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Abstract

The two-stream instability as a fundamental process in a current-carrying plasma is recon-
sidered.Its well established linear version, based on kinetic Landau theory, predicts a threshold
for the drift velocity between both species below which the plasma should be stable.We report
on simulations which,however, show that a plasma as a nonlinearly responding medium can
exhibit instabilities well below this threshold.Responsible for this unexpected behaviour are
coherent electrostatic,trapped particle structures such as holes or double layers which can grow
nonlinearly out of thermal noise receiving their energy by the net imbalance of loss of electron
kinetic energy and gain of ion kinetic energy.In addition, an analytic expression of the total
energy of a structural plasma, namely a plasma which is intermittently pervaded by a hole,is
mentioned.A hole,which does not change the total energy, is called a zero-energy hole, a one
which lowers (increases) this energy a negative-(positive-)energy hole. Energy conservation of an
evolving Vlasov-Poisson plasma admits the growth of a zero-energy hole, of a pair equally ener-
getic negative- and positive-energy holes or of a more complex,energy neutral decomposition of
holes-like structures.The birth of a hole is numerically shown to be associated with nontopolog-
ical fluctuations in the particle distributions lying outside the realm of linear wave theory.For
a pair plasma a typical scenario is presented, which encompasses several regimes such as non-
linear growth of multiple holes, saturation and fully developed structural turbulence as well as
an asymptotic approach to a new collisionless equilibrium.During the transient,structural state
the plasma transport appears to be highly anomalous being associated with the presence of
trapped particle structures.Finally,these results remain essentially unaffected by weak collisions
and therefore assume a generic character.

1 Introduction

In physical sciences - astro and plasma physics being no exceptions - a common consensus
about the treatment of waves or fluctuations seems to exist which, when expressed in words,
sounds so trivial that it is not even considered worth to be mentioned or commented explicitely
in the literature including textbooks,monographs or whatever.The underlying concept, which
everybody, being confronted with, immediately would accept, can be formulated as follows:

"Small amplitude waves in the infinitesimal amplitude limit can be described and predicted
by the linearized version of the governing equations.Only for larger amplitudes nonlinear effects
come into play".



2 RELATED PREVIOUS WORKS

This concept of dealing with waves in collective dynamical systems ,which we may call
the Standard Wave Concept (SWC), is the foundation of all anomalous turbulence theories,
bifurcation scenarios or studies on nonlinear wave propagation,and it is very hard to find
any reference which does not rely on this SWC. It is certainly meaningful and will work in
situations where linear wave theory predicts a linear instability being driven internally by
gradients, anisotropies etc or externally by beam injection, mean flow, wave heating, application
of a voltage across a bounded plasma etc, to mention some examples. We may,however, ask
the question as to whether in cases of LINEAR STABILITY this implies that the system is
then preferentially in a quiescent state of no or negliglible wave activity. The answer, for
which the present paper will offer concrete examples, is that even in such a linearly stable
situation one is confronted with an appreciable amount of waves or fluctuations which have
a profound effect on the plasma and will modify it completely in a manner which cannot
be treated by SWC.Or,in other words, linear instability will be sufficient but not necessary
for the prevalence of anomalous effects, as often found in astrophysical and plasmaphysical
environments. The problem, we are reconsidering, is the well-known two-stream instability,
occuring in a current-carrying plasma, in its simplest geometry, namely one-dimensional in the
configuration space.Kinetic linear wave theory predicts a threshold Vj, for the drift velocity Vp
between electrons and ions, below which the plasma is linearly stable. We are mainly concerned
with ideal collisionless plasmas but also weak collisional effects will be considered at the end,
and specialize ourselves to linear stable,weakly driven plasmas for which Vp < V},.

2 Related previous works

A first numerical hint that something goes wrong with linear wave analysis and associated SWC
has been given by Dupree and coworkers [1] who performed a particle in cell (PIC) simulation
for a m;/me = 4,T./T; = 1 plasma with Vp = 1.75 < Vj, = 1.95.In such a two-stream stable
plasma structure formation in the electron and ion phase space took place arising from initially
random fluctuations which are relatively high in such a numerical system.Both phase spaces
after some initial transient state look rather turbulent and are characterized by filamentary and
vortex-like structures which intermittently intersperse the whole body of distributions,making
any approach of this state by SWC obsolete.

