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The quantum methodologies are useful for
describing in a unified way several problems
of nonlinear and collective dynamics of
fluids, plasmas and beams

They are tools provided by

* Schrodinger-like equations
 Madelung fluid picture

* von Neumann-Weyl formalism
e quantum tomography

* n-waves parametric processes



GENERAL ROLE OF THE QUANTUM METHODOLOGIES

The quantum methodologies are widely used in
almost all branches of nonlinear physics. For
example, they are frequently encountered in
dispersive media such as

* laboratory, space and astrophysical plasmas

* Kerr media, optical fibers and electrical
transmission lines

* many other physical systems including cosmological
and biological systems

 optical beam physics and charged particle beam
physics



They are intensively applied in all the above branches
as result of international collaborations belonging to the
frontiers of the physics researches and they are one of
the main topics of several important interdisciplinary
scientific international conferences

In fact, each of the above physical systems exhibit a
behavior that can be described with a quantum
formalism

Typically, their evolution in space and time is governed
by suitable linear or nonlinear Schrodinger-like
equations (NLSE) that are coupled, through an effective
potential, with a set of equations describing the
interaction system-surroundings




THE DIVERSE ORIGIN OF THE INTERACTION
“SYSTEM-SURROUNDINGS” IN PROCESSES
DESCRIBED BY NLSEs

in plasmas: harmonic generation and the ponderomotive
force

in nonlinear optics: Kerr nonlinear refractive index

in accelerator physics: image charges and 1mage currents
of the beam created on the walls of the accelerator vacuum
chamber. This interaction 1s conveniently described 1n terms
of the so-called "coupling impedance", whose 1maginary
part accounts for both the space charge blow up and the
magnetic self attraction, and whose real part accounts for the
resistive effects occurring on the walls

in surface gravity wave physics: high values of the wave
elevation




DESCRIPTIONS ALTERNATIVE TO THE ONE
GIVEN BY LINEAR AND NONLINEAR
SCHRODINGER EQUATIONS (IN CONFIGURATION
SPACE)

« Madelung fluid equation, obtained with the eikonal
representation of the wave function

* Moyal-Ville-Wigner Kinetic equation or von Neumann-
Weyl equation, obtained transiting from configuration
spase to phase space by means of the Moyal-Wille-Wigner
transform (quasidistribution)

e tomographic map which provides a description in terms
of a marginal distribution (classical probability function),
starting from the quasidistribution




In this scenario:

* the study of the quantum methodologies have been
recognized as very important for a synergetic
development of the above branches of physics with
very powerful multidisciplinary as well as
interdisciplinary approaches

* the intense study on nonlinear and collective effects
in the several physical systems have stimulated a
number of interdisciplinary approaches and transfer
of know how from one discipline to another,
obtaining, in turn, a big growing of importance of
the methodologies used to investigate very different
physical phenomena governed by formally identical
equations




ADVANTAGES OF THIS INTERDISCIPLINARY
STRATEGY

- communities of physicists from different areas are
stimulated to collaborate more an more exchanging their
own experiences and make available their own expertise

* subsequent very rapid improvement of all the
methodologies to be used and goals to be reached in each
specific discipline. This aspect is connected with the
efforts done during the last decades in transterring know
how and methodologies from one discipline to another
trying to predict new effects as well as to give answers for
scientific and technological problems of international
expectation




Remarkably, the applications of the quantum methodologies:

(1) to gravity ocean waves, touche the very important and hot
problem of the environmental risk due to natural catastrophes, as
the one that recently took place in the South-Est of Asia;

(1) to beam physics, open up the possibility to develop an
emerging area of physics, called Quantum Beam Physics, which
in the limit of very low temperature should provide the
realization of non-classical (but collective and nonlinear) states
of charged particle beams fully similar to the ones obtained for
the light (optical beams) and for Bose-Einstein condensation;

(111) to nonlinear optics (f.1., optical fibers) and electric
transmission lines deal with important and modern aspects of
telecommunications;

(1v) to discrete systems, are relevant for the very recent
development of nanotechnologies




QUANTUMLIKE METHODOLOGIES

TWM
particle beams

N.L. OPTICS > BEC
radiation beams | < Mesoscopic Physics

 Different systems described by the same formalism

e Transfer of know how from one discipline to another one
e Alternative “Kkeys of reading” for each discipline

* New insights and possibility of new predictions
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e Thermal Wave Model (TWM): o = ¢ (beam emittance)
|¥|* = density of the particle beam
U accounts for: self interaction (image charges and image
currents) + external potential (optical magnetic devises, RF
cavities, kickers, etc.)

e Optical beams: o = A/2n (wavelength)
\¥|* = e.m. energy density (density of the photon beam)
U accounts for: self interaction (dependence of the refractive
index on the opical intensity) + external superimposed
refractive index variations

e Bose Einstein Condensates (BEC): o = h/2w (Panck’s constant)
|¥|* = density of the condensates
U accounts for: mean field collective interaction among atoms
+ external trapping potential well




SOME ASPECTS OF THE PHENOMENOLOGICAL
PLATFORM INVESTIGATED WITH QUANTUM
METHODOLOGIES

- modulational instability (MI), also known as Benjamin-
Feir instability: a general phenomenon encountered when a
quasi-monochromatic wave 1s propagating in a weak nonlinear
medium. It has been predicted and experimentally observed in
almost all fields of physics where these conditions are present.

For ocean gravity waves: the MI has been discovered
independently by Benjamin and Feir and by Zakharov 1n the
Sixties; the instability predicts that in deep water a
monochromatic wave 1s unstable under suitable small
perturbations. This phenomenon 1s well described by the NLSE.
In this framework, it has been established that the MI can be
responsible for the formation of freak waves
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One of the most spectacular recordings of a freak wave
measured in the North Sea the 1st of January 1995 from
Draupner platform (Statoil operated platform, Norway). The
time series of the surface elevation shows a single wave
whose height from crest to through is 26 meters (a 9 floor
building) in a 10 meters height sea state. In deep water
those large amplitude have been recently attributed to MI




For plasmas waves: finite amplitude Langmuir waves can be
created when some free energy sources, such as electron and
laser beams, are available in the system as a result of a
nonlinear coupling between high-frequency Langmuir and low-
frequency 1on-acoustic waves. Under suitable physical
conditions, the dynamics can be described by a NLSE and the
MI can be analyzed directly with this equation.

For large amplitude e.m.waves: a modification of the
refractive index affects the propagation and makes possible the
formation of wave envelopes. In the slowly-varying amplitude
approximation, this propagation 1s governed again by suitable
NLSEs and the MI plays a very important role.

In electrical transmission lines: the propagation of modulated
non-linear waves 1s governed by discrete equations of the LC
circuit which, 1n turn, can be reduced to single or two coupled
NLSEs.




