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Abstract -The paper reviews the state-of-the-art in the observation and analytical description of localized electrostatic phase space structures. These

structures occur on the Debye length scaleand introduceakind of internsitnency in thedynamics of externally driven collittonf oss plasmas. Holes, the

onegroupof structures investigated, are nonlinear saturatedstates of two-streaminstabilities in whichsaturation is provided by particle trapping.They

are ring-shaped vortices in phase spare and are macroscopically manifest in localdensity depressions. Double layers,on the other hand, are narrow

mouotouic potential transitions and connectdifferently biased plasmas, resembling in some sensephase transitions. Thecontrolling function of these

nonlinearly excited d.c. states in the dynamical evolution of bounded plasmas exhibiting transient phenomena is discussed.
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I. Introduction

Electron holes (EH), ion holes (IH), and double layers (DL), the objective of this report, constitute a
subclass of nonlinear electrostatic modes, often referred to as BGKmodes [1]. Generally speaking, they
are saturated states of two-stream unstable collisionless plasmas in which saturation is provided by
particle trapping. Representing states far away from thermodynamic equilibrium, these structures are
found under laboratory conditions in current carrying and voltage driven plasmas as well as in plasmas
driven by beam particle injection or by wave launching. Experimental evidence is furthermore provided
by observations in the auroral zone of the ionosphere.

Although some of them have been known for a long time [2], dating back until 1929 when Langmuir
analyzing his experiments, inferred on the existence of DLs, renewed interest came up only recently,
mainly due to the improved access to these entities in laboratory and numerical experiments. Also new
analytical material is available supplementing the experimental data.

Trapping, of course, implies that these structures are not amenable to macroscopic descriptions like
MHD or other fluid descriptions. It is the Vlasov picture which has to be invoked.

In the language of modem dynamics these structures appear to be attractors and are generated rather
independently ofthe details of initial and boundary conditions. Provided that the excitation mechanism is
sufficiently strong, they will come up inevitably and can last sufficiently long to affect the characteristic
properties of a plasma, e.g. its dynamical evolution.
The situation is in some sense analogous to conventional fluid dynamics, where the Bénard cells,

having received a great deal of attention, play a similar role. It is well known that a horizontally layered
fluid, heated from below, becomes structured by the appearance of convection rolls, when the Rayleigh
number exceeds a certain threshold value. This analogy can be strengthened by noticing that in certain
approximations both media behave like incompressible two-dimensional fluids. The Vlasov description
for one space dimension takes place in the two-dimensional phase space. Due to Liouville's theorem the
two-dimensional phase space fluid is incompressible, and it is an easy matter to cast the equations
governing the motion of an electron phase space fluid, the Vlasov equation and Poisson's equation, into
the equations for a two-dimensional ordinary fluid.

This report mainly refers to stationary isolated structures, that is to say, to steady-state electrostatic
excitations, the field energy densities of which are localized in space. Time varying electrostatic modes
with a larger spatial extent, such as periodic ones, have been studied in some detail in refs. [3,41- These
studies include an investigation of the temporal evolution of an initial plasma state towards a periodic
equilibrium and show within the adiabatic approximation the existence of 'preferred' BGK states. The
transient part of the plasma behaviour is (except in section 7) omitted in this review. Moreover, periodic
equilibria are known to be prone to the coalescence instability [5, 6]. This implies that ultimately a plasma
develops that is modified by isolated, narrow Debye-scale structures akin to the intermittence structures
m fluid dynamics. This kind of plasma being governed by "preferred" BGK states is the concern of this

report.
In the following, I shall discuss some of the topics of this specific field whose growing attractiveness is

reflected by two symposia that took place in 1982 and 1984 at Roskilde and at Innsbruck, respectively.
The proceedings of these symposia [7, 8] are sources of further information as well as several review
articles [9, 10, 11].

Section 2 is devoted to an experiment which played a key role in the development of the field of holes.
An analysis of EHs, lHs and DLs is represented in the subsequent sections. The evidence of these
structures in computer simulations and laboratory experiments is reported in section 6, whereas the
dynamical transient properties are addressed in section 7.

0 370-1573/86/$10.85 © Elsevier Science Publishers By (North-Holland Physics Publishing Division)
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2. The Risø experiment on electron holes

2.1. The laboratory experiment

As mentioned, big progress in the understanding of electrostatic structures has been achieved

experimentally at the RisØ-Institute in Denmark [12, 13, 14]. Figure 1 shows the schematic set-up of this

experiment. It consists ofa single-ended Q-machine in which a collisionless plasma is produced by surface

ionization on a hot tantalum cathode. Radial confinement is obtained by a homogeneous magnetic field

("cc
o
aipe).Asurrounding cylindrical brass tube with a slit acts as a wave guide. Ashort negative voltage

pulse on the left part forces the enclosed electrons to leave and to enter the target plasma where they

constitute an effective, two-stream like perturbation. The plasma response to this excitation was

measured by axially movable Langmuir probes. Figure 2 shows the time dependence of the negative

electrostatic potential recorded at various positions. Two distinct structures of oppositepolarity are seen.

Afast moving negative potential pulse and a positive, slower potential pulse. The latter structure being

associated with a density depression is the aforementioned EH. It is remarkably stable. The fast pulse, on

theother hand, decreases in amplitude and spreads. It could be identified as a Gould-Trivelpiece soliton

which is governed for small amplitudes by a Korteweg-deVries (KdV) equation. The width ofthe soliton

is broader than that ofthe hole despite its larger amplitude. This is somewhat surprising because the hole

should be broader if it belonged to the class of KdV solitons, too. Whereas the velocity of the soliton is

several times larger than the electron thermal velocity v,,, and corresponds to the Gould-Trivelpieee
mode, the hole velocity is of the order of VIn only or even less. Argued from a linear basis, it is in the

velocity range where one would expect strong electron Landau damping and, hence, a complete

suppression ofthe hole structure. This does, however, not correspond to the real observation. Note also a

slight asymmetry of the hole increasing with time. Furthermore, it is experimentally found that the hole

but not the soliton vanishes when the pressure is increased. In addition, in cases where two holes are
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created, the coalescence of both to a single hole could be seen [14]. These features prove experimentally
the non-soliton property of EHs and indicate that the hole is something else.

2.2. The numerical experiment

Unfortunately the device did not allow measurements of the electron distribution function f, to get
further information. However, the authors could perform a particle simulation which wasadapted to their
laboratory experiment. The numerical results are presented in the next two figures.

In figs. 3 and 4, three structures areseen: The fast moving soliton, the hole, which is almoststanding in
this frame, and a new structure (later on being referred to as SEADL) moving to the left. As seen by the

phase space pattern the soliton accelerates and decelerates the whole electron fluid and is, hence, a
macroscopic phenomenon. But the other two structures, as one easily recognizes, are of different type.
For both, the distribution remarkably deviates from Maxwellian. The hole has a vortex-like structure in
phase space (remember the analogy to fluid dynamics mentioned in the introduction) being characterized

by a deficit of slow (deeply trapped) electrons within the structure. The third structure represents a
monotonic potential transition (DL) and is associated with a two-stream-like distribution at maximum
potential, the two branches of which unite on the low potential side. The latter structure is the most
unstable one and shows the onset of a transition into a hole.