Phase space vortices or holes,on the other hand,as nonlinear,stationary solutions of the
Vlasov-Poisson system has been described for a thermal Maxwellian plasma more than three
decades ago by Schamel and coworkers [2] and references therein.By application of the so-called
potential method,a solution of the problem was presented which consists in two parts,

(i) in the pseudo-potential (Sagdeev-potential) V(¢) ,where ¢ is the normalized electrostatic
potential, satisfying without loss of generality 0 < ¢(x) < ¢, and

(ii) in the nonlinear dispersion relation (NDR), given by V() = 0 = V(0).

Whereas V(¢) supplies information about the shape or spectral content of the nonlinear
wave,the NDR determines the wave speed in terms of the various external parameters such as
0 =T./T;,6 = me/m;,Vp and 9 or internal parameters, such as the trapping parameters for
electrons 8 and ions a.A number of new branches of wave solutions could be distinguished such
as the slow electron or slow ion acoustic branch ;which have no relation anymore to the known
linear branches. In the weak amplitude limit 1) << 1, the corresponding density expression for
each species has the typical form of a half-power expansion,such as

n(¢) =1+ ag+bp*? + ... (1)

. The coefficient a is typical of O(1) and reflects the contribution stemming from linear wave
propagation ,whereas the coefficient b in front of the »>/? nonlinearity includes particle trapping



3 NONLINEAR GROWTH OF HOLES IN ORDINARY PLASMAS

effects and becomes very large,being proportional to 1/)71/2 >> 1 for a given wave speed . The

latter fact originates from the excavation of the particle distribution at resonant velocity ,
v = vo ,which is a necessary requisite for getting self-consistent solutions.The third term in
(1) ,hence, catches up with the second term and contributes at the same level than the linear
term. This means,that particle trapping constitutes a nonnegligible ingredient of wave theory
already at the lowest possible order,in contrast to the underlying assumption made for SWC. A
dip in the distribution function introduces a region with an opposite slope,which,as we will see
later,appears to be the triggering mechanism for hole excitation already at the extremely small
(infintesimal) wave amplitude limit. A distribution of this type is referred to in the following as
a NONTOPOLOGICAL distribution,since the topology in velocity space, more specifically its
slope, is altered locally in comparison to the unperturbed background distribution. As a typical
example of a trapped particle mode we mention the solitary electron hole [3, 4] propagating with
vg in a thermal plasma within a background of immobile ions.In that case the pseudo-potential
V(¢) becomes (for ¢ << 1)

—V(9) = b0 Vo~ V9] 2)

representing a bell-shaped sech®-potential ¢(z),whereas the NDR reads

—%Z‘r(’uo/\/i) = 1—21;\/% (3)

where b is given by
b=n"2(1 - § — vd/2exp(—v2/2) (4)

and Z, is the real part of the plasma dispersion function. From (2) we see that b must
be positive for a solution to exist which implies in view of (3) and of the x-dependence of
the Z‘;(z)-function that 0 < vo < 1.307 , which means that a solution only exists in the
thermal bulk of the unperturbed distribution (where linear theory would predict strong Landau
damping).Prescribing vy and hence the left hand side of (3) we see that b o 1p~1/? >> 1 which,
from (4), results in —8 o ¥~Y2 >> 1.The trapped electron parameter §,appearing in the
trapped electron distribution function [2], must hence be sufficiently negative for a solution
to exist, implying a dip (depression) in the total distribution function at vo. More generally,
a variety of solutions can be found in the three dimensional parameter space spanned by the
wavenumber ko and the two spectral parameters B. and B;, the latter two being related with
0,6,a, 8,1 and Vp,as shown in [5, 15]. Moreover, it is found [6, 7] that a structure-carrying
plasma can be in a lower energy state in comparison to that of the unperturbed plasma which
means that Aw, denoting this difference, can be negative. We shall call a solitary hole with
Aw < 0 ( Aw = 0) a negative-energy (zero-energy) hole. A typical solution in phase space for
a solitary electron hole of negative energy in a current-carrying plasma ( Vp > 0) is shown in
Fig.1 It clearly exhibits the hole character at resonant velocity, here in both distributions.