- localized structures: MI 1s responsible of formation of

robust nonlinear excitations of the medium. In particular,
the asymptotic behaviour of MI may be characterized by the
formation of very stable localized solutions, such as

envelope solitons, cavitons, holes, etc., which, in turn, are

involved 1n a long timescale dynamics that have been shown
to be of great importance 1n all nonlinear systems. In general
localized solutions are the result of the interplay between

nonlinearity and dispersion effects.




IMPACTS PRODUCED BY QUANTUM
METHODOLOGY IN NONLINEAR PHYSICS

INVERSE SCATTERING

One of the most relevant example of using quantum
methodologies 1n nonlinear physics 1s surely given
by the inverse scattering method

This method construts a connection between the
Korteweg-de Vries equation (KdVE) and the
linear Schrodinger equation (LSE).



KdVE is put in corresponde with LSE in such a
way that the soliton of the former plays the role
of the (linear) potential of the latter
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The problem of solving the KAVE is reduced to a
quantumlike problem, i.e., to an inverse eigenvalue
problem of the LSE. Very important theorems have been
found for this method which has been successfully
extended to NLSE. The capability and the richness of
similar methods currently applied to nonlinear partial
differential equations for solving a number of physical
problems have produced an autonomous research activity

in mathematical physic called "inverse problems".



* OQutside of the inverse scattering method framework

A correspondence between soliton-like and envelope
soliton-like solutions, in the form of travelling waves, of
wide families of generalized Korteweg-de Vries equation
(eKdVE) and generalized nonlinear Schrodinger
equation (cNLSE), respectively, has been constructed
within the framework of the Madelung fluid and used to
find solitonlike solutions NLSE with nonlinearities more

complicated than the cubic one.



OTHER IMPORTANT METHODOLOGICAL
TRANSFER AND SUBSEQUENT IMPACTS

*A transfer of know how from nonlinear optics to
accelerator physics has allowed to predict, within the
context of the TWM, new results, such as soliton density
structures associated with the longitudinal dynamics of a
charged-particle bunch in a circular high-energy
accelerating machine for the case of purely reactive
impedance that the conventional approach, based of
Vlasov equation, was not yet capable to predict.

 Later on, by including the resistive part of the coupling
impedance, the resulting integro-differential NLSE was
capable to describe the nonlocal and distortion effects,
non dissipative shock waves and wave breaking on an
initially given soliton-like particle beam density profile.



» A further methodological transfer from nonlinear
optics to accelerator physics was done with the analysis of
modulational instability of macroscopic matter waves as
described by the TWM.

In particular:

(1) The well known coherent instability (for instance,
positive or negative mass instability), described by the
Vlasov theory, 1s nothing but a sort of MI predicted by
TWM for macroscopic matter waves with the above integro-
differential NLSE;

(11) The phenomenon of Landau damping and its
stabilizing role against the coherent instability was
recovered and then extended in a more general framework
by using the the quantum-like kinetic approach;




(i) Until few years ago, the MI description in
nonlinear optics was not yet capable to include the
stabilizing effects, as in the coherent instability
description 1n accelerator physics. However, the
results given by TWM were soon transferred back
to nonlinear optics to extend the standard MI
theory of optical beams and bunches to the context
of ensemble of partially incoherent waves whose
dynamics include the statistical properties of the
medium.



e At the present time, we can say that two distinct ways
to treat MI are possible.

The deterministic approach (the standard one), where the
linear stability analysis around a carrying wave is
considered. This corresponds to consider the
stability/instability of monochromatic wave trains (system of
coherent waves).

The statistical approach, where the statistical properties of
the medium (whether continuum or discrete) are taken into
account. In these physical conditions, the stability analysis
cannot be carried out as in the monochromatic case. An
ensemble of partially incoherent waves must be taken into
account. This second approach stimulated very recently a new
branch of investigation devoted to MI of ensemble of
partially incoherent waves with both theoretical and
experimental aims.




It was rapidly applied to Kerr media and soon extended
to plasma physics (ensemble of partially incoherent
Langmuir wave envelopes) and physics of lattice
vibrations.

* New improvements were also registered in the statistical
formulation of MI for large amplitude surface gravity
waves.



THE MADELUNG FLUID PICTURE:

Hydrodynamical description of a system whose
dyanamics is governed by LSE or NLSE

« A very valuable seminal contribution to quantum mechanics
was given by de Broglie while developing the pilot wave theory
with the concept of "quantum potential”, but a systematic
presentation of this idea came only several years later

*At the beginning of Fifties, Bohm also have considered the
concept of quantum potential

* However, the concept was naturally appearing in a
hydrodynamical description meanwhile proposed in 1926 by
Madelung (first proposal of hydrodynamical model of quantum
mechanics)

A second proposal of a hydrodynamical description came 1n
1927 by Korn
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MADELUNG'S FLUID:
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"DENSITY":
p=|W?
"CURRENT VELOCITY":

00 (xz, s)

Ox

V(x,s) =

"NONLINEAR POTENTIAL ENERGY":

Ullw|?] = Ulp]



SOLITONS IN THE MADELUNG FLUID DESCRIPTION

e WE WILL NOT SOLVE AN INVERSE
SCATTERING PROBLEM.

« PHYSICAL ASSUMPTIONS:
STATIONARY PROFILE:

V(x,t) =V (x — ugs)

up iS a real constant

p(z,t) = p(z — ups)



— (i) WE CONSTRUCT A CORRE-
SPONDENCE

between

ENVELOPE SOLITONLIKE SOLU-
TIONS OF THE GENERALIZED NLSE:
ov a2 92

?, Y [

S 2 Or2

U [wﬂ WU =0
and

THE SOLITONLIKE SOLUTIONS
OF THE GENERALIZED KdJdVE:

ou 5 ou V2 O3
a—— — G lu] — 1 3 = O
s ox 4 Ox




TRAVELLING WAVES

- stationary-profile envelope solution
of gNLSE:

W(x,s) = v’f,o(:xr — ups) exp [i©(x, s)/a]

- stationary-profile solution of gKdVE:

u = u(x — ugs)



(ii) THIS CORRESPONDENCE SEEMS TO BE
HELPFUL FOR FINDING ONE FAMILY OF
SOLUTIONS OF THE gNLSE (gKDVE) STARTING
FROM THE KNOWLEDGE OF THE gKdVE
(eNLSE)

(iii) THE THEORY IS APPLIED TO WIDE CLASSES
OF BOTH MODIFIED NLSE AND MODIFIED
KdVE.



