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Abstract. The existence of manifestly nonlinear electrostatic modes in pair
plasmas is shown analytically by means of the quasi-potential method applied
to the Vlasov-Poisson system. These modes owe their existence to the trapping
ofparticles in the potential trough(s) and are typically characterized by a notch in
the particle distribution functions at resonant velocity, forming vortices in phase
space. Both entities, wave structure (D (x) and phase velocity v0, are uniquely
characterized by two parameters, the periodicity parameter k0 and the spectral
parameter B. Whereas Ico = 0 describes double layers, with a phase velocity in
the thermal range, Ic ˆ 0 represents a periodic wave train which can propagate
with two rather distinct phase velocities. One is related to the fast plasma wave,
the other one to the slow acoustic mode.
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1. Introduction

In recent years, pair plasmas consisting of two components with equal mass and opposite
charge have received considerable attention from (astro)physicists. Onereason is that electron-
positron plasmas belonging to this category have been created in laboratories [l]-[3] and are

thought to be generated naturally by pair production in high-energy processes occurring in many
astrophysical environments such as the early universe, neutron stars, active galactic nuclei or

pulsar magnetospheres [4]-[7].
Another reason is that plasmas ofthis type have unique thermodynamic properties. Namely,

mass equality results inahigh momentum transfer during binary collisions such thatboth species
relax on the same timescale to thermodynamic equilibrium and hence acquire more or less the
same temperature. This also implies that both species evolve more or less equally in dynamical
processes. In contrast to an ordinary electron-ion plasma with different masses, there is no regime
in which the dynamical evolution is dominatedby one species. Onewell-known consequence is,
for example, that whistler waves are missing [8].

Afurther argument of special interest is the considerable simplification in the mathematical

description of such plasmas with the possibility of making progress in areas that could not be
clarified so far, for example, the influence of nonlinearity on the evolution of a driven plasma.

A drawback of an electron-positron pair plasma, on the other hand, is that pair annihilation
and radiation cooling by cyclotron emission gives rise to a rather short life-time, generally too
short to allow the experimental investigation ofcollective plasma effects. Recently, however, an-
other pair plasma-a fullerene pair plasma-was ableto be produced without these obstacles [9].

In the present paper, akinetic modelforthe simplest case ofwave-like collective excitations,

namely for electrostatic modes for which self-consistent particle trapping represents a non-

ignorable ingredient, is presented.

2. Basic equations

In the following, reference is made to thepseudo-potential method for solving the corresponding
Vlasov-Poisson systemas introduced in [10] and further developed in a series ofpapers [III-[151.
Denoting positive (negative) ion quantities by a + (-) index, assuming equal temperatures,
T T_ T and equal masses,m m_ m, we getthe following 1D Vlasov-Poisson system
forapair plasma:

[8 +vd ± '(x, t)a]f(x, v, t) = 0, (la)

"(x, t) = f dv f -
f

dv f	 n - n,	 (ib)

where space (x), time (t) and electric potential (D) are normalized in units of the Debye length
inverse plasma frequency w' and Tie of the unperturbed state. The velocity is, therefore,

normalized by the thermal velocity	 Looking for a time-independent travelling wave
solution, we can perform a Galilean transformation, x - v0t - x, v - v0 - v, where v0 is the
phase velocity, to get rid of the time derivative in (la). Making use of the second procedure of
[11] for which 0 1 (x)

	

'T' holds, where 'I' is the amplitude, these two simplified equations
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are then solved by

/ v\
f(v, 4)) = -!Y±--

{0(E)exP [-2	 2(crv'+ v)2]
+0(-E4exp

---)
exP(_flE)j

	

(2)

where the normalization constants are given by N_ := 1 +kW/2 and N := 1 + A. The single
particle energies, which are constants of motion, are given by e : = - - 4), wherewe define
cJ_ := 4) and 4) := 'I' - CI) resp. The separatrix in the phase space of both species is then given
by ET = 0, separating free (e > 0) from trapped ( <0) ions.

At the position where trapped ions are absent (i.e. 4) = 0 for negative and 4) = W for

positive ions), the distributions reduce to a shifted Maxwellian, f. exp [- (v + vo)2j. In (2),
0(x) represents the Heaviside step function, or is the sign of v, is the trapping parameter,
controlling the state of trapped ions, A is a normalization constant and k0 is a parameter related
to the actual wavenumber k of the periodic wave, as will be discussed later. Note further that
both distributions are continuous across the separatrix and that identical trapping conditions are
assumed for both species.