Before discussing the EH properties analytically, it should be noted that this sort of trapping vortices
has been observed many times in computer runs simulating two-stream unstable situations [15, 16, etc.].
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They have also been found in the simulation of plasmas interacting with launched large amplitude waves
as, for example, in the Raman [17] and Brillouin [18] back scattering or in the lower hybrid heating [19].
We, therefore, may state that trapping vortices or holes are common structures in plasmas driven by
distinct excitation mechanisms.

3. Theory of electron holes

3.1. The analytical description

Theoretically [20, 21], electron holes sharing these properties have been explained as equilibrium
solutions of the Vlasov-Maxwell equations, as will be shown next. These equations reduce in the
elctrostatic, one-dimensional limit to

IV 3,+cli'(x)o5]f(x, u)=0,

f0(x,u)- i

(1)

(2)

Equation (1) is the electron Vlasov equation, and eq. (2) is Poisson's equation. They are formulated in
the wave frame (x

-
v0t-u x) where the structure becomes stationary assuming that it propagates with a

velocity v0 in the laboratory frame. Ions are treated as a constant neutralizing background. The spatial
coordinate x, the velocity v, and the electrostatic potential cb are normalized by the Debye length A0, the
electron thermal velocity t, and T01e, respectively, where T0 is the electron thermal energy in the
unperturbed medium which is assumed to be in thermal equilibrium. The latter implies the boundary
conditions

4, 4'-sO,	 f5(X,0)* c exp[- (v + v0)2j

	

(3)

as xj_or (c(2ii-)'2).
The method of solution used here differs from the original BGKapproach [I] which suffers from the

fact that non-well-behaved distributions are involved [22]. BOK distributions, as it is well known, can
become negative or show a singular behaviour in velocity space, the mildest form of singularities being
discontinuities in for in its derivatives in v. One can live with such jumps if there exist neighbouring
smooth solutions [22]. It seems, however, not meaningful to justify discontinuous distributions within the
Vlasov description. The reason is that the latter itself is an approximation and demands that the collision
term in the superimposed kinetic diffusion equation, whatever its detailed form in the presence of strong
electric fields will be, is negligible. Steep gradients in the velocity space causes an enhanced diffusion in
this generalized description, smoothing the one-particle distribution function. This smoothing process
reduces the strength of the collision term so that ultimately a collision-free Vlasov state may be
approached which is characterized by smooth continuous distributions.

The so-called 'alternative method' applied here appears to be the proper method to describe this kind
of 'preferred BGK states' because it allows from the outset the incorporation of such 'physically
acceptable' distributions. It was used by the author in deriving finite amplitude ion wave solutions [23]
and consists in solving (1) in terms of the constants of motion where use is made of the global form of

(which is bell-shaped here), and inserting this solution into (2) which is solved then for [20-23].

H. Sc/sunset, Electron holes, ion holes and double layers	 167

A solution of (1) consistent with the boundary condition (3) is given by

fcexp[-(o.\/i+u0)]

	

E,>0,
f5(x,v) =

1 c exp- /3(v 2) -
v}	 E5 0,

	

(4)
where E5 02/2 - 4', and a = sgn u are the constants of motion of free electrons (E0 >0). Trappedelectrons are represented by the second line in (4), for which E0 ˆ 0. The distribution function (4) at a
fixed position within the structure is illustrated qualitatively in fig. 5. Note that the distribution function is
continuous everywhere, especially at the border of trapped particles which is given by Iv = '/ (dashedline). The population of trapped particles is reduced when /3, the trapped particle parameter, turns out to
be negative. Hence, f given by (4) 15 of vortex-type when /3 is sufficiently negative. The phase space
trajectories are shown qualitatively in fig. 6 for a bell-shaped electric potential.

Integration of (4) yields the electron density n0
which depends on the parameters u0 and /3 [23]. It

can be written as [23, 11

n =exp(v/2)[F(u/2,4') -
T(/3,4')],

where F(T_) denotes the contribution of the free (trapped) electrons. These functions are given by

F(u,çb)=I(4')+K(u,4'),	 T_(/3,cb)===W(\/),

	

$w0,

where f(4')=exp 4'(1-erfi/),

K(u,4')=	 d	 cos exp[-4' tan' + U cos2 ]erf(

	

cos

and Wis Dawson's integral,

W(x) = exp(-x') f cit exp(t2),

J
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Fig. 5. The electron distribution function in velocity space.
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Fig. 6. The particle trajectories in phase space in the vicinity of ass EH.
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Poisson's equation (2) then becomes

4"(x)=n;u)-1s3VIô4'.

	

(5)

In (5) we have introduced the 'classical potential' V (Sagdeev potential) which depends on 4', v, and /3.
It becomes (see also ref. [30])

V(4';v0,f3)= 4' -exp(-v1/2)[P_(f3,4')- 1 + H(v/2,0,4')],

where

P_(/3,s/.s) = 1(4') + 2\17(1 - /3W') +

H(u,0,4')f K(u,)dØ

n,12

=	
J dVllcos4iexp(ucos2 )erf(Vcos)---r[1 -exp(-4'tan' 4s)1.

tan 4'

The integrated form of (5) reads

5 (6)

where V(0;v0,f3) = 0 is assumed. There is a unique correspondence between the electric potential 4' and

the 'classical potential' V, as illustrated in fig. 7, for a bell-shaped potential having a maximum value i/s

(amplitude).
Two conditions are necessary for the existence of a solution:

(i) V(O;v,,p)<O in 0<0<4i,

(ii) V(çfi;v0,/3) = 0.

v($)

(7a)

(7b)

H. Schamel. Electron holes, ion holes anddouble layers

Fig. 8. The range of existence of EH solutions in the parameter space. After 1211.
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The second condition is called the nonlinear dispersion relation because it implicitly determines the
hole velocity v in terms of 4' and /3.
An exploitation of the range in the parameter space [21J for whieli genuine EH solutions exist, is

shown in fig. 8, the range of existence lying between the curves = 1.3 and v = 0. Obviously, EHs need
a negative /3 for their existence. This as well as the finite valueof v0,0< v0K1.3, is in accordancewith the
experimental observation. There is apparently no limitation in the hole amplitude '1'.

3.2. The limit of small amplitudes

In the small amplitude limit, 4' '61, the whole structure can be resolved analytically. The electron
density becomes

n5(4';v0,f3) = 1- 1Z(v0/V')4 - b4'312 +..., (8)

where Z, is the real part of the plasma dispersion function (Z(z) =	 dr [cxp(- 12)/ (t
-

z)]), and b is
given by the expression

Fig. 7. The correspondence between electric and classical potential'.	 b = a112 exp(-uI2)(l - /3 - v) .	 (9)
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The nonlinear dispersion relation (7b) becomes

-Z(00IV) = 11bo7

	

15

which can be solved for u:

16= 1.305(1 -	 0j,IU .
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that the latter refers to the same branch. The observation by these authors on the basis of adiabatic
theory, namely, that a critical strength for the electrostatic potential is needed for the existence of this

(10)	 trapped particle mode, leads to the conclusion that nonadjabatjc, fast driving processes like the one in the
Risø experiment are necessary to excite low amplitude EHs.
The third structure in figs. 3 and 4, which is identified as a DL based on the slow electron acoustic

branch [28, 29] moves with a velocity given by v5
=

1.305(1
-

Pi/"2) which is smaller than that of the
(11)	 corresponding EH. Thus, it appears that even details of the experimentally observed structures can be

explained analytically.