Furthermore, it is interesting to note,that solitary ion hole solutions of negative energy exist
in which Vp <V}, for ANY temperature ratio 6 (see e.g.Fig.4 of [6]).

3 Nonlinear growth of holes in ordinary plasmas

For ordinary plasmas (§ = me/m; << 1) we performed numerical simulations to learn more
about hole excitation and the role they are playing in the dynamics. First we repeated the
PIC simulations of [1] with an improved PIC code (ten times more particles,two times more
grid points) to check whether the observations made by them survive in a code of higher reso-
lution.We essentially confirmed their results and, in addition, found that both solitary electron
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Figure 1: A typical electron and ion velocity distribution,resp., for a solitary
electron hole in the negative energy range of a current-carrying plasma

and ion holes are generated near Aw = 0 in phase space spontaneously out of thermal noise,each
structure experiencing growth in course of time.During growth, ion holes are decelerated, slid-
ing into their Aw; > 0 region,whereas electron holes are accelerated,coming into rest finally
in their Aw. < 0 region.Both events happen simultaneously without any violation of energy
conservation,as Aw = Aw; +Awe ~ 0. The plasma ,after the elapse of some time,appears to be
rather structured and filamentary, despite the fact that no linear instability was active during
the whole evolution. To get completely rid of particle discreteness and to show that similar
results emerge also within the continuous,kinetic description, we applied a Fourier-Hermite
expansion code to the Vlasov-Poisson system, as developed in [8, 9].This code has a two-fold
advantage: one can incorporate firstly initial conditions with high precision according to an-
alytic theory and secondly one can artificially switch off nonlinearity (through the removal of
the Ed,f1 term, where fi1 is the perturbed distribution function) to find out the differences
between a linear and a nonlinear code. Three different cases, taken from [10], have been in-
vestigated in which holes play a fundamental role. Firstly,we imposed as a starting condition
a self-consistent electron hole of small amplitude ( ¥ = 0.01 << 1). Fig.2 shows the evolution
within both codes.

The linear code,marked by LINEAR, (blue,dotted line), yields nonsurprisingly Landau damp-
ing and the overall decay of the structure. The nonlinear code (NONLINEAR;red,solid line),however,
shows the persistance of the hole during the whole evolution without any attenuation or dis-
tortion in accordance with a stable equilibrium. A similar result has already been reported in
Fig.2 of [8].Although ¢ << 1, linear wave theory fails in describing the exact evolution.

Secondly,the ordinary two-stream instability was followed in Fig.3 with both codes (§ =
0.01,0 =1,Vp =2>Vp =1.439 ).

We have used 5 Fourier modes and 2000 Hermite polynomials and random noise ini-
tially. After a short period of adaption to self-consistency ( 0 < t < 25 ) the most growing
mode establishes in both codes according to linear theory ( 25 < t < 35 ).Later the known
differences in the evolution arise, a continuation of linear growth within the linear code and the
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Figure 2: Time dependence of the amplitude of a stationary electron hole within the two codes
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Figure 3: Time dependence of the maximum potential for the ordinary two-stream
instability within the two codes
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Figure 4: Time dependence of the maximum potential for the
nonlinear Landau damping scenario within the two codes

nonlinear growth and subsequent quenching by particle trapping and creation of phase space
structures within the nonlinear code.Everything in this linear instability regime develops as
pretended by the SWC and would support its general validity if not opposing examples can be
found. Thirdly,we reinvestigated the so-called nonlinear Landau scenario by imposing initially
a distribution of the kind

fe(z,v,t =0) = (27‘(‘)7%67%(1}7\}D)2[1 + e cos(kx)] in which the velocity dependence of the
perturbation is the same than that of the unperturbed shifted Maxwellian,having hence the
same "topology".The drift was chosen to lie in the linearly STABLE regime( Vp = 1).