A velocity integration [10]-[15] yields the densities, which in the small amplitude limit,
I' << 1, become

r	 1	 /v0\

	

4
n(4)) = N

[1_
Z	 T

-	 vo)4)2
a		].	

(3)

We fix A in Nby demanding that at 4) = 0, wheretrapped negative ions are absent, the density
of the positive ions is unity, and get A = Z(vo/./)W + b(8, vo)"113/2. The function b($, v0),

representing the trapping effect, is defined by

(

	

2

b(p, vo)	 0) exp
_L_) ,	 (4)

and Zr(X) stands for the real part of the plasma dispersion function, which is defined by
Zr(X) = *Pfds

exp(-s2 where P means the principal value.

Inserting (3) into the rhs of Poisson's equation (ib), we can formally write it as a classical

equation of motion 4)" = -V'(4)) and getby an integration 4)'(x)2/2 + V(4)) = 0, where V(4)),
using V(O) = 0 and the explicit expression for A (resp. N), is given by

k21'4)	 1	 (v0\	 8	 r

	

5
-V(4)) =	 zi (c-) 4)2 -	 b(fl, v0)

[4)5/2
+ (W - 4))5/2 +

	

j3/24) -
2 2 15	 2		 1 -

(5)

From the pseudo-potential V(4)) given by (5), we learn that two conditions must be satisfied to

geta solution:

(i)V(.I') =0; (ii) V(4)) <0, for O <4) <W.				(6)

The first condition becomes

_.z(y)
=-+BD, (7)
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Figure 1. The function -Z(x) and two solutions of the NDR, given by (7) in
the text, for-O.285 < D <0.

which represents the nonlinear dispersion relation (NDR) because it is the determining equation
for the phase velocity v0 depending on fi and 'I'. In (7), B is given by

B =

By use of (7), the pseudo-potential (5) simplifies to

(8)

2
_V()=(W_)_B{	 -cI(II	 I) +	 [(qf

-	 )5/2 - (qj5/2 -	 5/2)]}	 (9)

The NDR (7) and the pseudo-potential V() (9) uniquely characterize the BGK-like
(Bernstein-Greene-Kruskal [161) wave structure. They agree with (24) and (25) of [11] if the
limit of equal temperatures, masses and trapping parameters is taken there and a drift between
the negative and positive species is neglected.

From (9) we immediately see that V() is symmetric around c1' = W/2, which implies
that we have either to deal with periodic wave solutions CD (x) (if -V'(O) = V'(4!) > 0) or with
double layer solutions (if-V'(O) = V'('I') = 0, V"(0) = V"(4f) < 0). A double layer solution
is a potential which connects monotonically two asymptotic states CD = 0 and CD = 'I'.

3. Harmonic waves

To analyse the solution further, we first select a trapping condition for which B in (8)
vanishes. Thepseudo-potential (9) then becomes V(CD) = CD ('1' - CD), which results in CD (x) =

[1 +cos(kx) 1. This is the harmonic wave limit in which k = k0, which means k0 directly
represents the wave number. The phase velocity v0 =: w/k of this wave follows from (7)
with B= 0 and k0 = k. Figure 1 illustrates the possible solutions. The value D, given by
-k2/2, is negative and one has two solutions, x. w5/Jk and Xf wj//k, provided that
-0.285 -k/2 OorO k O.755.Thecorresponding NDRwversus kisshown infigure 2.
We see that there is a fast and a slow mode which join at k = 0.755, w = 1.133 which is termed
the transition point. For small kwe can use the Taylor expansions of -Z(x) at x0 =0.924 and
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Figure 2. The NDR fora harmonic wave structure with w = kv0 (solid line). The
long-wavelength limit, k << 1, is drawn by dashed lines showing the fast plasma
wave and the slow acoustic mode.

at infinity [l0]-[15] to get

= 1 + k2;			 = 0.924k
(i

+	4		2)
' (10)

The fast mode in the long-wavelength limit is, hence, nothing else but an ordinary plasma
wave, where the denominator reflects the fact that both species contribute to the oscillatory
motion in the same manner doubling the density in the plasma frequency expression.

The slow mode for small k on the other hand has nothing to do with an ordinary ion acoustic
wave as sometimes suggested. One can easily see that ion acoustic waves, such as whistler
waves, are absent in a plasma pair. The reason is that the linear Landau dispersion relation
k2 - Z/'...ñk) = 0 has weakly damped solutions only for large wf/k corresponding to the
fast plasma wave.

