion dynamics remains electrostatic and

electromagnetic e ects enter mainly through electron dynamics. Eq. (180) describes both the kinetic

ballooning mode and the mode corrected for finite e ects. For the ballooning mode having

a frequency | | ' k the condition is well satisfied relatively independent of the finite Larmor

radius parameter However, for the toroidal mode, the eigenvalue scales with

and the condition | | k is satisfied only for comparatively short cross-field wavelengths.

In contrast to the mode, the trapped electron drift ballooning mode is further destabilized by

Eq. (180) is, unfortunately, inapplicable to analyzing the mode because in the long wavelength

regime, the mode frequency approaches the ion acoustic transit frequency k ' k ( ' )

and the assumption À k breaks down. A rigorous analysis on finite e ects on the ion

acoustic mode requires integral equation formulation.

Figure 9 shows stabilizing e ect of total (ballooning parameter) on the toroidal mode in

various conditions [22 Hirose PoP]. In (a), = 0 2 = = 2 in (b), = 0 5 (nearly

flat density profile), = = 4 and in (c), same condition as in (a) except trapped electrons

are included ( = 0 2) Common parameters are: ( )2 = 0 1 = 1 = Stabilization of
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the toroidal mode occurs when the ballooning parameter exceeds a threshold which depends

on discharge parameters. Trapped electrons have a destabilizing e ect on the mode. (This is

in contrast to the case of the kinetic ballooning mode which tends to be stabilized by trapped

electrons.) The critical required for stabilization of the mode is approximately given by

&
1 +

3 (1 )

2

(1 + 2 ) ( + 1) + 2
(181)

where = = =

Fig. 9. Stabilization of the mode by the ballooning parameter. Solid lines show

growth rate and dashed lines mode frequency = 1 = = 1

0 = ( )2 = 0 1 (a) = 0 2 = = 2 = 0 (no trapped electrons).

(b) = 0 5 = = 4 = 0 (c) Same as (a) except = 0 2
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Fig. 10. destabilization of the trapped electron drift ballooning mode. = 1 = 1

= 2 = 0 2 = 0 4 = = 1.

Figure 10 shows finite destabilization of the long wavelength drift mode driven by trapped

electrons as found from integral equation analysis [23 Hirose-Elia CJP].

10 Kinetic Ballooning Mode

With the numerical techniques described in the preceding section, we now present the results of

stability analysis of the kinetic ballooning mode. Before presenting results of kinetic analysis of

the ballooning mode, let us briefly review the ideal MHD ballooning analysis. In ideal MHD, the

electric field parallel to the magnetic field is assumed to be zero. (Otherwise, an infinitely large

current would flow.) Then,

Ek = k

Ak
= 0 k = k (182)

The parallel Ampere’s law 2
k = 0 k and charge neutrality · J = 0 yield

· 2 Ak = 0 · Jk = 0 · J (183)
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where the cross-field current consists of the the di erence between the ion and electron × drifts,

the ion polarization current and perturbed diamagnetic current,

· J = ·

µ
0 ( )2

B×
2

¶
+ ·

µ
0
2

2

µ
+V ·

¶
( )

¶
+ ·

µ
B× ˜

2

¶
= 0 [ + (1 + ) ]

2

2
2 2

3
· (B× ˜) (184)

where the following cancellation is noted:

0
2
3
( )2 ·B× +

0
2

2
2V · = 0

The perturbed plasma pressure may be approximated by

˜
+
B×

2
· 0 = 0 (185)

Then Eq. (183) reduces to

2
k
2
k = 2 2 +

2
(186)

where | | À is assumed and

= (1 + ) + (1 + ) (187)

=
2

k · e (188)

Noting k =
1 Eq. (186) can be converted to the following ballooning equation [24 Connor,

Hastie, Taylor] ½h
1 + ( sin )2

i ¾
+ [cos + ( sin )]

+ ( )2
h
1 + ( sin )2

i
= 0 (189a)

where = is the Alfven frequency and has been ignored. This equation has been

studied extensively in the past. Stable-unstable boundaries in the ( ) plane are shown in Fig. 11.

For a given shear a tokamak discharge becomes ballooning unstable above a critical A further

increase in stabilizes the ideal MHD ballooning mode [25 Mercier, 26 Sykes, 27 Zakharov].
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Fig. 11. Tokamak stability boundary for the ideal MHD ballooning mode in the ( ) plane.