This shows that the EH is a nonlinear descendant of the slow electron acoustic mode, which in the long
wavelength limit is defined by the linear dispersion relation w = l305kVta [20, 24]. The "energy law" (6)
with Vgiven by

V(4;v0,J3) - yb('I - if),

	

(12)

can be integrated to yield

(x) = 41 sech4(()
\

-j-	 x).	 (13)

The condition (7a) implies b >0 from which follows )3 <-0.71. Hence, /3 must be sufficiently negative.
The potential form (13) deviates from that of the KdV soliton which is given by

O(x) = c1,sech2(\[x),

	

(14)

in two respects: in the power of the sech andin the scaling of the argument. It follows that the EH's width,
-ij4 is less than that of the KdVsoliton, LIKdV

	

for comparable amplitudes, in agreement
with the observation.
The evolution equation, to which (13) is a stationary solution, reads

+ 1.305(1 -2b/) - I.3054' =0.

	

(15)

This modified KdVequation has been derived earlier for small amplitude ion acoustic solitons in the case
of nonisothermal electrons [25]. It possesses a finite set of conservation laws only and does not belong to
the class of integrable differential equations [26J. Hence, the coalescence of two EHs propagating with
comparable speed such that the interaction time exceeds the bounce time of electrons in the

superimposed potential well [27], seems to be a natural event in the class of solutions of (15).
The electron density is diminished at the center, e(')

= 1 - -11 b/?'2, and it is clearthat collisions with
neutral particles introduced by an increase of thegas pressure will fill up the trapped electron region. The
existence condition, /3< -0.71, is then no longer met, and the hole -but not the soliton-will disappear.

It is worth mentioning that this second acoustic branch representing modes of low phase velocity in
comparison with the faster Gould-Trivelpiece mode, was noticed by Stix [24] in a linear analysis, and by
the author [201 in the nonlinear analysis of EHs. This mode has its pendant in the ion dynamics, as we
shall see, where the corresponding mode was recognized in connection with finite amplitude ion acoustic
waves in ref. [23]. The relation of this slow electron acoustic mode to the second mode observed by
Krapchev and Ram [41 below the electron plasma frequency has not yet been worked out, but it seems

3.3. Electron holes in bounded plasmas

If the radial boundedness of the plasma is taken into account [20], the nonlinear dispersion relation
(10) is essentially modified by a extra term K on the left-hand side, where K1 = 2.4/R and R is the
normalized plasma (cylinder) radius. This implies that R has to satisfy R >5 for an EH to exist, a
requirement which is satisfied in the experiment.

Recently, a fuller investigation of the existence of EHs in the finite amplitude region in radiallybounded plasma has been made by Lynov et al. [30]. Including also waterbag distributions, they
essentially arrive at the same results, in cases where a comparison is possible. Their general results show
that for non-vanishing K1 there is a limit forthe allowed amplitude, which tends to infinity as K - 0. For
K1 >0.5 only extremely low amplitude EHs can exist. As expected, there is also an upper limit for the
speed v0 w vOMAx(Kl).
The range of existence in the full parameter space is indicated in fig. 9 (shaded area). The hole width

dEH is plotted versus the amplitude in case of Maxwellian-like distributions. For larger amplitudes,the hole width is seen to increase with increasing amplitude, in contrast to its small aniplitude behaviour.
The EHs extracted from a particle simulation (circles) are found to lie entirely in the area admitted by the
theory. For an individual hole, however, a discrepancy up to 40% between the observed width and the
calculated one was sometimes also found, indicating that other distributions than the modified
Maxwellians may be of interest too (see e.g. ref. [31]).

30
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Fig. 9. The existence range of EH. The upper limiting carve is given by h = u,,,,,, the lower one by r =0. After [3D)
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3.4. Two selected properties of electron holes

Despite the non-soliton property of holes it is instructive to associate 'particle' properties with an EH

[32,271. For this reason, we generalize the electron density (8) in the small amplitude limit:

n,=1+A2+Jdu j+O(2),

where

A2=_PJ f(v)dv,	 v2)-f0(V)+ f(v).

K. Scha,ne(, Electron holes, ionholes and double layers	 173

With (16) Poisson's equation becomes

_u+A2_Jfdup		 (17)

(16)	 The second term in (17) can be interpreted as a shielding term. It is produced by free electrons and
becomes most effective for large distances (4-oO), where the charge density PER vanishes. In view of

1<0, PER is positive. It is at maximum in the core of the hole. Defining charge, mass, momentum, and

energy of the hole:





	(Q,M,P,T) J
dx
J
do (-1,1,v,vI2	 )f,	 (18)

P means principle value, f1 is the trapped electron distribution, and f stands for the unperturbed free

electron distribution; f is, as we know, negative because of the lack of trapped particles. The integration

in (16) has to be taken over the trapped range. One immediately checks that (16) reduces to (8) if the

distributions (4) are inserted.

ASYMMETRIC ELECTRON

HOLE






X		 4)

ELECTRcOI PHASE SPACE

I x )X
ION PHASE SPACE

Fig. 10. Three diagrams characterizing an asymmetric EH. After [33].

we getQ=-M >0. An EH can thus be interpreted as a cloud of positively charged particles embedded
in an electron fluid which acts as a dielectric medium. Ad.c. electric field in one direction give rise to a
movement of the electrons into the opposite direction carrying with them the positively charged cloud.
This 'wrong' direction for the motion of the cloud is compensated by assigning a negative mass to it.
The possibility of asymmetric EHs, fig. 10, which can be excited in plasmas with different asymptotic

states, e.g. in a double plasma device, should be pointed out[331. Aslight asymmetrywas already noticed
in the EH produced in the laboratory experiment, fig. 2, where the asymmetry is caused by reflection of
electrons.

3.5. Some remarks on the stability ofphase space structures

A few remarks on the stability of phase space structures in general close this section. There is
numerical evidence [16] that EHs are stabe in one dimension with respect to electrostatic perturbations,
but dissolve if perturbations in the transverse direction are admitted. Actualy, the stability behaviour of
structures like that covered in this review is still unsolved from the theoretical point of view. One reason is
that the linear eigenvalue problem obtained from anormal mode analysis is highly nonlocal [5, 6, 29, 34-
37 and has not yet been rigorously solved.

