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A unified description of weak hole equilibria in collisionless plasmas is given. Two approaches,
relying on the potential method rather than on the Bernstein, Greene, Kruskal methodand associated
with electron and ion holes, respectively, are shown to be equivalent. A traveling wave solution is
thereby uniquely characterized by the nonlinear dispersion relation and the "classical" potential
V(ˆ'), which determine the phase velocity and the spectral decomposition of the wave structure,
respectively. A new energy expression for a hole carrying plasma is found. It is dominated by a
trapped particle contribution occurring one order earlier in the expansion scheme than the leading
term in conventional schemes based on a truncation of Vlasov's equation. Linear wave theory-
reconsidered by taking the infinitesimal amplitude limit-is found to be deficient, as well. Neither
Landau nor van Kampen modes and their general superpositions can adequately describe these
trapped particle modes due to an incorrect treatment of resonant particles for phase velocities in the
thermal range. It is therefore concluded that wave theories in their present form, dictated by
linearity, are not yet properly shaped to describe the dynamics of ideal plasmas (and fluids)
correctly.© 2000 American Institute of Physics. [S1070-664X(00)00412-2]

I. INTRODUCTION

Since the beginning of plasma research and research on
gas discharges, the study of electrostatic phenomena has at-
tracted the attention of physicists. Whereas the focus in the
early stage was on macroscopic fluid like phenomena in
bounded and unbounded plasmas,'-3 research on dilute and
hot plasmas concentrated later on microscopic effects, since
details of observations such as Landau damping could no
longer be understood macroscopically. Soon after the foun-
dation of a plasma kinetic theory was laid down,46 a con-
troversy between Landau and Vlasov arose as to how to de-
scribe linear waves properly, a circumstance which
overshadowed to some extent the development of kinetic
theory.7 The excitement has, however, gone too far, since, as
we know nowadays, both standpoints can claim validity pro-
vided that the appropriate limits are taken (or fail together,
see the following). Mathematically, linear wave theory of
Vlasov-Poisson plasmas was completed by van Kampen8
and developed further by Case,9 showing essentially that be-
sides a discrete spectrum of normal modes belonging to a
time asymptotic dispersion relation a continuum of modes
and eigenvalues exists. The origin of this peculiar behavior
was easily identified as a wave-particle resonance, and fur-
ther research focused on a more precise description of this
phenomenon by treating resonant particles nonlinearly, re-
sulting in two further highlights in plasma physics, the pa-
pers of Bohm and Gross'° and of Bernstein, Greene and
Kruskal (BGK).'' In the latter, the first mathematically rig-
orous proof of how to construct electrostatic structures in
collisionless plasmas was given. Temporal effects associated
with trapping and sloshing of particles in the trough of a
coherent electrostatic structure were considered in Refs. 12-
14, in order to physically understand effects such as linear

and nonlinear Landau damping. Hints that trapping of par-
ticles can change the ordering, giving rise to a half power
rather than an integer power expansion of the distribution
function and of the density in terms of a weak electric po-
tential , appeared in Refs. 15-17.

The existence of steady-state phase space holes-the
topic of this paper-first became evident in numerical
simulations, 18,19 and examples of analytical descriptions
based on primitive distributions such as waterbags appeared
in Refs. 16,20,21.

A different method of constructing equilibrium solutions
which allows the incorporation of more physical distribu-
tions being as general as the BGK method,'' was presented
in Ref. 22 and developed further in Refs. 23 and 24. Based
on this second, earlier alternative method, a variety of hole
and double layer solutions could be found, as reviewed in
Ref. 25.

Furthermore, thanks to improved diagnostics, experi-
ments in the last two decades revealed the omnipresen of
holes in collisionless laboratory

25,26 and space plasthas.27
Other devices in which kinetic vortex structures can be found
are circular particle accelerators and storage rings.28 It is
hence of paramount importance to know more about holes
and the other types of phase space structures.

The goal of the present investigation is to deepen the
understanding of hole structures from an analytical point of
view and to draw some conclusions concerning the present
status of wave theory. We shall show how structures of dif-
ferent polarity and phase velocities behave and how their
characteristic features can emerge from a universal descrip-
tion. We shall deal with the energy of a hole carrying plasma
and take the infinitesimal amplitude limit, to allow a coin-
parison with the linearized wave theory.
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We shall use the second method of construction,22 here-
after called the potential method, which means that we de-
scribe the solutions of the Vlasov equations completely in
terms of constants of motion and look for the self-consistent
potential by solving Poisson's equation in the weak ampli-
tude regime.