More rigorous analysis based on the kinetic mode equation, Eq. (180), essentially nullifies the

so-called second stability regime when the ion temperature gradient ( ) is finite [21]. In Fig. 12 (a)

and (b), the growth rate and mode frequency normalized by the Alfven frequency , and

( = ) are shown when = 0 4 0 = ( )2 = 0 01 = = 2 = = 0 175 As far

as the maximum growth rate is concerned, the MHD and kinetic theories agree well. The critical

for the onset of the ballooning mode from the kinetic theory is = 0 35 which is somewhat

smaller than that obtained from the ideal MHD theory, = 0 39 The dashed line shows a second

mode revealed by the kinetic analysis.

The growth rate revealed from the kinetic analysis persists in the MHD second stability region.

The kinetic ballooning mode in the MHD second stability regime requires a finite ion temperature

gradient, & 1, and is driven through the resonance contained in the non-adiabatic ion density

perturbation, ( ).

At small shear, the critical for the (kinetic) ballooning mode becomes small and the instability

becomes threshold-less and remains unstable at any Fig. 13 shows the case = 0 2 with other

parameters unchanged from those in Fig. 12.
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Fig. 12. Growth rate and frequency of the kinetic ballooning mode vs. when

= 0 4 = 2 0 = 0 01 = = 0 175 = = 2 The dotted line shows

the growth rate of the ideal MHD ballooning mode and dashes lines show the second kinetc

ballooning mode.

Fig. 13. Same as Fig. 12 except = 0 2
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11 Short Wavelength Drift Modes

Often the short wavelength electron temperature gradient (ETG) mode is considered to be the dual

of the long wavelength ITG mode. In the ITG mode, the electron response is adiabatic (except

for the destabilizing trapped electron contribution), while in the ETG mode, the ion response is

adiabatic, since the nonadiabatic term proportional to 0 ( ) vanishes in the short wavelength

regime of electron Larmor radius, = ( )2 ' À 1. (An exception is the case when

| | In this intermediate frequency regime, the ion density perturbation becomes

nearly independent of

= 0 +
+

+
0 ( ) 0

' 0 +
1

2
0 À 1 (190)

since An ITG mode in such short wavelength regime has recently been identified [28

Smolyakov]. It is a slab-like mode and toroidicity has a stabilizing influence.) However, tokamaks

are normally operated in a strong magnetic field such that or where

is the electron Debye length. Therefore, charge neutrality may not hold and duality could breaks

down. In this case, normalization of the cross field wavelength by the electron Debye length is more

convenient.

Analysis of ETG mode in tokamaks without imposing charge neutrality has revealed that the

maximum growth rate occurs at = ' 0 7 The mode is predominantly electrostatic.

Charge nonneutrality introduces a normalized electron temperature 2 as another dimension-

less parameter in tokamak stability analysis. The growth rate is proportional to even though

the mode is electrostatic. The mixing length electron thermal di usivity is approximately given by

[29 Hirose PRL 04]

'

µ ¶2p
(191)

where is the scale length of electron temperature gradient and is the electron skin depth.

To analyze drift modes in the regime 1 we continue to employ the gyro-kinetic equations

subject to the conditions that ¿ (¿ ). The maximum frequency and growth rate of

interest does not exceed the electron transit frequency =
p

. The condition '

¿ becomes

¿
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where is the electron Larmor radius which is of the order of 10 4 m or less, while the RHS

' 10 3 m. Therefore, the condition ¿ is satisfied with a large margin. The second

condition ¿ is also well satisfied even in the internal transport barrier (ITB) characterized

by steep density and temperature gradient. In the ETG mode, ions are essentially adiabatic,

' 0

particularly in the regime where the growth rate peaks. As will be shown, this occurs at ' 0 7

where is the electron Debye wavenumber. However, in the lower end of the spectrum (long

wavelength cuto ), the wavelength approaches the electron skin depth, ' where ions are

not adiabatic. Note that is comparable with the ion Larmor radius . The ratio is

=

r
4

2
=

r
2

(192)

where

=
2 0

2

is the ion beta factor. The quantity
q

2 falls in the range 1 to 4 in high performance tokamaks.