It can be summarized as follows: Assume that b1(x) represents the electrostatic perturbation such that
the total electrostatic potential becomes

4(x, t) = 0(x) +45(x) exp i(ky - at) + cc.

where 4.r0(x) is the equilibrium potential now (without loss of generality, the perturbations are assumed to
depend on the perpendicular variable y only). Denoting the unperturbed equilibrium distribution by

F0(x,v) = (2lT)_t/2f5(X,tJa) exp(E)

where .f is given by eq. (4), and defining G by

G(xu) (
ô kv 3'

1F
8E11	 OE) 0'
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where

E11'= uI2- cb(x), -E,= v2,/2 and = cv -kv

one finds [36, 37, 29] for the linearized spectral problem

K(x,cv,k)1(x) [D - k2 + V"(0)]1(x) + if d2v G0 exp[iT(x,)]

I ,exp[-ir(x',)
Xj

dx	
v5(x',Ell,

cr)

Herein, v5(x,E11,o-) on cr'ç/2E11 + 001 is the parallel velocity expressed by the constants of motions, and

7#,7)dx' v'(x',E1,ff) is the transit time, i.e., the time a particle needs to move from x0 to x.
V(40) is, as before, the classical potential. This equation involves tedious integrations along the

unperturbed orbits and, as a consequence, has not yet been solved, neither analytically nor numerically.
Other stability methods are not applicable either. Energy principles or, more generally, Lyapunov

stability theorems are not available for this type of kinetic equilibria. There do exist necessary and
sufficient stability criteria [38-43] which, however, demand equilibrium distributions that depend on the

isotropic energy, E = Ell + E1, and are strictly monotonically decreasing in this variable, two conditions
which apparently are not met here.

Some progress has been made in ref. [44]. By extension of the work of Schindler et al. [43], the
aperiodic nature of eventually existing unstable perturbations could be shown within the class of square
integrable functions. However, the question whether there are indeed unstable perturbations, could be
approved in the so-called fluid limit only [5, 3-37,41, the justification of which is, however, lacking.
This latter approximation consists in a truncation ofan infinite series of differential operators into which
the nonlocal spectral operator K can be converted.
Asecond difficulty in the treatment ofthe stability problem is the lack of self-adjointness of K for the

case of propagating structures and of perturbations which are turned on adiabatically. For more details,
see ref. [44]. Attention should also be drawn to a series ofpapers published by Lewis, Seyler and Symon
[45-47].

Further efforts are definitely needed to decide explicitly the stability of localized phase space
structures.

4. The ion hole and related phase space structures

4.1. Analytical properties ofion holes

In view of the previous sections we can easily infer on the existence of Ms [48, 21].
The Vlasov-Poisson system

v"V+ -	 E.d]f,=0,	 s=e,i,

(1, Sc/tame!, Electron holes, ion holes and doable layers	 175

E = 4	
q5 fd3v f,,	 E=-V,	 (20)

is seen to be essentially invariant with respect to the transformation (,-e)- (-q,+e). Hence, a humpin 4 describing an EH goes over to a negative dip representing an IH, the characteristic features of which
are shown in fig. 11. There is not a one-to-one correspondence between both holes, because the second,
'passive' species is treated differently in both cases. For an EM the ion density was assumed to be
constant, for an Il-I we may generally assume that

n0
is of Boltmann-type, n5

=exp(4r). This introduces
some characteristic changes in the properties of Il-Is. The most remarkable ones are

(i) T6/T>3.5,

	

(21)

(ii) ecbmnl/T, 1 ,

	

(22)

which must be.valid for ion holes to exist. Condition (i) says that the electrons must be sufficiently hot
which is the same requirement as for ion acoustic waves. The second condition implies that the depth of
the potential energy is limited by the electron thermal energy.

ION HOLE

(19)
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Figure 12 shows the existence diagram for lHs. We have the same situation as before, i.e., IHs exist

only when the trapped ion parameter is sufficiently negative. The ion distribution is of vortex-type. The

IH velocity u0, which this time is normalized by theiontemperatureVE is of orderunity and, hence, very

small. EHs are more or less standing structures.
For small amplitudes we get [48]

I

	

T1= 1.3O5 I + -
bt12],

ASYMMETRIC ION HOLE

where b follows from (9) if v,f3, are replaced by u0,cs. Equation (23) tells us that Ills are based on the

slow ion acoustic branch [23, 24,481.
Again an asymmetric version of a hole exists [11,33, 49, 50] shown in fig. 13 together with the

corresponding phase space plots.
The quasi-particle interpretation of an Ill can be summarized by

+(I+ A2) =JJdvPtH
<0,

-4

u0n1

a

OnlO
'0

13=1

Fig. 12. The existence diagram of ion hales for 9 TJT= 10; a

represents the trapped ion parameter, and e4,,,,l T, = -.1. After 121].
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(23)

wherefand Is are defined in analogy to (16). The unity-stems from the linear term in the Taylor expansion
of exp('). An IH can be understood as a negatively charged cloud embedded in an ion fluid, having a

negative charge and a negative mass: Q = M=f P dx <0.

4.2. Two related systems

Two other important collisiortless systems should be mentioned which develop similar structures. The
first one are stellar systems, the second one particle accelerators and storage rings.
The distribution of stars is governed by the Vlasov equation in which the gravitational field E follows

self-consistently from Poisson's equations

[8,+ vV+Eôjf=0,

	

(25)

V.E=_4GJd3vf.	 (26)

(24)	 G being the universal gravitation constant. Comparing (25), (26), with (19), (20), resp. (24), for ion
holes, we conclude that due to the minus sign in (26), we get a bunch of trapped particles rather than a

deficiency. Hence, an IH is the pendant to a galaxy where only trapped particles are present (no
shielding!). The Coulomb repulsion of ions in the former corresponds to the gravitational attraction of
stars in the latter; the two-stream instability is replaced by the Jeans instability 151].
The circulating particles in a storage ring or particle accelerator represent another Vlasov system [52],

ION PHASE SPACE

	

-

ELECTRON PHASE SPACE -------------------

5X(

Fig. 13. Three diagrams characterizing an asymmetric IH. After 1111.

(27)m

wherexis the longitudinal coordinate along the tube, u(v5) is related to the radius, andFis the electric
force determined self-consistently. The effective mass of a particle is denoted by m. It is determined by
the radial variation of the guide magnetic field and turns out to be proportional to dw/dE, where w is the
circulation frequency, andEthe relativistic longitudinal energy. The latter expression can be positive or

negative dependingon whether E is below or above a critical value En, called the transition energy. When
in is positive (E < Er), a hole can be observed in the charged particle beam [53]. It is caused by
two-stream instabilities. If, on the other hand, mis negative (E> E), the beam is observed toclump, the

density becomes modulated forming clusters. The underlying instability is called the negative-mass-
instability. The repulsive Coulomb force acts on particles with negative mass in the same manner as the
attractive force acts on positive masses. Hence, to a positive-mass system with a deficiency of particles
there corresponds a negative-mass system with an excess of particles. This duality principle is sometimes
called mass-conjugation-theorem [54]. Saturn's rings and holes in the rings constitute another dual system
[511.