We see in Fig.4 no differences in the evolution between both codes up to ¢ &~ 40,namely the
linear Landau damping behaviour,mainly because the initial imposed perturbation was already
very weak and satisfied its criterion. Nevertheless, after the decay of the wave amplitude of
about 5 orders of magnitude surprisingly a difference is seen between both codes.A tiny noulin-
ear hole develops for large times in accord with an earlier result of Manfredi [11]. The explana-
tion of this unexpected behaviour,we offer,is that the initial imposed fluctuation has decayed up
to a level where nontopological random fluctuations,inherent in each code and plasma,became
competitive and subsequently took over the leading role in the dynamical evolution triggering
the birth of the tiny hole.Hence, even in the extremely low amplitude situation (for 50 < t),
nonlinearity and particle trapping rule the evolution in contradiction to the assumptions made
in the SWC.Although initially the condition for linear Landau damping , | dvf1 |<<| Oufo |
, was satisfied and seemed to be satisfied even better in course of time, nonlinearity came up
unevitably by the emergence and subsequent dominance of nontopological fluctuations and the
dynamics triggered by them.At least from here on the critical reader should be convinced that
the SWC cannot claim general valitity and can fail under certain circumstances.

Finally,we performed a further simulation [10] (not shown here) where in a linearly two-
stream stable situation a primary ion hole was imposed at t=0 together with a small fluctuation
in both trapping parameters which introduced a kind of detuning of the self-consistent coherent
structure in a nontopological manner.We could see secondary hole structures emerging in course
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Figure 5: Time dependence of the field energy

of time which were propagating and hence did not demand extra energy in accordance with
the energy law.The energy fed into the secondary zero-energy structures stemmed from the
imbalance of loss of electron kinetic energy and gain of ion kinetic energy. With this experience
in mind,we are now prepared to study and to understand in a sense the nonlinear evolution of
a pair plasma found numerically in the linearly STABLE regime.

4 Nonlinearly unstable pair plasmas

A pair plasma consists of two species with equal masses and temperatures and has therefore
the advantage of a reduced parameter space,namely § = 1,0 = 1.1t is ubiquitously met in
the universe in terms of an electron-positron plasma [13, 12] and could also be created in
laboratories in terms of a fullerene CJ, Cy, plasma ,e.g.in [14].Its evolution is characterized
by a single time scale instead of two,rather distinct time scales in case of an ordinary plasma
which are due to the large mass disparity of its charge carriers. Responsible for the fact that
both species acquire in local thermal equilibrium the same temperature is the symmetry in the
momentum exchange during binary collisions.A simplification is found also theoretically,as the
variety of analytic solutions in terms of trapped particle modes of the Vlasov-Poisson system
is reduced and hence structure formation appears to be more transparent [10]. Shown here
is a simulation with Vp = 2 < Vj = 2.6 together with 64 Fourier modes and 800 Hermite
polynomials.For more details we refer to [16].Initially incoherent, nontopological fluctuations
fi1 were imposed which,albeit small,do not satisfy the applicability condition of linear wave
theory | Oy f1 |<<| Ouvfo | . As a footnote we mention that this was not necessary,as can be
seen from the third example of the previous section,but it speeded up the evolution,allowing a
faster access of the long time dynamics.

In Fig.5 the time evolution of the field energy wy is plotted,from which four distinct phases
can be distinguished: 1) an initial damping in 0 < t < 120 , 2) an exponential growth in 120
< t < 250, 3) a saturation and a quasi-stationary state in 250 < t < 375 ,and 4) an approach
towards a new,less energetic structural equilibrium for 375 < t. To learn,what happened
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internally in the plasma,we have made snapshots of both phase spaces and densities as well as
of the potential at several characteristic time instants marked by arrows.

4.1 Damping phase and preparation of a seed hole

In Fig.6 a snapshot at ¢t; = 37.5 belonging to the damping phase is presented.

It shows a lot of coherency in both phase spaces indicating an ongoing process of structure
formation.Fluctuations in the initial noise that violate the linear Landau damping criterion
survive and trigger the birth of coherent structures.This process terminates near ¢ ~ 120,the
time when w; becomes minimum.

4.2 Multiple generation and growth of holes

At this time, t2 = 120, a hole in f_ at z &~ —27 and vy =~ 0 has emerged together with some
further wave activity at v—, vy ~ 0 ,Fig.7.