IN PARTICULAR:

UllW[*] = qq|W]* + go| W[
or
UlW[%) = golW|*”

WHERE 3 IS AN ARBITRARY
POSITIVE REAL CONSTANT

BRIGHT, GRAY and DARK SOLI-
TONLIKE SOLUTIONS ARE FOUND



BASIC EQUATIONS

op

(M )=0 (1)
Js
( —I—Vd> oU a2 8 [ 1 8%pl/? (2)
0s ox T Or 2 Ox plr’fz Or2

e BY MULTIPLYING (1) BY V:

) ) ) ) IV
(v v = vl vl 4,20 (s
s ox 0s ox s




¢ MULTIPLYING (3) BY p, COMBIN-
ING THE RESULT WITH (2) AND
OBSERVING THAT:

0 1 92pl/ 1 /(1 93p 0 plf@ 02 pl /2
— _ — 4 : _

Ox \ pl/ /2 Qa2 p \2 0x3 Ox Ox?

WE OBTAIN:

) )
P ( ( 4 ( ) V =
s Ox

ol Y2 93 opl/2 92,1/
= o4+ T L 52 % ’ (4)

ox 4 O3 ox O 2




e COMBINING (4) WITH (3):

0p Op oV
_lf_'{ _ IIQ f { p— =
0SS ox ds
oU al 93p (iﬂ 2 92,1/
= ———p- _ L 002X f (5)
ox 4 Ox3 ox A2

e BY INTEGRATING (2) WITH RE-
SPECT TO = AND MULTIPLYING
THE RESULTING EQUATION BY

plfz (ﬁplﬁz/@m)



WE HAVE:

— 2(.15

0. 1/2 22 1/2 Ve
dpt/< Od<pt Jp aV
2 f_ f 2 f / ( ) dar—

Ox a2 Oxr . ds
O Ip dp
—V QE —2 U I - 2 L.O(S) E (6)

WHERE c3(s) IS AN ARBITRARY FUNC-
TION OF s.



e FINALLY, BY COMBINING (5) AND
(6) WE OBTAIN THE FOLLOWING
EQUATION:

v o) A% )
((.- ) !(J_I_EICJJ_I_Q [l’_o( ) — / ((‘_ ) dm] E_
ds .

Js 0s

oU p 0253



IN PARTICULAR FOR:
Ulpl = qop”

EQ.(7) BECOMES:

((:)U’)JH EJFQ ['LO( ) - /(9

20p  afd3p

oV

das

~(B+2qp’—+——5 =0
ox

4 O3



UNDER SUITABLE PHYSICAL AS-
SUMPTIONS FOR V(z, 5), EQ.(8) TAKES
THE FORM OF A MODIFIED KOTEWEG-
de VRIES EQUATION (MKdVE)

FOR DETAILS, SEE:

R. Fedele and H. Schamel, Eur. Phys. J.
B 27, 313 (2002);

R. Fedele, Physica Scripta 65, 502 (2002)

R. Fedele, H. Schamel and P.K. Shukla,Physica Scripta
T98, 18 (2002)



I. gNLSE vs gKDVE

the set of all the stationary-profile enve-
lope solutions of the gNLSE:

E={Wv}

the set of all non-negative stationary-profile
solutions of the gKdVE:

S =A{u(§) > 0}



E— S

It Wef&:
p=p&), and V=V(E).

e co(s) becomes constant (so that, let us
put co(s) = cg);

e Ccontinuity equation becomes:
dp
d§

which integrated gives:

U=~ d_f (pV)

V() =uo+ ——=< (E)

where Agp is an arbitrary constant.



Consequently:

Eq. (7) becomes:

5 dp dp a? d3p
f 2cg) — — 1 | = 0
(“O T to) de ] d¢ 4 dg3
dU |p )
Ilp] = p ] - 2U [p]



On the other hand, for u = u(¢), gKdAVE
becomes:

du du 2 d3u
—uga — — G [u] | = 0
d& d& 4 d£3

T hen:

a= — (u% -+ 2co) Jug, Gul=TZ[u]l, v=a«

w(€) is a non-negative stationary-profile
solution of (ug # 0):

2 S -
_?LO _l_ 2(_0 dp
uQ ds

dp | a? 93p B
- 1l dr = 4 Ox3 0




WE HAVE CONSTRUCTED THE FOL-
LOWING CORRESPONDENCE

F . VYvef—-uesS |
u o= FW] = |[V[* = p(§)
In particular, F associates an enve-

lope solitonlike solution of gNLSE with
a solitonlike solution of gKdVE.



e Note that:

—0©/0s = cg + ugV

which, combined with continuity eq. be-
COMmes:

O(x,s) = &g — (co—l—u%) s + wupxr +
dg
+ A / )

where ¢g Is an arbitrary real constant.



o Let u(¢) € §S. Thus, u(€) satisfies the
following gKdVE

: : 2 53
adu Gl ou | V< 0>u — 0

s Ox 4 O3
for a given functional G|u].




Consequently:
u(€) satisfies the following pair of coupled

equations:
ou 19, ~
s T Ox (HL) =0,
oV ou oV ou
— 1,»" 2 —/ d? _—
(5 ) 752 ot = [ (57) o] 5
U Hu V2 93y
(dau_l_ da) T A 03
where
7= 09 (x, s)
ox
=Y — . 2\ . i
O(x,s) = ¢g — (LJO—F?LO) s + woxr —+
d§
_I_ 140 / -
J o u(€)
diA

u— 4+ 2U = G |u]

du



namely

U] = :2[}(0 + [ Gl w du]

W= \/u(§) exp Fé(m? s)
X i

IS a stationary-profile envelope solution of
the following gNLSE:

oV 2oV

L/ — | -

] 05 2 Ox? ]

Ko + [ G||[W]?] |W|? dw|?
W

7




EQUATION FOR u(¢), AFTER SEPA-
RATING REAL AND IMAGINARY PARTS:

v2 d?ul/? . Ko |, 1 / G [ul l
— | ; | ; T (Ul U AU —
2 dg? u3/2 " 43/2 .
22 A2
= CO + u—o u 1/2 _ A O
2 2u3/2

e Kg, co, and Ag NOT ALL INDENPEN-
DENT

e FOR EACH GIVEN u € S AND FOR
EACH GIVEN SET OF éq, co, and A,
MODULUS AND PHASE OF W UNIQUELY
DETERMINED



IN CONCLUSION, STARTING FROM THE
gKdVE WE HAVE CONSTRUCTED THE
FOLLOWING CORRESPONDENCE:

H:uwueS—-WVWef

VU ="H [’EL] — \f’@ X

i [ N e 1€
X exp {;; -g-;no — (r;_;o + uo) s + ugx + Ag / u(e)




e AS THE PARAMETERS VARY OVER
ALL THEIR ACCESSIBLE RANGES OF
VALUES, H [u] DESCRIBES THE SUB-
SET OF STATIONARY-PROFILE EN-
VELOPE SOLUTIONS OF THE ASSO-
CIATED gNLSE.