5. Double layers

5.1. General remarks on double layers

The by far most important and most known structure we are discussing in this review, is the DL for
which numerous original and review papers have been presented dealing with experimental [2, 55-94],
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K/i
Fig. 14. The electrical arid classical potential of a DL. The dotted tine represents the dipole-like total charge density.

theoretical [9, 11,28,29,33,48,95-110], and numerical [111-120] investigations. A DL is defined as a
monotonic transition of the electric potential connecting smoothly two differently biased plasmas. This is
achieved by a dipole-like charge distribution, as shown in fig. 14, where the electrical and classical
potential are drawn together with the total charge density, &n:=n -n,, for a single ionized plasma.
According to Poisson's equation, 4," = -fin, a positively charged layer gives rise to a region of negative
curvature of 4, and vice versa, and hence, two oppositely charged layers are needed to build-up theDL
structure. Again, trapped particles must be involved, as can be seen by a simple counter argument.
Namely, if only streaming (i.e. nonreflected) particles would be present, the spatial constancy of each
current, nu =eonst., j = i,e, would imply that the required asymptotic charge neutrality cannot hold

simultaneously on both sides of the DL structure. Due to the different acceleration each species
experiences in the DL, the densities are affected differently: The density of ions (electrons) injected from
the high (low) potential side decreases (increases) with decreasing potential. Therefore, if the densities
are equal on one side, they have to differ on the other side, and charge neutrality cannot be established
there.

	

-

Theoretically, the search for DL solutions (resp. electrostatic shock solutions, see later) was lead astray
for more than two decades by the exclusive use of the BGKmethod. Even Knorr and Goertz [104], who
presented the first working picture of the so-called strong DL, had to pay a price for the application of the
BGK method insofar as their solution is an approximative, iterative one, only.
The more straightforward way of getting DL solutions having smooth distributions, is again the

alternative method' which was used by Bujarbarua and the author [95] in connection with strong DLs,
and by Perkins and Sun [105] with respect to a specific kind of SIADLa (see later).

Finally, in the description of theoretical approaches, also the work of Block [9, 96-981 being based on

macroscopic equations, should not be forgotten, in which many of the results obtained later by kinetic
theories have been anticipated. His review articles as well as that of Torvén [55, 57], Levine and Crawford

[65] and Sato [58] assimilate the state-of-the-art of DL generation and observation in the seventies, and
contain material about DLs that includes magnetic and geometry effects, laboratory specialities, such as
wall and ionization effects as well as observations of fluctuations. We will come back to that in a more
detailed description of the experiments.

5.2. The strong double layer

As in the discussion of solitons or solitary wave solutions, one has to specify on which branch ofnormal
modes DL solutions are looked for. DL5 based on different branches, turn out to differ in thephase space
topology. A DL in its simplest form, ignoring magnetic field [108-110], or geometry [120] effects, and

taking into account a minimum set of distributions only, is given by one of the three structures shown in

fig. 15.
The first column represents the proper DL called the strong or beam-type DL. Its main characteristic
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a)S±rOeig DL b)SlowElectron Acoustic DL (SEAOL) c)Stow Ion Acoustic DL(SIADL)
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Fig. 15. Three types of Us. The second (third) rawrepresents the on (electron) phase space, whereasthe canons densities areplotted in the fourth
rose. After [29].

features [9, 11, 33, 95, 1041 are listed as follows:
- there are four distributions involved which are separated in phase space;- each drifting species has to enter the DL region with finite velocity it0 (resp. u0) called the

Bohm-criterion for DLs: it0 ˆ v0(I u01ˆju0j) for electrons (ions), where v0 (u0) is of order unity;- the trapped species described by the trapped particle parameters a and fi must be sufficiently
present: (a,0) > (a0,/3) which are 0(1);
- it exists in the finite amplitude regime only, 4'> 4' =0(1), (i.e. there is no corresponding linear

mode);
- the Langmuir 'condition' [96], which relates the electron and the ion current in a definite way(j/j1 = \/7i), is not a necessary requisite but seems to be preferred by stability arguments;- this type ofDL is usually subject to various two-stream instabilities yielding to hf (If) turbulence on

the high (low) potential side which superimposes, usually in a nondestructive manner, the coherent DL
structure.
These items should now be commented on in some more detail.

In deriving these results, modified Maxwellians like that in eq. (4) were used [95]. Arepresentative
distribution for the electrons is shown in fig. 16 in the quasi-phase space (i.e., x is replaced by 4, which in
the DL case is a one-to-one relation). One notices the trapped electron component at the high-potentialside symmetrically orientated around it =0, and the well-separated drifting component ofelectrons which
enter the DL region at the low potential side 4, =0 with finite drift velocity. In this case (9 =f-1,
a= 13 = 1, u0j

=		=
3.59), the normalized ion distribution fi(u, 4,) is simply obtained by reversing the
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sign of the velocity u= -v, and by replacing 4) by 4) - 4), where Vi is the DL amplitude. 0 = Tl T is the
temperature ratio of the drifting particles at the entrance, andf(not to be mixed up with a distribution
function) reflects the ratio of the current densities:j/j (rn/m5)i?f. In the present case, the Langinuir
condition is assumed (f= 1) leading to the equality of the normalized drift velocities u0

= 3.59
which exceed unity. This latter property is termed Bohm criterion, since a similar condition holds true for
the ions entering a negative wall sheath. It is worthwhile to note that the most general expressions for the
two Bohm criteria are given by V"(O)<0 for the electrons, and by V"(4)) <0 for the ions, respectively,
where V(q5) is the classical potential. (The Langmuir condition can be derived macroscopically in the
following manner: Neglecting temperature and trapped particle effects, and assuming that the initial drift
is negligible, one gets, using energy conservation, e40 =meneue/2 =min1v1/2, where 4) is the
potential jump, and

v3 (j = i,e) is the drift velocity after acceleration. If the densities are equal, it follows
= env,,/ env, = (m1/m.)U2 ). These investigations emphasize in some sense the preferential role

played by the Langniuir condition since presumably a minimum amount of fluctuations is involved.
Although the general stability of DI.s is an unsolved problem, as discussed at the end of section 3, it
seems that a minimization of the larger of both drift velocities can lead to the lowest fluctuation level.
Since the drift velocity is dependent on the amplitude 4) there might be the possibility that by lowering i/i
the drift velocities will fall belowthe threshold of two-stream instabilities [104]. However, this lowering of
4' has its limits (see item 4), and it is not yet clear whether truthful strong DL solutions can be found that
are stable at least in the asymptotic, homogcneous region. The investigations of ref. [99] indicate

instability, an observation which seems to be in accord with the experiments.We terminate the analytical
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description of the strong DL by mentioning that it is this type ofDL which is usually excited in a strongly
driven plasma, and which gives rise to the observed strong particle acceleration.
We now turn to the second and third type of DLs.

5.3. The double layers based on the slow acoustic branches

The second column in fig. 15 shows the so-called Slow Electron Acoustic Double Layer (SEADL)
1106,29]. It is based, as the name says, on the slow electron acoustic mode and does have a small
amplitude limit. Its most striking feature is the 'tuning fork" configuration of the particle distribution in
the electron phase space. Favourable conditions for its existence are hot ions (including T.= c which
represents immobile ions [29]), and a less dense plasma on the high potential side. As seen immediately, a
SEADL is a descendant of EHs. Since both demand the same prevailing conditions, it is not surprisingthat they can be generated simultaneously in a plasma (see section 2 and figs. 3 and 4).