This seed hole in the minus species is exposed to a negative electric field, as can be seen by
the slight asymmetry in the potential hump, being hence nonstationary.lt experiences growth
and acceleration, as the encircled structure in f_ of Fig.8,taken at t3 = 187.5, shows.

One plausible reason for this process is the encircled filament in the fi component [16],
but also other plausibility arguments can be presented.One of them is that a - hole, which
can be interpreted as a macroparticle of positive charge Q, negative mass M (and position
X) embedded in a -fluid, experiences an acceleration when E < 0, according to MX = QE.
Here, Q and M are defined by (Q, M) := fd:cfdv(q,,m,)f,t where f_;<0 represents the
depression (hole) in the -distribution in the trapped range over which the v-integration is to
be taken [17, 4].

A similar observation about hole acceleration has been made by Eliasson and Shukla [18]
who found that a -hole is attracted (repelled) by a maximum (minimum) of n1.This can be seen
from the n-plot of Fig.7, noting again the slight offset of the potential hump with respect to
the density minimum and the asymmetry of the latter. Another explanation of the acceleration
process during growth can be found from the nonlinear theory of electron and ion holes [19].In
this work the NLDs were investigated,Fig.3 and Figs.7,8 resp. of this paper,showing contours of
constant phase velocity in the parameter space spanned by the amplitude ¢/ and the trapping
parameter 3 and «, respectively. Assuming a nearly constant 8 (resp. «) an increase of v
corresponds to a slowing down of the structure in a current-free plasma which amounts to
an approach to the respective distribution center. Transferred to our situation of a current-
carrying plasma with shifted unperturbed Maxwellians this implies a speeding up of the -hole
and a deceleration of the +hole.This latter property we have already observed in the PIC
simulations and will be seen later again. However,the most prominent feature in Fig.8 is seen
near ¢ ~ 47 as a large bipolar trapping structure is created near v—, vy ~ 0 in both species.In
this velocity region Aw is approximately zero such that it does not cost extra energy for the
plasma to build up the structure and achieves this by the above mentioned redistribution of
energies.What is seen is the birth of a pair of holes,as this structure lateron splits into a -hole
and a +hole,as is seen in Fig.9 which is taken near the maximum of wy, namely at t4 = 221.25.

During growth the -hole appears to be accelerated and the +hole decelerated in accordance
with the NLD.A similar splitting processes has been reported in [20].At the same time,the birth
of a new pair of holes (or even a triplett) emerges in region x < 0. This phase is charaterized
by the generation and amplification of holes accompanied by an energy transfer to electrostatic
field energy w; which grows exponentially fast and reaches maximum value at this given time
moment.
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Figure 6: Snapshot of phase space configurations ,potential and densities at t—=37.5
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Figure 7: Snapshot of phase space configurations ,potential and densities at t— 120
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Figure 8: Snapshot of phase space configurations

,potential and densities at t= 187.5

11



4 NONLINEARLY UNSTABLE PAIR PLASMAS

0.03 " T T T T T T T T T

0.02

0.01

Figure 9: Snapshot of phase space configurations ,potential and densities at t= 221.25
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5 SUMMARY AND CONCLUSIONS

4.3 Saturation and fully developed structural turbulence

Although the generation of new holes persists,w; in this short phase is no longer increas-
ing.Respounsible for this saturation is a new process coming into play,namely an anomalous
structural diffusion process which is activated by the coherent structures near t=250 balancing
the increase wy due to structure formation.

Fig.10 shows a highly structured,filamentary state in both phase spaces near the end of
this phase at t = t5 = 375.The finite number of Hermite polynomials used in the code can no
longer resolve the fine structures in phase space giving rise to a coarse-grained distribution.This
introduces a kind of resistivity into the system.As shown by [9, 21],a coherent structure increases
the resistivity of a plasma provided the mobility of ions is taken into account in the code, a
process which should be even more pronounced for a pair plasma. This diffusion affects the
whole bulk of the distributions, heating up both species and reducing their drift velocities.This
is shown in Fig.11, where the temporal behaviour of both mean velocities < v >4 _ and of the
effective temperatures are plotted.

It is essentially this phase in which these quantities experience a change.