o IF u(¢) IS A LOCALIZED SOLUTION
OF gKdVE, THUS 'H [u] DESCRIBES THE
SUBSET OF ENVELOPE LOCALIZED
SOLUTIONS OF THE ASSOCIATED gNLSE



II. SOME IMPORTANT ASPECTS
CONCERNING THE ROLE OF THE
BOUNDARY CONDITIONS FOR SOLI-
TONLIKE SOLUTIONS

bright solitons

Let w > O be bright solitonlike solutions
satisfying the following boundary condi-
tions:

im w(¢é) =0 ;

£ oo



Thus (u = p):

Ag =0, and V=V = ug

Consequently,

W — vf@ exp {E {fi‘o — (co + u%) s + uozx:} }

L/



Additionally: regular behaviour in such a
way that

?_L12 / G [u(€)] u du

lim < 0O

E—+o0
T hus:

Kg = O

a2 d2yl/2 | [1
2 dE? u? .

| / G [u(€)] udu] ul/? = Eoul/z
where Eg = cg + uj/2.



IN CONCLUSION

e FOR STANDARD BRIGHT SOLITON-
LIKE SOLUTIONS,

Kog=Apg=20
AND THE PHASE OF W IS LINEAR

e u(¢) AND THE CONSTANT E, PLAY,
RESPECTIVELY, THE ROLE OF EIGEN-
STATE AND EIGENVALUE OF THE gNLSE



e CONTINUITY EQUATION BECOMES

WHICH IMPLIES THAT pIS A FUNC-
TION OF THE COMBINED VARI-
ABLE

p = p(&) = plx—Vps) .

e UNDER THE ABOVE HYPOTHE-
SIS:

co(s) = cg = const.



1. Ul = q@/V[*’ = qp’

dp gdp | a?d3p
2k d_g_("‘3+2) 10 P et g e
WHERE E = ¢o — @
2 2 1/2
a®dep . B\ 1/2 _ 1/2
> a2 ] (qop )p = Fkp

W(r,s) = p1/2(:13 — Vos) exp [ikr — iws]
WHERE

72
k=Vy/ao, and w(E—F‘;)/af

Note that in this case the eikonal is

V2
O(x,s) = Vor — (E—|— 2?)5




1A. BRIGHT SOLITONS

FOR: 0 < 3 < oo, THE FAMILY OF
MKAVE EQUATIONS:
| od v2 d3
oFE L (34+2)q0 "L+ L = 0
d¢ d¢ 4 dg3
PROVIDED THAT:

go <0 AND E <O,

ADMITS THE FOLLOWING FAM-
ILY OF BRIGHT SOLITON-LIKE SO-
LUTIONS:

q ([ — VoS
p(x — Vos) = pm sech?/’ ( : )
A
1/3 .
£ . A — o] 1
m [QO 3 v 2|E)



THIS RESULT CAN BE EASILY PROVEN BY
USING THE SAGDEEY POTENTIAL METHOD

V(p) | /

\p:k/pm pl

V(p)=E, p?>—[q,/ (B + 1)] pP*

B>0

Pm = [(Eql/lqeD(B+1]"*




1B. DARK SOLITONS

FOR ARBITRARY SIN THE RANGE:
O < B8 < o, THE INVESTIGATION
OF DARK SOLITONS IS STILL IN
PROGRESS.



HOWEVER, THE STANDARD DARK
SOLITON OF THE CUBIC NLSE (3 =
1) HAS BEEN ALSO RECOVERED,
BY ASSUMING THAT THE FOL-
LOWING MKdVE:

2FE 0p dp a? 93p
‘0 Os Dx 4 Ox

HAS A SOLUTION OF THE FORM
p(§) = po + p1(8)

with pg >0, p1(§) <0, and |[p1| < po

AND WITH THE BOUNDARY COND-
INTIONS: lim p((¢) =0

(_“:—.‘»:l:f}(:.



p(x —Vps) = po tanh? {‘“ 10P0 (z )}

af

VAOPO ()

o

' 1?2
X exp {; (Voﬂf - (qopo + ) )}

tanh

V(zx,s) = /po




2. U = a1|V]? + a|V|* = a1p + axp?

BY USING THE EQUATION:
A% ) WV )

_ (( ) p L—f(_ P1o [Co(.‘-;) — / ((—) d:}:] (__’O_
0s s : Js Ox

ou dp a? 3 e
— - ) I 2 (./'T - ) | - — 0 7
(E')a:'( | or | 4 O3 ( )

WE GET THE FOLLOWING STA-
TIONARY MKVE:

1 I ¥2 d3
o 2P dar (p — ,00)2 o | il
d¢ d¢ 4 dg3
WHERE:
0 a2 3a
E = E- L =271

32&2 J 8&2



DARK SOLITONS (lim¢_ . p(€) = po)

3¢
p(€) = ~ "1 [1 - sech (¢/A)]
8las|
I 3¢ /
Wz, s) =,/ L [1—sech(¢/A)]Y2x
V 8las|
i, T Vs
xexp{—|Voxr — [Ulpo) + 2| s
QY 2
WHERE:

A — J8u2a§
3 aj



I[I. SOLITONS FOR
ARBITRARILY LARGE
STATIONARY-PROFILE
PERTURBATION OF THE
CURRENT VELOCITY:

V = be + L’rl (E)
where ¢ = 2—ugs (ug being a constant)



U = a1|V]? 4+ as]W|* = a1p + anp?

e WE GET:
2B E — 4ao (p — :GO) > dp | 2 ng _
dg d¢ 4 d€
where:
pr=2oiy o Vo o, 3u

64 a- 2 | S an



e BOUNDARY CONDITIONS:

lim p(€§) = po , lim 11(§) =0

e FROM CONTINUITY EQUATION:

) — P
Vo= (ug-— Vo) B—FO
P

e SOLITON-LIKE SOLUTIONS FOR:

a; > 0, ar» < O
a1 3 a1 3
Vo — & <ug <V,
O T G\ 2y U0 SO Gy

- ASSOCIATED MKdAVE SOLITON:

3 ay J 0 a2 3 (ug— Vp)?

—_— = — — sech JAN
64a5 2 as] (&/48)

p(€) = g\a2|_



- ENVELOPE SOLITON:

W(x,s) =

|3 ag 9 a% 3 (ug — VO)Q
\ 3 ‘(LQ‘

64 a% 2 las|

;
X exp {; [©0(z,s) + 91(5)]}
(a). GRAY SOLITONS FOR:
ug = Vo

(b). DARK SOLITONS FOR:

uo = Vo

— = — — sech (¢/A)x



"BACKGROUND"” PHASE:

Oz, s) = /Pbdm-+ b(s) =

1.2
= Vox — (U(po) + 2?) S

"PERTURBATION” PHASE:
©1(§) = ©10 + /1"’1(5) d§ =

= ©10-Sign(ug—Vy)A arctan[B tanh (§/2A)]

3 a?
A=2|—2L + (ug— Vp)?
ngag + (uo — Vo)

‘n—am

(ug—Vp)?