Like in the IH case a simple exchange of the species leads to the Slow Ion Acoustic Double Layer
(SIADL), third column in fig. 15. The tuning fork configuration is now found in the ion phase space.There is an upper limit of the amplitude 4' t/i. It is this DL structure which can exist under current-free
conditions [105]. As in the IH case, the electrons have to be sufficiently hot.

The analytical description of a SEADL can be summarized as follows [106, 29]. A similar argument-ation holds for SIADLs. For small amplitudes the densities are given by a half-power expansion in 4) (see
eq. (8)). Poisson's equation then reads

4)" A4) + B, 0112 + B21tfr312 -(4' - 4')312] + C1412 + C24) + O(4'h12)= -3VI84),

	

(28)

where the coefficients A, B1, etc. generally depend on a, /3, u0, is0
and 0. (Note that the 0(4)1/2) term is

missing in (28) due to the assumed continuity of the distribution function at the separatrix.) By
integration, the classical potential becomes

= )A4)2 + B14)'2 + B{4)4'3/2 - [4j5I2 -(4)- cb)51211 + C14) + C,4)24'.

	

(29)

In the present case the two conditions, V(i/i) = 0, and V'(41) = 0, expressing the vanishing of the electricfield and ofthe charge density on the high potential side, respectively, have to he satisfied simultaneously.

(30a)




	0=A+(Bi+B2)4'uz+(ci+c,)41,	 (30b)

which can be resolved for B1 and A, resulting in

A= -2B24't'2 + 4c14' - C24n,	 (31a)
B1 = B2

-
C4,"2.	 (31b)

An evaluation of the nonlinear dispersion relation (31a) again shows that the slow electron acoustic
branch comes into play. Inserting (31a,b) into (29) yields

2[0111=B2('24'(4' -4))-			 -4)512 _(4'_ 4))512])+							 C4)S[4)Ill_4)i12]23	 3		 (32)

Fig. iS. The electron distribution of strong DL. Alien l5l.
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which represents the most general expression for the classical potential of a small amplitude SEADL. A
further simplification is obtained, if I B2 1C,10112 holds, in which case one has

-V(4)= C52[2
-

4,112]2 (33)

Performing the last step in deriving DL solutions, namely solving the energy equation' (6), one gets

<P(x) = 1s(1 + tanh KX),	 =
(C1s)u124)"° ,

	

(34)

an expression which was first obtained by Kim [106].

5.4. The double layer based on the ordinary ion acoustic branch

Torvén (1211, and more recently Goswami and Bujarbarua [1221, investigated the possibility of DL
solutions on the ordinary ion acoustic branch. In this case a macroscopic description suffices, and the

half-power terms are missing in eq. (28). Including the next order, 4 in that equation, one gets DL
solutions of the following kind:

= B2(0 - 4)2

	

(35)

O(x) = ti(1 - tanh ,a),	 K = /çfr,

	

(36)

provided that the constant B is positive. This latter condition is not satisfied if the electrons simply obey
an isothermal electron equation of state (n -exp 4u), in which case only ion acoustic solitons exist. The
existence of Ion Acoustic DLs (IADL) requires, therefore, deviations from isothermality as it is, e.g.,
given by a two-temperature electron distribution function. Both compressive and rarefactive DLs can be
obtained in the latter case, dependent on the temperature and density ratio of hot and cold electrons. A

compressive (rarefactive) DL is defined by a decrease (increase) of the density and of the potential in the
direction of propagation and is generally subsonic (supersonic). The corresponding solitons [123] in
contrast, require reversed conditions and are both supersonic.

I close this section with two remarks. Firstly, DLs are, in general, as abundant as solitons, since by
appropriate modifications a soliton solution can be cast intoaDL solution [124]. Secondly, the DLs based
on the slow ion branch are a manifestation of an old idea of Sagdeev and others [1251, concerning the

necessity of reflected ions and represent the first self-consistent solutions of what was called earlier a
laminar collisionless electrostatic shock [126].

6. Experiments on holes and double layers

Numerical simulations and laboratory experiments performed in the last decade have revealed many
aspects about the existence and the possible generation mechanism ofphase space structures. Only a few
of them shall be mentioned here. Since we have already treated in some length EHswe will concentrate
here on Ills and DLs.
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6.1. Experiments on symmetric and asymmetric ion holes

One ofthe first numerical observations of phasespacestructures which are related to (asymmetric) LHs
and SIADLs was made by Sakanaka [127], simulating the interaction of an ion beam injected into a
plasma, a process which was studied further in refs. [128-130]. These simulations reveal that the electric
field at the ion beam front is distributed such that the leading beam particles will be accelerated whereas
the succeeding particles will be slowed down. This gives rise to a region exhibiting a tuning-fork
configuration corresponding to a SIADL, followed by a quiet heated region where the beam has merged
into the background plasma, and by a region with one or more IHs which accomplish the merging of he
two-stream unstable beam. Experimentally, Ills have first been observed by Pécseli et al. [129] in a
double-plasma device by increasing suddenly the energy of an already existing ion beam. This
modification in handling the ion beam seems not to be essential as a wave pattern similar to that of
Sakanaka's numerical solution arises. Experiments on similar lines have been carried out in refs.
[130,1311. Concerning the interpretation of this a different opinion was expressed by Pierre et al. [131]
who argue that the structure in the rear of the shock may also be due to a slow wave pattern, i.e., a
nonlinear solitary slow wave in the stable region of the ion-ion two-system situation.

IHs and its asymmetric version were, furthermore, seen in simulations treating current-carrying
plasmas [132-1361. An electron drift with velocity as low as U ow0.5v, [134, 135], the lower limit
depending on details of the numerical condition, gives rise via the ion acoustic two-stream instability to
the local excitation of an III which due to electron reflection on the negative potential dip becomes
asymmetric. Details of this scenario were described in ref. [33]. An example of this type of simulations
is given in fig. 17a,b, showing a plane asymmetric III in two dimensions (fig. 17a), the growth of which
was, in this case, triggered by an imposed density depression, and a plane SIADL (fig. 17b),
respectively. Both turn out to be weakly transversally unstable [29, 36, 37]. In the laboratory,
asymmetric IHs and SIADLs have been generated by Fujita et al. [671, when an applied positive
potential was switched-off suddenly, by Chan et al. [137], when electrons were abruptly injected, and
by Sekar and Saxena [68], when a steadily injected e-beam was modulated by a negative step potential.

Fig. 17a,b. The electrostatic potential in two dimensions obtained in simulationsof current-carrying plasmas. Figure 17o showsan asymmetric ill arid
fig. 17ba SIADL. After [132J.
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6.2. Experiments on non-propagating double layers - Current disruption by electron reflection

An important observation made in these simulations and real experiments are the strong current

reduction at the moment when the asymmetric IH becomes excited, and the possible transition of the

latter into a SIADL (see fig. 17b) or even into a strong DL [1361. This observation seems to play a key
role in the understanding of more involved laboratory experiments in which a negative resistance and an

associated current disruption are found. I should mention here and investigation of Lutsenko et al.