4.4 Relaxation to a new collisionless equilibrium

In the last phase, when the birth of holes is quenched by the modifications of the distributions,
the anomalous,structural diffusion, together with a merging and coalescence of phase space
structures, eliminates all fine structures leaving few ~+holes in the system, as Fig.12, taken at
t = te = 1350, shows.

In this relaxation phase the distributions become smooth again and are more or less flat-
topped,except for fy , which has an additional dip.This is seen in Fig.13, in which both distri-
butions at t=1500 are drawn.

The anomalous diffusion process is now quenched too.What survives is a new collisionless
equilibrium state with flat-topped distributions and some few holes which finally coalesce into
a single hole.That here a +hole survives in a nonsymmetrical manner has its origin probably
in the imposed initial data. Finally,the whole run was repeated using a Vlasov-Fokker-Planck
Code for both species as described in [8, 10].As a result no noteworthy changes in the evolution
could be detected for normalized collision frequencies up to 0.001 .We hence may conclude
that the scenario presented has a generic character remaining essentially unaffected by weak
collisions.

5 Summary and conclusions

In this paper the role of nonlinearity in a collisionless or weakly collisional plasma, originat-
ing from electrostatic trapping, has been reinvestigated. A Vlasov-Poisson code in 1D, which
allowed to switch off nonlinearity to learn about its consequences,revealed that, whenever non-
topological fluctuations are present,a current-carrying plasma becomes nonlinearly unstable
although the ambient drift velocity was chosen below the critical speed of linear instability.
Responsible for this violation of the standard wave concept (SWC), according to which no
wave activity should arise, are trapped particle modes, such as electron and ion holes, which
control the dynamics in each phase of the dynamical evolution. In a typical scenario one first
notices the preparation and growth of a seed hole which is subsequently replaced by the mul-
tiple generation of pairs of holes.In the exponentially growing phase of nonlinear instability
the growing structures are accelerated in case of electron holes and decelerated in case of ion
holes.This stage is then followed by the onset of anomalous, structural diffusion which bal-
ances nonlinear growth and leads to a phase of a highly structural but otherwise stationary

13
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Figure 10: Snapshot of phase space configurations

,potential and densities at t— 375
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Figure 11: Time dependence of mean velocities and effective temperatures

turbulence.Time-asymptotically the chaotic state decays towards a new collisionless equilibrium
which is characterized by flat-topped distributions on which few surviving holes are superim-
posed.This type of evolution,which was shown explicitely for a pair plasma,is expected to hold
for an ordinary plasma as well with some changes in the involved time scales.It hence exhibits
the dominant role trapping vortices are playing in 1D and prevails if a sufficiently strong mag-
netic field is present, preventing the decay of these structures into perpendicular modes. A
weakly collisional fully ionized,magnetized,current-carrying plasma, such as met in space or in
fusion devices, is hence subject temporarily to a nonlinear growth of coherent perturbations
before the new collisionless, structural equilibrium state is attained followed by the long-term
approach to thermal equilibrium due to the remaining sparse collisions and associated trans-
port processes.This scenario is valid in the LINEARLY STABLE regime and reflects a NEW
PARADIGM OF PLASMA STABILITY. As a footnote we mention that a fusion plasma,
which is typically driven by many sorts of currents, e.g. due to ohmic heating, neutral beam
injection, wave heating, profile control etc, has to overcome this nonlinear growth of trapping
structures and the associated onset of anomalous,structural diffusion during which radial losses
are expected to be strongly enhanced, even if experimentally all linear instabilities could be
suppressed. Theoretically,a number of open questions remain.One of them is concerned with the
underlying mechanism of growth of holes.Although we have learned that holes of zero and/or
negative energy are preferentially excited, we still dont know the underlying mechanism(s),as
an energy principle,in which trapping effects are incorpororated, is still absent.Also the simul-
taneous excitation of a pair of holes remains unclear from an analytic point of view, and so on.
Finally, we mention that the fast reconnection processes, thought to be responsible for coro-
nal mass ejection (CME) processes taking place in the solar corona [22], may be triggered by
the anomalous,structural diffusion (enhanced resistivity), as no linear electrostatic two-stream
instability seems to exist in this part of the corona.
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