_ 3
2 ‘(1.2‘

B 9 a
|ao] \ 64,

RN

Y 3
‘ uo ! O‘ \ 2]an]



2. U = q|V|? = qop

A PROCEDURE FULLY SIMILAR TO
THE ONE PRESENTED ABOVE AL-
LOWS ALSO TO RECOVER THE
WELL-KNOWN SOLITONS OF THE
CUBIC NLSE:

FOR:

qo > O

Vo — v/q0pr0 < ug < Vo + /qopr0



e SOLUTION OF THE ASSOCIATED

MKdVE:

p(&) = po

1 — C? sech? (

V@00 — (ug — Vo)?

‘ Y ‘

e SOLUTION OF THE NLSE:

W(x,s) =

)

\

PO

1 — C? sech?

\ 40P0 — UQ

‘ 8 ‘

X exp {i [©0(x,s) + @1(5)]}

2 _ 90P0 — (uo — V0)?

40P0

> 0

&




(a). GRAY SOLITONS FOR:

up = Vo (=1 <C < 1)

(b). DARK SOLITONS FOR:

up — I.’ro (Cj — 1)

"BACKGROUND"” PHASE:
Op(xz,s) = /‘i’b de + o(s) =

1;2
I oo | O )
= Vou (ffopo -5 ) S




"PERTURBATION"” PHASE:
©1(&) = ©10 — /"”1(5) d§¢ =

Cl\/q0pP0
= @109 — D arctan [Ftanh ( ‘ qopog”

‘ Y ‘

‘ 8 |

—— (ug — Vo) F
C'|\/q0pP0

C

F = —
\ 1 —C?




EQUIVALENT EXPRESSION FOR ©4(¢):

©1(§) =
C'tanh (”WE)

\I."'l — (2sech? <(m£>

{
B

©@q109—LD arcsin




3. ENVELOPE SOLITONS OF NLSE
WITH AN "ANTI-CUBIC”" NON-
LINEARITY

T he method presented above can be also used
to find envelope soliton-like solutions of the
following modified NLSE containing, besides
the cubic and quintic nonlinearities, an anti-
cubic nonlinearity (i.e. |W|=%W):

oV | a?d?w

0s 2 g2

+ a1 VP + g VAW =0

— Qo |W|™MW +

where (g is a real constant.



In this case, we have to take the general func-
tional form of Ulu], i.e.,

Ulu] = uiz[ﬁ'o + / G lu] u d.u] |

where Kg is an arbitrary real constant, but G[u]
IS given by the same functional expression cor-
responding to the case of cubic-quintic nonlin-
earity only:

Glu] = 3¢ v + 4q¢r u?.



Provided that: Kgpg= Qq,

2 2,1/2 |
v d=u Qo 1 B
2 d£2 | 1u3/2 | 3/2 / Glu] vwdu =

X 42
C | uo ul/? .Flo
o | 2u3/2




Consequently, a family of solitary wave solu-
tions of the cubic-quintic NLSE with the in-
clusion of the anti-cubic term can be obtained
by imposing the following condition

Ag = =L \/f' —2Q0

which implies that such a kind of family of
solutions exists for Qg < 0. They are nonlinear
stationary states of the following NLSE:

02 42,1/
2 dé?

| (Q1u—|—q2u2)ul/2 = Fou'/?

where Eg = cg + u3/2.



It follows that, for any Qg < O

|

Wo(z,s) = \;"fﬁ [1 T e sech (i”

2 u2
X exp ~ oo — | Fo + ?O s 4+ ugx

T e ds
xeXD{a[ vV 2|Qol / [1 4+ € sech (E/A)]”

where, in principle, € should be taken in the
following range

—1 <e <1

which excludes the standard "dark’” solitary
waves (e = —1).



Actually, the direct substitution of u = |[W|?

into the eigenvalue equation allows us to find
that:

e = 1

_3n
3>

g1 > 0, g < O

1542
Eg = ——1
64 q-o
= 2ol 2o
qgp V 3
T he condition e = 1 corresponds to upper-

shifted bright solitons.



For details see:
R. Fedele, H. Schamel, V. I. Karpman and P K Shukla
J. Phys. A: Math. Gen. 36 1169 (2003)
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TABLE 1

12

p P P
1/5

-10 10 ':-,_1";
1/2

-10 il :-,_1";
1

s 5w A

Plots of p and |}| . (bright solitons) as function of &/A for <1 . Eo=-1, qo=-1, a0 = 1.




TABLE 11
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p P P
2

10 w oA
512

ET: 10 ZIA
3

20 0 =AM

Plots of p and p'? (bright solitons) as function of S/A for B>1 . Ey=1.q=-1,0 = 1.




TABLE I11

€ u o, Soliton’s name
0.7 2f
4
< = 2 a up-shifted
if
-0.7 .
1
o = B 7 A gray
-3
1t
|
upper-shifted
R = 2 4
-0.5
El
(@, =0)
| n
0.5
: = : - dark
-0.5
-1
(B, =0)

Plot of solutions u and the nonlinear part of the phase O,

as function of &/A for & =1,

_ S
IJUJ ui(&)

e==.7 with w -V, =35, £ =21 which corresponds to vy —Vy = 0.




2
iga—qj = —g—Vf‘P
Oz 2

2
‘LP(X s Vo Z )‘ OC transverse density profile of the beam particles

Y(x,y,z)= \/n(x, Y, Z) exp[é 0(x,y,z)]

_ﬂ\P(x,y, z)‘zdxdy = jn(x,y, Z)dxdy =1

Fluid interpretation:

n(x s Vo Z ) — transverse probability density of the beam particles

V(x » V,Z ) =V LQ = transverse probability current velocity



Gaussian solution for the BWF
exp[—x* /4o (2)—y*/ 4o (z)]
\/ 270 (z)0,(2)

Y(x,y,z)=

exp[é o(x, .2)]

2 2

-7 Y Z z
0 y2) =g St ok o G

1 1 daj(z)




Qualitative rappresentation of the free envelope motion
(paraxial approximation) of a cilindrically-symmetric
beam travelling in vacuo.

generic electronic ray

ol(z,) = o,

minimum spot size




Qualitative envelope evolution of a cilindrically-symmetric
Gaussian beam propagating in vacuo.

o (2)
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/ %

/A

=\ \

TANTEEN BRI
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PURELY TRANSVERSE DYNAMIC
OF A CHARGED-PARTICLE BEAM
INTERACTING WITH THE SURROUNDINGS

Suppose now:
e a transverse force field F,(x,y,z) is acting on the beam

e this force is due to the total interaction (along the transverse
directions) of the beam with the sourrondings

*F,(x,y,2)=F"(x,5,2)+ F{"(x,y,2)

interaction with external devices electric and magnetic lenses and traps, rf
F jxt ( X, Y, Z) —> or mw cavities, kickers, wigglers, undulators, etc.
Some of these external force can be derived by an effective potential, Uex.

self interactions as a result of the interaction between the beam and the
coll transverse electromagnetic fields (transverse wake fields) generated by the
K 1 (x » Vs 2 ) — image charges and the image currents induced by the beam itself on the
surrounding bodies (collective effect). They can be derived by a potential
energy, Ucoil (wake potential) .