[60, 1381 in a straight high current, low pressure discharge, who found (i) the formation ofaDLat a point
where the plasma density is depressed, (ii) the generation of intense beams of electrons and ions in the

space-charge region, (iii) the appearance ofa high resistance which was not 'anomalous', and (iv) intense

microwave emission at the instant when the high-current beam is formed. The authors suspect that this

'volume-mechanism' limiting the current may as well be the cause for the current disruptions observed in

high-current toroidal discharges or in a plasma focus. The intimate relation between the current

disruption and the negative potential dip (NPD) in the formation process of DLs will be investigated

further after the following brief survey on DL experiments.
DLs-most of them will be strong DLs although a serious investigation discriminating the different

types of DLs has not yet been performed - can be found under various circumstances.

DLs, to start with, appear in front of the hot cathode in a low pressure discharge tube like that of

Lutsenko et al. [60, 138] when the electron emission is sufficient to maintain the discharge current.

Nonpropagating DLs in the axially uniform positive column have been found this way by several authors

[71-74, 65]. In these experiments extremely large discharge currents were involved in which the electron

drift velocity was close to the electron thermal velocity. DLs are also formed in discharge tubes with

varying cross section at the place of an abrupt change of the tube diameter [59, 75-77], in which case the

continuity of the current through the discharge tube is maintained by the DL acceleration of the

particles.
Stationary striations occurring in discharge tubes [78] are a a modified form of DLs in which ionization

and particle losses to the wall play a crucial role.
The injection of an electron or an ion beam into a plasma in double and triple devices is a further

possibility to excite DLs. In a modified double plasma device, Wong and co-workers [79, 61] found DLs

which were generated by ionization due to the beam. If the beam was sufficiently strong, the DL was

propagating with a speed close to the ion acoustic speed. It disappeared when it arrived at the opposite
end, and it reappeared at the place where the beam was injected giving rise to a repetitive phenomenon,
to be discussed in more detail in the next section. In the case of a triple-plasma machine [80-821 where

two plasmas at different bias were produced independently, an electron beam was injected from the low

potential side into the target plasma, creating a strong DL. The generation of a DL due to the injection of

an ion beam along a converging magnetic field (see also later) was reported in refs. [83-851.
A DL can further be generated by applying a large positive potential to the anode or to a metal

electrode immersed in a weakly ionized plasma [63,64]. When the potential exceeds the ionization

potential of the gas, an additional discharge occurs around the electrode, and the sheath detaches and

converts into a DL providing the transition between the main plasma and the newly generated plasma.
These experiments, among many others, are especially appropriate to prove the co-existence of DLs and

of fluctuations. Torvén and Lindberg [64] measured Langmuir oscillations in the high potential region
which have a phase velocity typically 10-20% smaller than the electron beam velocity. The spatial
increase compares favourably with the linear growth rate of the beam-plasma interaction. Low frequency
fluctuations (& <w5) with a peak at the center of the DL have also been observed. Their origin is not yet
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clear, but it seems that they are partly caused by a motion back and forth of the DL with an amplitude of

the order of the layer thickness.
DLs, moreover, are created at the boundary of two independently produced plasmas if a potential

difference is applied between their sources [86, 87]. In this case, DL amplitudes up to i = e,nsI T5
=

2.5 x10' could be found. TheDL position was changeable by the variation of the density ratio ofthe two

plasmas or by varying the strength of the applied potential.
An interesting observation has been made by 1-lollenstein et al. [62] as well as by Chan and

Hershkowitz [881. Using a long triple plasma device, multiple, staircase-like DLswere observedwhen the
bias voltage on the high potential boundary grid was sufficiently high. The electron drift velocity was not
much below the electron thermal speed, and an ion hole scenario like that sketched above, supplemented
perhaps by ionization and fluctuation effects, may be applicable. These experiments are ofspecial interest
because they yield information about the intermittence type small scale structures observed in the aurora

ionosphere [90, 91].
A survey on experimental DLs would not be complete without saying something about the U-shaped

DL5, structures that are related to the auroral DLs just mentioned. U (or V)-shaped DLs are
three-dimensional potential structures in which the equipotential lines are U-shaped. They are formed
when the axial current, flowing along magnetic field lines, has a finite spatial extent in the perpendicular
(radial) direction. Experimental studies have been conducted by refs. [92-94, 83-851. An interesting
feature of such aDL configuration is a density duct at the low potential side (note that in one dimension,
such a density behaviour is found for SIADL, fig. 15). The radial electric field in the region where the
density drop takes place, gives rise to E X B plasma rotation which excites electrostatic ion cyclotron
waves showing several azimuthal mode numbers. If, in addition, the magnetic field is converging like the
earth's magnetic field, the U-shaped profile is more pronounced, and the axial potential drop is found to

appear around the position of the magnetic mirror.
Our concern for the last part of this report is to learn more about the DL formation process itself, that

is to say, about the intimate relation between the current disruption and the negative potential dip
(NPD), and about a transient phenomenon related to this.

Torvén et al. [70] experimenting with a triple plasma device, found that the spontaneous current
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Fig. 18. Space-lime history of the plasma potential in a plasma diode with positive applied potential. After 11421
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disruption caused by electron reficction on a NPD, is the triggering mechanism for a DL. (We note in

parenthesis that in a recent linear turbulent heating experiment of Inuzuka et a!. [139], strong DLs have
been recorded coincident with a NPDand a low value ofthe heating current.) However, as described also

by other authors [140-144], the NPDneed not be an IH. It was stretched in this experiment and, thus it
was more quasi-neutral-like. This controlling function of the NPD could be studied in more detail, if in
addition to the applied voltage U0 an inductance Lwas introduced in the external circuit ofthedevice. If

was above a critical value, periodic current disruptions correlated with DLs were seen. The inductive

over-voltage produced by the disrupted current was several hundreds ofvolts over the plasma (T0
' 8eV,

n0
1016 m3), and was found to be concentrated at the DL that maintained as long as the circuit was

able to produce the over-voltage. The energy stored initially as magnetic energy in the inductance, was
transferred to particle energy in the DL. Inthis series of experiments the DL was periodically switched on
and off, and was more or less standing. There exist, however, situations as already mentioned, in which
the DL is found to be in motion giving rise to a periodic phenomenon called potential relaxation
oscillations, the concern of our last paragraph.

7. Potential relaxation oscillations (PRO)

7.1. Propagating double layers infinite length plasmas

The oscillatory phenomenon to be discussed here has been observed in many experiments [142,145-
1531, in which the finite length of the system is of crucial importance. A typical arrangement is.a plasma
diode (single-ended Q-machine) consisting ofa grounded plasma source and a positively biased collector

plate terminating the plasma. If the applied voltage is sufficiently large, low frequency oscillations of

typically 1-10 kHz are seen. Figure 18 shows the space-time behaviour of the electrostatic potential of
lizuka et al. [142], the evolution of which being initiated by an expanding plasma. Onereadily recognizes
two main phases within one cycle of about 400 is. The first one is characterized by a strong propagating
DL which is accompanied by a broad NPDon its low potential side, the second one by a fast increase of
4 in the whole column shortly after the DL has reached the anode. The collected target current is
sawtooth-like in time with the decaying phase during the presence of the DL. The oscillation period is
correlated with the transit time of the DL which moves with approximately 2-3 times the ion sound

speed. This propagation velocity is determined by the speed ofthe expanding plasma on the low potential
side, enabling the DL to satisfy the two Bohm criteria [99]. The second, more rapid phase, is due to an

instability of the electron-rich sheath which is formed at the anode after the arrival of the DL. The
electrons in this sheath and in the column are quickly lost, and the resultant positive space charge gives
rise to an increase of the space potential because the ions cannot respond on this fast time scale.