This slow mode is a real nonlinear mode and is termed the slow acoustic mode [13, 17].
In an ordinary electron-ion plasma, the corresponding slow ion (electron) acoustic mode is the
mode on which ion (electron) holes rest propagating near ion (electron) thermal velocity [12, 13].
To distinguish them from the ordinary ion acoustic wave (resp. fast Gould-Trivelpiece electron
acoustic mode in a cylindrical plasma), the term 'slow' was added, a nomenclature we adopt also
for the present case.

Although the corresponding NDR, (7) with B = 0, looks rather 'linear', this mode only
exists as a true solution ofthe full nonlinear Vlasov equation, keeping in mind that B = 0 has to
be satisfied (see below). Formally, it looks like a van Kampen mode (with a vanishing 8-function
contribution to the perturbed distribution function [11]) but the latter satisfies the truncated
linearized Vlasov equation only. We prefer a solution of the full nonlinear Vlasov equation,
and can accept the slow acoustic mode only, for which 3f is of the same order as af0,
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where fo (fi) is the unperturbed (perturbed) distribution function, and hence not negligible.
A linearization procedure, hence, would fail to describe the slow acoustic mode.

Whereas for the fast, long-wavelength plasma wave, the condition B= 0 can be satisfied by
the exponential factor in (4), andhence the wave behaves approximately like a fluid-like linear
wave, for the slow acoustic, long-wavelength mode with v0 1.307 0.924/, the factor
(1 - - v) has to vanish in (4) which implies fi = -0.708. Only a notch in the trapped ion
distribution provides the proper existence condition for the slow acoustic mode. In this region,
I8vfi I I8v fo I is definitely violated andhence this mode exists only as a nonlinear mode.

4. Cnoidal waves

Next we allow for nonzero values of B, B 0, to get generalized periodic wave solutions,
described by Jacobian elliptic functions, called Cnoidal or Snoidal waves [10, 12, 151. This
follows from the quadrature of the integrated Poisson's equation with the quasi-potential V(c1)
given by (7) for which the non-harmonic second term now contributes. This generally gives rise
to a specific, slowly decaying spectral decomposition of <1 (x) for I BI << 1 but all the more for
finite B, -0.285 < B 0(1).We will call B, which incorporates the effects of trapping, wave
amplitudeandphase speed the spectral parameter, because it controls the spectral content ofthe
wave structure.

TheNDRforagiven B 0 follows from (7) yielding vo = = -k0, B), where £(k0, B)
reflects the relationship between the periodicity parameter k0 and the actual wavenumber k,
which follows from the expression we obtained for c1 (x) and which depends on B. If B = 0,
we have £(k0, 0) = 1 and k0 = k, as used already for the harmonic wave. For Cnoidal waves,
£ (k0, B) generally differs from unity, but canbe found [10, 12, 15]. Hence, by plotting the quasi-
NDR wo(ko) := k0v0 as a function of k0, as done in figure 3, we can infer on the correct NDR
via a)(k) = kv0 = Ikok0(kB)' where ko(k, B) is the inverse of k(k0, B) ko/t(ko, B) for
B fixed. Assuming k(k0, B) is monotonic in k0 (for which good reasons exist), the quasi-NDR
wo(ko) then informs us qualitatively about the correct behaviour of the phase velocity v0 in terms
of k.

The quasi-NDR, as exhibited in figure 3, shows that a change of B has a rather strong
influence on the dispersion properties, especially for small k0 and B around zero. If k0 -->. 0 and
-B > 0, equation (7) tells us that the fast mode has the solution v0 = wo(ko)/ k0 (-B)112>> 1,
which means that w0(ko) (-B)-'/2k0 tends to zero as Jco -->. 0. On the other hand, if B> 0,
a fast mode solution only exists for k0> Whereas a continuous change of B gives rise
to continuous dependence of the slow acoustic branch on B, the fast branch solution behaves
in a discontinuous way: becoming acoustic-like near k0 = 0, for0 < -B; and non-existent for
k0 <v', B> 0. Theplasma wave solution of figure 2, for which B 0, is approached rather
differently from both sides, B 0, the difference being the stronger the smaller k0 is. Hence,
any deviation from B = 0 yields a rather drastic change in the dispersion characteristics.