U, (x,y,2)=U"(x,y,2)+U iOllQ‘I'(xaya Z)\z)

dimensionless potential energy (normalized with respect to mf3c?)

TWM ASSUMPTION
the transverse beam dynamics is governed by

LIJ 2
ié‘a— = —g—VLz‘P+U(x,y,z)‘P
Oz 2

R. Fedele and G. Miele, Nuovo Cim. D 13, 1527 (1991)




A generalized nonlinear Schrodinger
equation (NLSE) is obtained

2
l.cc,'% — _% vj_z\P_F Ujﬁ(xa Vs Z)LP—I_ UJC_OHM‘P(X’ Vs Z){z ]\XJ

In transverse optics, TWM has been applied to a number of
linear and nonlinear problems, such as:

* Gaussian particle-beam optics and dynamics for a
quadrupole-like device [ Nuovo Cim. D 13, 1527 (1991)]

[R. Fedele and G. Miele, Phys.Rev.A 46,
6634 (1992)]

e the TWM predictions have been compared with tracking-code
simulations and a fair agreement has been demonstrated




* A self consistent theory of the interaction bewteen a
relativistic electron (positron) beam and a cold plasma has
been also developed [R. Fedele and P.K. Shukla, Phys. Rev. 4 44, 4045 (1992)]

To give an idea of the capability of the TWM in describing
correctly the transverse beam dynamics we briefly present
the results of two interesting cases:

* The motion of a 1D charged particle beam travelling
through a linear thin magnetic lens (quadrupole) with
sextupole and octupole deviations and therefore subject to
the action of external forces

* The motion of a cilidrically symmetric relativistic charged
particle beam travelling in an overdense plasma an therefore
subject to the action of the plasma wake fields (self
interaction)



TRANSVERSE NONLINEAR BEAM
DYNAMICS IN A COLD PLASMA

* A cilindrically symmetric Gaussian relativistic
charged particle beam, with transverse rms R
(initial beam radius) and unperturbed number
density n, , is travelling along the z-axis with
velocity 3¢ (B=1) and transverse emittance .

* At z=0 the beam enters a semi- infinite slab of
cold unmagnetized plasma with unperturbed
number density n , in "overdense condition™

(n,,<< npo).



* The beam length ¢ >> kp (the plasma density perturbation n, is
produced adiabatically) and therefore

e n,(r,G) = q ny,(1,6),

r=cilindrical radial coordinate, & = z-fct

* According to the theory of plasma wake field excitation:

l a ( @ j k2 Ucoll( 5): 4ﬂq2nb ~ 47Z-q2nb
ror\_ or myBc:  myc’
J

188—\{, g”1 0 ( 8‘1’) UCOHM‘{’( 95)‘2]%

o0& 2 ror\_ or

[R. Fedele and P.K. Shukla, Phys. Rev. A 44,4045 (1992)]




a). Kk R>>1 [ &— = —
() p 2

0¥ &'10 (ra\{f
o0& 2 ror

or

5 o 2
ﬂzgz J(,:P ra’r—2 _ﬂ‘P‘ rdr =const. —> A=
J| or n,v

R*(¢)= R2+2J4(5 5)

=

A<O0: self-focusing
A>0: self-defocusing

A=0: stationary solution

Weibel instability threshold: p, = Yin o, 0,7[ "y }

_j_

My

npOy

N




2 2 r
(b). k<<t  LE_E 2R g Y rar

d&* R* R \;
K- 2me’n,,
mypBc’
dR . .
—=0 — Bennett self-pinch equilibrium
dg condition:
g 1, > N
—=—KR =—171 (cgs unts
Rg 2 = ¢’ o, (cg )
* Aberrationless approximate solution of NLSE;:
d’R &
+ KR ——=
dé? R’

[R. Fedele and P.K. Shukla and V.G. Vaccaro, J. Physique IV, Coll. C6, suppl. Jour. Phys. II, 5, C6-119 (1995)]



LONGITUDINAL BEAM DYNAMICS OF A CHARGED
PARTICLE BUNCH IN CIRCULAR ACCELERATING
MACHINES

oW e2n 92
i€ :
2 Ox?
Aw @j

s
( 1/n plays the role of an effective mass ) (a) =1 ?

FU(x.s)W =20

U_L_L
ve 7

i - . qgﬁc ! - p— ‘
[ [/\1(1?,:1)] = 5 RDZ]F)\l(Irb) + ZH

D . D

| A1 (', s) cﬁ?")

Z = Z }1, —I— EZ :f longitudinal coupling impedance

2 2 bitrary longitudinal bunch densit
_|[w|® _|y |* arbitrarylong y
A ‘ ‘ ‘ 0 ‘ perturbation



This equation has been used to describe a number of physical
problems involving relatively intense high-energy charged particle
coasting beams in accelerating machines:

e synchrotron oscillations with and without radiation damping and
quantum excitation effects

e soliton structure predictions [R. Fedele, G. Milele, L. Palumbo, and
V.G. Vaccaro, Phys. Lett. A 179, 407 (1993)]

* coherent instabilities of coasting beams, with the language of the
modulational instability, and the stabilizing role played by the
Landau damping [R. Fedele and D. Anderson, J. Opt. B: Quant.
Semicl. Opt. 2,207 (2000)]

* nonlocal effects of charged-particle beams



IMAGINARY PART (REACTIVE PART) OF THE
LONGITUDINAL COUPLING IMPEDANCE:

: 1 04 Z
er — y[?_ 2 wol | = f
2T R.D 2 _:'_'] Y 21 Fi'.[:]

where Zg I1s the vacuum impedance, wg = (B¢/Rg Is the
nominal orbital angular frequency of the particles and
L is the total inductance. This way, Z; represents the
total reactance as the difference between the total space
charge capacitive reactance, goZo/(23~2), and the total
Inductive reactance, woLl.