In order to cover the entire spectrum of the ITG and ETG modes satisfactorily, fully kinetic ion

and electron responses without the assumption of adiabatic ions or electrons must be employed by

appropriately implementing the electron transit e ect, k This requires formulation in terms of

integral equations.

The basic field equations are the Poisson’s equation,

2 =
1

0

£
( k) ( k)

¤
(193)

and the parallel Ampere’s law,

2
k = 0 k( k) (194)

where the density perturbations are given in terms of the perturbed velocity distribution functions

and as

=

Z
v =

Z
v (195)

and the parallel current by

k =

Z
k( ) v (196)
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The distribution functions and are given by

= + ( ) 0( ) (197)

= + ( ) 0( ) (198)

where are the nonadiabatic parts that satisfyµ
k( )

+ + b ¶
= ( + b ) 0( )

¡
k k

¢
(199)

µ
k( )

+ b ¶
= ( b ) 0( )

¡
k k

¢
(200)

Here, is the extended poloidal angle, is the scalar potential, k is the parallel vector potential,

0 is the Bessel function with argument = and is the connection length.

For circulating particles, ( = ) can be integrated as [30 Rewoldt]

k 0 + =

Z
0 ¯̄

k

¯̄ ( b ) 0(
0 )
³
( 0)

¯̄̄
k

¯̄̄
k
( 0)

´
(201)

k 0 =

Z
0 ¯̄

k

¯̄ ( b ) 0(
0 )
¡
( 0) +

¯̄
k

¯̄
k(

0)
¢

(202)

where

( 0) =

Z
0

¯̄
k

¯̄ [ b ( 00)] 00

For trapped particles with turning points 1 and 2 ( 2 1), the solution is

=
( 0)sin( 0)

2 sin[ ( 0)]

Z
2

1

³
( 2

0)sgn( ) + ( 2
0)sgn( )

´
0

Z
1

( 0) 0

(203)

where = sgn( k)

= + (204)

= ¯̄
k

¯̄( ) 0( ) ( 0) (205)

44



= ¯̄
k

¯̄( ) 0( )
¯̄
k

¯̄
k(

0) (206)

Since for electrons, ( 2 1) is of order of ¿ 1 where is the electron bounce frequency,

trapped electron response may be approximated by

'
1

2 ( 2 1)

Z
2

1

( + ( 2
0) ) 0

Z
1

0 (207)

In this analysis, we ignore trapped ions since the frequency regime of interest is at least of the order

of the ion transit frequency. Substitution of perturbed distribution functions into charge neutrality

and parallel Ampere’s law yields

2 =
1

0

X µ
+

Z h
+( ) + ( )

i
0( ) v

¶
(208)

2
k( ) = 0

X Z
k

h
+( ) ( )

i
0( ) v (209)

where
R
v = 2

R
0

R
0 k This system of inhomogeneous integral equations can be solved

by employing the method of Fredholm in which the integral equations are viewed as a system of

linear algebraic equations.

12 The ETG Mode

In this Section, we investigate stability of drift modes in the regime . . 1 where

is the electron skin depth and is the electron Larmor radius. Ions tend to be adiabatic in such

regime and we are primarily concerned with the ETG mode. In tokamaks, (or )

generally holds. Therefore it is not appropriate to assume charge neutrality in studying the ETG

mode. If charge neutrality does not hold, that is, if the term ( )2 is not negligible, there arises

apparent dependence of on plasma even in the electrostatic limit. With adiabatic ions, the

electrostatic dispersion relation of the ETG mode is

1 + +

µ ¶2
=

¿ bb k k

2
0 ( )

À
(210)

The charge nonneutrality factor ( )2 ' ( )2 and the electron finite Larmor radius para-

meter ( )2 are related through µ ¶2
= ( )2

2
2

(211)
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where 2 is the normalized electron temperature. Even in the electrostatic mode equation

(and resultant dispersion relation), has to be specified because the ballooning parameter =

2 is one of the parameters to characterize plasma equilibrium. The electron FLR parameter

is of course the key parameter in gyro-kinetic formulation. Therefore, when charge neutrality

does not hold, the normalized temperature 2 has to be specified together with various other

dimensionless parameters. For a given electron temperature, charge nonneutrality is evidently more

enhanced at lower plasma density. Since the term ( )2 is stabilizing, it is expected that the

growth rate of the ETG mode becomes dependent on . The growth rate of the ETG mode

with charge neutrality ( )2 ¿ 1 and negligible electron transit frequency À k is

approximately given by

'
p

(212)

Charge non-neutrality reduces the growth rate as

'

r
+ ( )2

(213)

In short wavelength regime ( )2 the growth rate approaches

'

r
(214)

being proportional to

To demonstrate the importance of charge nonneutrality in the ETG mode, we show in Fig.