Burger [154] who investigated this phenomenon in connection with thermionic converters as well as
Braithwaite and Allen [155] argue that there exists a second d.c. state which is adapted by thesystem after
a rearrangement of the electrons, occurring on the fast electron time scale during which the ions "are

virtually frozen".
The formation process of the DL itself could be resolved numerically by refs. [152, 156] in a plasma

diode simulation in which the particles are emitted with equal temperatures. It is found that the DL is

preceded by an EH which propagates with
v,5 through the plasma and which provides after its arrival at

the collector the change in phase space topology necessary for the build-up of the DL. The EH, the
original vortex-like structure of which is shifted in phase space and is subsequently cut by the anode,
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leaves behind low energy electrons on the anode side and accelerated electrons which on the cathode side

join continuously with fresh low velocity electrons provided by the source. The former constitute the

trapped electrons, the latter the free streaming (untrapped) electrons in the DL. The ions, on the other
hand, are accelerated by the EH hump potential in such a way that a high energy component moving
towards the cathode survives, forming the free ions in the DL configuration. The trapped low velocity
ions are produced by the source.

In other words, in this situation the EH takes over the role of the IH to 'trigger' a strong DL in a
bounded plasma by a mechanism which is quite different from the IH generation mechanism (see also

[157, 158]). The NPD is then merely a result ofthe ambipolar expansion of the plasma provided by the
source into the tenuous plasma giving rise to a small, time-varying modification of the DL profile. The

expanding electrons diffuse ahead of the ions and produce the NPDacting as a barrier (virtual cathode)
for low energy electrons.

The oscillation frequency of the PROturns out to be independent of the applied voltage [152]. Thus
this phenomenon bears many characteristic features of the constant frequency oscillations noticed by
Enriques et al. [146] and investigated by Allen and co-workers [147]. They were observed always when
the d.c. applied voltage was roughly equal to that required to produce d.c. current saturation. The d.c.

current-voltage characteristics in the presence of oscillations has a negative slope corresponding to a
differential negative resistivity provided that the electron density is high enough. Further references in
which a correlation between DL generation and negative resistance was pointed out, are given by
[65, 159-162]. Knorr [163] finally discussed the negative resistance and the associated hysteresis effects in
DL carrying plasmas with regard to Thom's (cusp) catastrophy theory [164].

7.2. Two related phenomena

Two comparisons should be made before closing this section. Current relaxation oscillations of similar

type have been reported in solid state physics and in electro-negative gas discharges.
The first ones are the well-known Gunn oscillations [165] in semiconductors having two conduction

bands with different energy minima (e.g. n-type GaAs). These oscillations are characterized by a

repetitive propagation of an electric field pulse (DL) seen during the phase of current limitation and
associated negative resistance. This pulse is maintained by electronsin the lower (upper) conduction band
with a high (low) mobility in analogy to the free (trapped) species. If the applied d.c. field exceeds a
threshold value, electrons may tunnel into the higher conduction band where, supported by collisions, the
conduction drift velocity is reduced and therewith the current.
Asecond analogue observation has been made by Sabadil [166]. He got periodic current oscillations in

the positive column of an oxygen discharge similar to the Gunn oscillations. The dissociation of 02 by
electron attachment into 0 and 0 leads to heavy negative ions which play the role of conduction
electrons having the larger effective mass. This dissociation process requires a minimum electron energy
of 4.4 eV which must be delivered by the external field. If the concentration of these negative ions N_
exceeds that of electrons N by a certain amount (N_ IN, 20), a dipole space charge layer propagating
periodically from the cathode to the anode is seen, the so-called T-layer. The frequency of the oscillation
decreases monotonically with increasing distance of the electrodes. T-layers could also be observed in
CO, discharges [167].
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8. Conclusions

After having gone through this article the reader will have got the impression that DLs and the related
phase space structures are far from being understood completely, as there is still a gap between theory
and experiment. This impression is quite correct. The origin of the difficulties in getting a better
understanding lies in the apparent complexity of the problem. It is not only the variety of experimental
conditions and peculiarities which renders the problem difficult. Abasic difficulty is also given by the very
kinetic nature of the phenomena. Distribution functions, even if one neglects magnetic field orgeometry
effects, may be much more complicated in reality than the ones used in the theoretical treatments, e.g.,
through the presence of additional streams, secondary electrons, neutral particles, deviations from
asymptotic Maxwel]ians, etc. The kinetic nature of these objects implies, furthermore, that an access via
macroscopic quantities (current, potential, density, temperature, resistivity, etc.) in both experiment and
theory will not suffice to describe and to understand these sophisticated phenomena. At least the
microscopic distribution functions and the fluctuation spectrum have to be taken into account in a more
complete description.

Fortunately, the nature seems to be less annoying as it could be. In the last section, e.g., we have seen
that several features of the potential relaxation instability can be obtained in rather simple particle
simulations. This raises, of course, hopes that by appropriate modifications or relaxations of idealized
conditions, e.g., the inclusion of effects of the external circuit, more involved features can be understood
at least qualitatively. Another point is, that obviously the plasma does not use all of its degrees of
freedom but restricts its evolution to a subspace of collective motions. Avortex in phase space is already a
very restricted kind of ordered motion, and the plasma, if it is excited sufficiently strong, has the tendency
to approach very quickly to such a state. Thus it seems, coming back to the introduction, that these
structures possess the property of attracting deviating time-dependent solutions very similar to the
approach to self-similar states oftime-dependent solutions in otherareas of nonlinear physics, e.g. in fluid
dynamics. From this it may follow that the true time evolution of a given dynamicalsystem can bedivided
into separate time intervals, each of which being governed byone or more excited nonlinear steady-state
kind of structures, even if the whole system changes appreciably for a long time. The regions connecting
these preferred intervals in which the dynamical evolution is more violent are, of course, out of the scope
of a steady-state treatment and, therefore, globally valid descriptions are hardly to get.

In this sense the phase space structures discussed in this review are a manifestation of this reduced
albeit nonlinear dynamical behaviour. It seems to be beneficial to consider them as basic elements in the
description of more complex driven plasmas far away from thermodynamic equilibrium. It could be an
interesting task for future investigations to find out to what extent such a reduced program will work.

In view of the novel results obtained in recent years by the common efforts of experimentalists and
theoreticians, one may also thinkof other phenomena to be attacked on similar lines. Anexample are the
current disruptions observed in high-current low-pressure discharges, such as tokamaks, z-pinches or
plasma foci.
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