) a<Bc [ goZ i
U] = = (L22 _ oz ) A
2mlo \ 28~7




Gl

Ul

W= o dr iR - el + R [

0

W@ )R — [Wof] do }

2 —2
a = €N =c¢c ( S e ) ,( 1/n plays the role of an effective mass)
°BcR
, - . G
x = 1 — 7],
Ef_ U Ao  Ap
) q°Bc _, —— =N
R = — 7/ w p
EEG
oW a 02w
i — X [|W|* — |Wol?| W
If_’_)s 2 0x? T U | Vo ] T

+R W / (W' s)]? — |Wl] da’ = 0
Jo

2 2
A = ‘\P‘ - ‘LPO‘ (arbitrary longitudinal bunch density perturbation)



DETERMINISTIC APPROACH TO MI

Under the conditions assumed above, let us consider a
monochromatic coasting beam travelling in a circular
high-energy machine with the unperturbed velocity V,
and the unperturbed density p, = |y,|* (equilibrium
state). In these conditions, all the particles of the beam
have the same velocity and their collective interaction
with the surroundings is absent.

Let us now introduce small perturbations:

et
'-.--1

Vo+ Vi, V| << [Vol.

P po+ p1. |p1] << po.



After linearizing the Madelung fluid equations:

Jp1

L Vi Op1 | oVi
| 0~
Ox

. - PO
s ox
A%

i rd i .2 i 3

oVi | . ,, ,O0p1 | o< O%p;
— I 1.-" D —‘_ p— {_.:E R-".O 1 _I_ {.__]:: fi — I ‘_ .
0s Ox Ox  4pg Ox3

p1(z,s) = / dk dw p1(k, w)e o=

Vi(z,s) = / dk dw Vi (k,w)e ™ s

—pokﬁi = (IIJO — u..r) ﬁl ,

052
(w& + iakX — -i—k?’) f1
4po

i (kVo —w) V1



Linear dispersion relation:
W 1\ 2 | Z alk?
— — Vo) =iapg ? |

A

Z =R+ 1kX = Zp + 12
In general, wis a complex quantity:
w= wp+iw

If w;y # 0O, the modulational instability takes place.



k 1 w? k3
Z}’ — T E ,IOD ZH I ! ‘
ﬁh.uf nekpo 4 pg

—
)

21
=0

Increasing g W=

Wr=10 :
Increasing wp

[D. Anderson, R. Fedele, V.G. Vaccaro, M. Lisak, A. Berntson and S. Johanson, Phys. Lett.
A 258, 244 (1999)]



Purely reactive impedance: 7, =0,7Z=iZ,

‘P(x, S) = \|J(x, S)GXp(iK““IJO‘Z S)

.oy o’ 0%y
I0L—— = — Y, KM U}
oS 2 Ox’
Envelope solitons: in principle, the cubic NLSE admits bright,
dark and grey solitons. In particular, for

K=—Z,/k

Bright envelope soliton - < (), E < ()

. 2
y(x,s)= : Sech[x V(’Sjex {Vx—(E +Vj }}
20, o o 2

a2 K2

E =
26° 8’

R. Fedele, L. Palumbo and V.G. Vaccaro, Proc. of the Third European Particle Accelerator
Conference (EPAC 92), Berlin, 24-28 March, 1992 (Edition Frontieres, Singapore, 1992), p
762; R. Fedele, G. Miele, L. Palumbo and V.G. Vaccaro, Phys. Lett. A 179, 407 (1993).




e If NV is the total number of particles of the bunch:

AME D) ——sech2 (é: ng

U O

z

e Coherent instability condition for coasting beams
(by means of a standard modulational instability
analysis):

w2 2\ a?k?
—L = —enpo (—’F> + - nZ,>0

k k 4 ..
wn = Vok :> (Lighthill criterion)
;<0 ;>0
(inductive impedance) (capacitive impedance)
n<o0 instability stability
(above transition energy)
n>0 stability instability
(below transition energy)




The above dispersion relation allows us to write an
expression for the admittance of the coasting beam

Yy =1 / Z (admittance)

eqely

kY = | |
(w/k— Vo) — a?k?/4




MODULATIONAL INSTABILITY OF A
“WHITE” COASTING BEAM

Let us now consider a non-monochromatic coasting
beam.

Such a system may be thought as an “ensemble” of
elementary “incoherent” coasting beams with
different unperturbed velocities (white beam).

Jo(V') = distribution function of the velocity at the equilibrium

The subsystem corresponding to a coasting beam collecting the
particles having velocities between V and V' +dV has an elementary
admittance 4.



i fo(V)dV
(V —w/k)* — a2k2/4

All the elementary coasting beams in which we have divided
the system suffer the same electric voltage per unity length
along the longitudinal direction.

kdY =

The total admittance of the system is the sum (i.e., the

integral) of the all elementary admittances (system of electric
wires connected all in parallel):

. Jo(V)dV
kY = ic ) = ]
Y =ia | VR —ark2)a Y = total admittane
AN fo(V)dv zZ=1/y
= v | —
k) )] (V—=w/k)? — «a2k2/4| total impedance




An interesting equivalent form can be obtained:

(@)

1 1 1 1
(V —w/k)? —a2k2/4 ok [(V —ak/2) —w/k (V4 ak/2) - w;’k]
()

L (E\L[ fo(V)dv / o(V)dV
=7 — | — _
k) k|) (V—ak/2)—w/k | (V+ak/2)—w/k

(iii) pr =V — ak/2 po =V 4+ ak/2

1 — (E) 1 [ " fo(pr + ak/2) dp: / Jo(p2 — n:h;’?)dpz]
\k/)k p1— w/k

Q—@;h



Finally, we arrive to the following dispersion relation:
1 = in g / fD(P‘|‘ Cklﬂ/?)—fg(p—ak‘./Q) dp
ok p—w/k

(a). The dispersion relation for the case of monochromatic beam is
recovered by assuming: /,(V) x 6(V — Vp)

1
1}

(b). In general, this dispersion relation takes into account the
equilibrium velocity (or energy) spread of the beam particles, but it
has not obtained with a Kinetic treatment. We have only assumed
the existence of an equilibrium state, without taking into account
any phase-space evolution in terms of a kinetic distribution
function.

OUR RESULT HAS BEEN BASICALLY OBTAINED WITHIN
THE FRAMEWORK OF MADELUNG FLUID, EXTENDING
THE STANDARD MI ANALYSIS TO NON MONOCHROMATIC
WAVE PACKETS (STATISTICAL ENSEMBLE OF
MONOCHROMATIC COASTING BEAMNS).




The above dispersion relation can be also obtained
within the kinetic picture provided by the Moyal-
Ville-Wigner description, as it has been done for
charged-particle beam for the first time in the
context of the TWM and soon extended to nonlinear
optics, plasma physics, surface gravity waves, lattice
vibration physics.