Theturning point, where both solutions join, is again given by -k/2 +B= -0.285, which
is the minimum of the lhs of (7) with the solution vo/V' 1.5 or	 = 1.5k0, shown by
the dotted line in figure 3. If B tends to -0.285, both solutions of (7) are concentrated around

= 1.5 giving a shrinking area of existence, as seen e.g. for B = -0.25.
The (quasi-)dispersion characteristics of the trapped particle modes are, hence, rather

complex and involved andby no means predictable by any linear wave theory.
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Figure 3. The quasi-NDR, co0 := k0v0 as a function of k0, for several values of
the spectral parameter B with -0.285 <B. The fast and the slow mode join at

= 1.5k0 (dotted line), For B < 0 both modes become acoustic-like in the
small k0 limit, whereas for B > 0 no fast mode exists for k0 <

For a given solution v0 of the NDR and a given wave amplitude I1, the trapping condition
(8), with b(fl, v0) given by (4), becomes

3	 (v\		
(11)

showing that the depression of the distribution function in the trapped region increases with B.

5. Double layers and general existence diagram

Finally, let us discuss the case of avanishing k0, k0 = 0. In this case, the pseudo-potential V()
simplifies with := 4/41 to

- V() = BIJ2
[(1

- 5/2) - (1 - )5/2 -	 (1 -
)].

	

(12)5

	

2

From this expression we can see that V(0) = V'(O) = 0 and V"(O) = -B/2, which holds
also for the argument 4 = I. We,hence, arrive at adouble layer (DL) solution, provided that the
second condition (ii) in (6) is satisfied, becoming B > 0.With B > 0 (and k0 = 0), theNDR(7)
together with figure 1 andD= B> 0 tell us that aDL solution only exists on the slow acoustic
branch with 0 vo/,ñ <0.924 corresponding to 1 B>0. In view of (11) this implies that a

standing DL (vo = 0) requires anotch (fi <0)in the trappedregion ofthe distribution function(s)

if B>

	

which becomes deeper as B increases.
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Figure 4. The existence diagram of nonlinear wave solutions in the (B, k/2)-
parameter space. Waves with constant phase velocities lie on a straight line
D= const. No solution exists for B 0 and small k/2.

From the density expressions (3), k0 =0 and use of the NDR, we learn that nZF()

1 + B[l -

	

where 1. have been defined earlier. Both are hump-like approaching unity
as cJ - 0 and 1 -* 'I', the positive jump being deformed such that n_ n if 4 11/2.

There is no density jump across the DL in contrast to what is known from fluid-like
dissipative shock structures.

Finally, in figure 4 we sketch the region of existence of solutions in the (k/2, B)-
parameter space, being essentially restricted to the strip -0.285 D 1. A line D = const
corresponds to a fixed phase velocity. Whereas in the strip 1 e D> 0, only the slow branch
exists, corresponding to 0 ( vo < 1.307; there are two solutions at every point of the strip
0> D -0.285, corresponding to a slow mode with 1.307 < v0. 2.12 and a fast mode with
2.12 <oo. Double layer solutions are found for k0 = 0 and 0 < B 1, and harmonic
waves for B = 0 and 0 <k/2 0.285. No solution exists for B ( 0 and sufficiently small k0.

How to identify a mode? From the measured dispersion characteristics one can derive
the background density and the plasma frequency (from the plasma wave branch) and the
temperature (from the slow acoustic branch) andhence the normalized values of w and k. Then
one approximates cv by coo and k by k0 and gets the value of B from the quasi-NDR, namely
figure 3. Using (11) and the value of 141, which follows from the strength ofthe associated density
fluctuations, one obtains the value of and hence the information about the status of trapped
particles. Finally, to test and to improve the approximation, one may calculate k(ko, B) and
compare it with k0 anduse this k instead of k0 as anext iteration.

6. Concluding remarks

A pair plasma, due to its reduced parameter dependence and associated symmetry, provides an
optimum laboratory under which further progress in the understanding of the complexity of
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collective phenomena including anomalous transport and turbulence in driven collisionless or
weakly collisional plasmas [151 can be made. In this respect, of high theoretical interest is the
question of whether solitary hole or hump solutions with negative energy can exist [18, 19],
which may nonlinearly destabilize a current-carrying plasma even below the threshold of linear
two-stream instability. An answer can be found e.g. by releasing the constraint of equal trapping,
on which this paper relies, and by looking at other types of waves.
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