14 the dependence of mode frequency and growth rate, both normalized by the electron transit

frequency = on the normalized perpendicular wavenumber, = ( )2 for three

values of = = 0 1% 0 2% and 0 5% when = = 10 keV
¡

2 ' 0 02
¢
. Other

parameters assumed are: = 0 2 = 1 = 2 = = 2 = 1836 (hydrogen).

The maximum growth rate occurs approximately at a constant value of ( )2 ' 0 5 when the

plasma density and electron temperature are varied. If the conventional normalization = ( )2

is used, the maximum growth rate occurs at widely di erent values of . When charge neutrality

does not hold, normalization in the form ( )2 is thus more appropriate.
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Fig. 14. Mode frequency (solid line) and growth rate (dotted line) as functions of

= ( )2 when = = 10 keV, = 1 = 1 = 0 2 = = 2 = 2 = 1836

(= ) is scanned from 0.1 to 0.5%.
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Fig. 15. dependence of ( + ) when = = 5 keV, = = 0 2% = 1 = 1 = 0 2

= = 2 = 1836

It is noted that mode frequency is of the order of the electron transit frequency, = .

This is the major di erence from the long wavelength ITG mode in which the ion transit frequency

is subdominant, | | Electron parallel Landau damping thus plays a major role in the

ETG mode. Since k ' 1 the mode frequency is expected to be sensitively dependent on the

safety factor This is shown in Fig. 15 for = 10 keV. A relatively small value of = 0 2%

is chosen to keep the ballooning parameter which is proportional to 2 below the limit of drift

reversal. The maximum growth rate increases with in a manner approximately proportional

to 2
max

2 Since = the unfolded growth rate is proportional to
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13 Mixing Length Estimate of and

In this Section, mixing length estimates of the electron thermal di usivity,

=
3

2 + 2

1
2 (215)

are presented for the ITG and ETGmodes. Fig. 16 shows how the ITG driven ion thermal di usivity

depends on the safety factor is normalized by 2 In the scan in (a), the ballooning

parameter remains below the threshold of finite stabilization. It can be seen that increases

with almost linearly. In the case shown in (b), is large and the ballooning parameter exceeds

the threshold for stabilization of the ITG mode at ' 3 5 The sudden reduction in at = 4 is

due to deactivation of the ITG mode. The analysis of the ITG mode has yielded the following ion

thermal di usivity,

' 0 1

r
2

The relationship arises from the coupling to the ion acoustic transit mode in the long

wavelength regime.

Figure 17 shows ETG driven electron thermal di usivity in units of ( ) 2 when

= 0 2%, = = 5 keV and 10 keV. The safety factor is scanned between = 2 and 4. The

maximum value of is proportional to 2 but inversely proportional to the temperature. Since

1 this suggests that the electron thermal di usivity is also proportional to and has the

following scaling,

0

Results of scanning electron temperature and the safety factor can be summarized by the

following electron thermal di usivity,

'

µ ¶2p
(216)

Earlier, Ohkawa proposed the following di usivity [31],

=

µ ¶2
(217)

assuming that the electron skin depth plays the role of cross-field random walk distance and taking

the electron transit frequency as the inverse correlation time. The di usivity revealed in

the present study is proportional to which is attributed to the coupling to the electron transit

frequency. It has recently been reported that both ion and electron thermal di usivities in the

DIII-D tokamak are approximately proportional to the safety factor [32].
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Fig. 16. Ion thermal di usivity due to the ITG mode normalized by 2 vs.

= ( )2 when is varied. (a) = = 10 4 (b) = = 10 3 Common

parameters are: = 0 2 = 0 1 = = 2 = 1 = = 1836

Fig. 17. in units of 2 vs. = ( )2 when = = 0 2% and

= 2 3 4 In (a), = = 5 keV and in (b), = = 10 keV.
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