Particle accelerators:

D. Anderson, R. Fedele, V.G. Vaccaro, M. Lisak, A.Berntson, S. Johansson, Proc. of 1998 ICFA Workshop on Nonlinear Collective
Phenomena in Beam Physics”. Arcidosso, Italy, September 1-5, 1998 (AIP Press, New York, 1999) p.197; R. Fedele, D. Anderson, and
M. Lisak, Proc. of Seventh European Particle Accelerator Conference (EPAC2000), Vienna, Austria, 26-30 June, 2000, p.1489.

Nonlinear optics:

R. Fedele and D. Anderson, J. Opt. B: Quantum Semiclass.Opt., 2, 207 (2000); B. Hall, M. Lisak, D. Anderson, R. Fedele, and
V.E.Semenov, Phys. Rev. E, 65, 035602(R) (2002); L. Helczynski, D. Anderson, R. Fedele, B. Hall, and M.Lisak, /EEE J. of Sel.
Topics in Q. EL, 8,408 (2002).

Plasma physics:

%O%%%ele, P.K. Shukla, M. Onorato, D. Anderson, and M. Lisak, Phys. Lett. A 303, 61 (2002); M. Marklund, Phys. Plamas 12, 082110

Surface gravity waves:

M. Onorato, A. Osborne, R. Fedele, and M. Serio, Phys. Rev. E 67, 046305 (2003).

Lattice vibration physics:

A. Visinescu and D. Grecu, Eur. Phys. J. B 34, 225 (2003); A. Visinescu, D. Grecu AIP Conf. Proc. Vol.729, p. 389 (2004).
D. Grecu and A. Visinescu, Rom. J. Phys. 50, nr.1-2 (2005).




STATISTICAL APPROACH TO MI (SAMI)
The Moyal-Ville Wigner “quasidistribution”

w(z,p,s) = o / UM (r + = ) \ (r —% ) exp ( iﬂ dy

[ w(x,p,s)dp and [ w(x,p,s)dxr are proportional
to the probability den5|ty In configuration space
and momentum space, respectively.

In particular:

&
+ ]
5,

p(x,s) = W (z,s)|° = / w(z,p,s) dp

:
. o0

- - +le
o — X0



3D plot of the quasidistribution of the mNLSE soliton for various [3:
(a) B =0.5, (b) B =15(c) B =25 (d) p =2.5



Density plot of the quasidistribution of the mNLSE soliton for various 3:
(a) B =0.5, (b) B =15(c) p =2; (d) p =2.5



u.u; / -
7

oos |
Nk

W2 [
0.04 [

0.0z b

ooz | e

Cross section of the quasidistribution (at p = 2) of the mNLSE soliton for
various f3: (a) B =0.5, (b) B =1;(c) B =2; (d) B =2.5. The greater 3 the greater
amplitude.



The nonlinear Wigner-Moyal Kinetic equation
(nonlinear von Neumann-Weyl equation)

0 o o0 1) o\ 2n *:)2?1—|—1 .00 ‘:)2-n,—|—1, J
du —I—'p( v (—1) (2> ( (U [/ y dp] ) ¢ wo_ 5

0s 2 — (2n+ 1)! OHr2n+1 o ap2nt1

U [/ w dp] = —ak (/ N wdp — |Wo )
J— 20
— aR / (/ w(z',p,s)dp — |Wo ) da’

we start from the equilibrium state: w = wg(p)

2 = 2 wo(p) dp

U = Uy = U’C . wQ d-p} = 0

po = |Wo



Then, we introduce the following small perturbations in w
and U, respectively:

w(x,p,s) = wo(p) +wy(x,p,s)
X0
U(x,s) = Ug+ Uyi(a,s) = U [ / wq (x,p, 8) dp

L 'x

where w,(x, p, s) and U, (x, s) are first-order quantities.
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Fourier transform:

Up(z,s) = /

o0

dk [ dw Uy (k,w) exp (ika — iws)
0 S — 020

o0 o0
wi(x,p,s) = /DO dk /_DO dw wiy (k,p,w) exp (ikx —iws)

DISPERSION RELATION

| = iq (?3’) / fo(p+ ak/2) — fo(p — ak/2)  dp




Case of ak << 1

Since ak << 1, we have:
wo (p+ak/2) — po(p—ak/2)

ak l
2\ foc "
o "
1 = 1¢v () / LO d'p
k) J—o p—w/k

'

weak Landau damping, as described in the VIasov
theory of charged-particle beam physics.

/
~ dwg/dp = wg




WEAK LANDAU DAMPING

w/k >> 1
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ANALOGY WITH PLASMA PHYSICS
(Vlasov-Maxwell system)
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arbitrary values of ok

[R. Fedele, S. De Nicola, V.G. Vaccaro, D. Anderson, M. Lisak, Proc. of QABP2000 (P.
Chen ed., World Scientific, Singapore, 2002)]



[R. Fedele, S. De Nicola, V.G. Vaccaro, D. Anderson, M. Lisak, Proc. of QABP2000 (P.
Chen ed., World Scientific, Singapore, 2002)]




LANDAU-TYPE DAMPING OF PARTIALLY-
INCOHERENT LANGMUIR WAVE ENVELOPES
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The above equations have been obtained by assuming that the
electric field of the wave has the envelope form:

E = E(x,t) exp (—iS2t)
where Q < wye and | Q7 10E(x,t) /0t | < 1.



The above system of equations can be cast in the form:
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the angle brackets account for the statistical ensemble average
due to the partial incoherence of the waves
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One can introduce the correlation function (whose corresponding
meaning in Quantum Mechanics is nothing but the density matrix
for mixed states)

p(w,a,s) = (W (x, )W (', ))

1 o'e

w(x,p,s) = —— 0 (:B + g, xr — g, 3) exp (z@) dy
2T S —oc 2 2 _ e

W2 2k2 = k2 /DC' wo (p + ak/2) — wo(p— ak/2)
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TOMOGRAMS

One of the main reasons to use the tomogram technique is justified
by the natural possibility of measuring the states usually described
by the complex wave function, in principle solution of LSE or NLSE.

LIL 1.X -
/L(y) exp (ﬁu —u) dy

2V v
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A relation among the parameters can be in principle assumed. In
particular, one can take u = cos@ and v=sin6 and the optical
tomogram becomes:

i coth i X 2
Fu(X,0) = 2 |S|n9|‘/t(q)exp( 2 v - sing )du‘
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3D plot of the tomogram of the mNLSE soliton for various .
(a) 5=0.5, (b) f=1;(c) 5=2; (d) p=2.5



Density plot of the tomogram of the mNLSE soliton for
various 8. (a) =0.5, (b) p=1;(c) B=2; (d) B=2.5



(b)

(a) Tomographic map and (b) the corresponding density plot of a quasi-1D
bright soliton of BEC as function of x and 0. The trap size of BEC is L = 1.4
um and the soliton width is L, = 1.7 pm),