In Sec. II the equilibrium distribution function is pre-
sented. A procedure suited for ion holes is given in Sec. III
and a second one-more useful for electron holes and ion
acoustic like perturbations-is developed in Sec. IV. A uni-
fied description of both procedures and their equivalence is
presented in Sec. V. Section VI deals with the energy of a
hole-plasma system, and the infinitesimal wave limit is con-
sidered in Sec. VII. The paper terminates with a summary
and conclusions in Sec. VIII.

II. THE EQUILIBRIUM DISTRIBUTION FUNCTIONS

The governing system of equations to he explored is the
Vlasov-Poisson system of a two component, current-
carrying plasma consisting of electrons and single charged
ions. It reads in normalized form

[9+Vdt+tb'9jfe=0,	 (1)

ud- 94*'a]f1=0,	 (2)

4i'(x)n(çb)-n(cb)--94V(q5),	 (3)

where space x, time t and electric potential are normalized
in units of the electron Debye length XD,, the inverse plasma
frequency we', and Tejie, where Tej is the temperature (in
energy units) of the electrons in the unperturbed state. The
electron velocity u in (1) is normalized by 0,h,= \JTef/tfl
and the ion velocity u in (2) by vth JTj/rn1. The two
parameters characterizing the systems are defined by 0

:=Te1IT11 and jz:=(mfTf/mTf)h'2(O/ö)h'2, which is a
quantity typically much larger than unity and where S
rnIm is the mass ratio.
The unperturbed distributions are assumed to be shifted

Maxwellians formulated in a frame moving with V in the
electron phase space and with u0 in the ion phase space.
They are given by

fe=,exp{_(v_Ev)2J,

	

(4a)

1

	

1
f=

12-,		2
exp -

(u+uo)2].	
(4b)

It holds u0 .V, and V0 is defined by V0-V0V0, where
U describes a given constant drift between electrons and
ions existing already in the unperturbed state. In the per-
turbed state the corresponding equilibrium distributions as
solutions of the Vlasov equation (in wave frame) are found
to be 22,29

Fl

	

1
l+K I CX	 (ae_D)2I, ee>0

12;~
exp(- /2)exp{ -,aee], E0,

(5a)
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l+A
exp[__(ai\+uo)2J,

>Ø
f1(x,u)-==

	

2

exp( - u0/2)exp[ - a e,], c-_0,
(5b)

where K and A are normalization constants which disappear
in the limit of a vanishing amplitude of the perturbation &
-+0. Because they are different for ion, respectively, electron
holes, we introduce later on subscript quantities K, ,A for
ion and Ke Ae for electron holes. The other quantities like
a,f3,E,o-,s=e,i are explained further in the following.

III. FIRST PROCEDURE: ION HOLE EQUILIBRIA

Concentrating first on ion hole equilibria, the energy ex-
pressions in (5a) and (Sb) are given by the definitions

v2

	

U2
E:=(q5+/i),	 e:=---+0

	

(6)

representing invariants of the electron, respectively, ion mo-
tion. Equations (5a) and (5b) satisfy (1) and (2), respectively,
and reduce to (4a) and (4b) (modified now by different nor-
malization constants) in the limit 4.-p - i, respectively, q
-*0, which are the spatial points of no trapped electrons and
ions, respectively. E,,=0 describe the separatrices between
trapped (EEO) and untrapped or free (fej>O) particles.
The distribution (state) of trapped particles is controlled by
the trapping parameters , respectively, a, and cr:=sgnv,
c11:sgnu are constants of motion of free particles and turn
out to be necessary for the description of propagating struc-
tures. The distributions are continuous at the separatrix and
are characterized by a hole in the trapped region EeIEO in
cases where ,8, respectively, a, are negative. The normaliza-
tion constant A, will be specified later whereas K is given by
K- - k_ i/2, where k0... is related to the wave number k of
the ion hole structure. Velocity integration of (5a) and (5b)
yields in the small amplitude limit çl'4 1 :22_24

k20-
0~ ~

1 V
e(7	 l-Z, -

	

(q5+çli)

4-		b(0)(+)312+,	 (7a)





1

	

u0
n()(l+A) l- Z,

	

(04')






- b(a,u0)(-00)112+
...],

	

(7b)

where Z,(x) is the real part of the plasma dispersion function
given by Zr(X) -2w(x), where w(x) is Dawson's inte-
gral, w(x) :=exp(-x2)fdtexp(t2) [see also later (73)]. The
function b(a,u3) is defined by

b(a,uo);=-=(l -a-u)exp(-u12)	 (8)
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and an analogous expression holds for b(/3,vD).2225 The pa-
rameter A in (5) and (7) is found in the solitary wave limit

(k0.-+0) by equating the densities at q5=O, i.e., at infinity,
corresponding to " = 0. We obtain

2	 3A1=-

With this A. we get for a finite wavelength perturbation at
ç5=O: fle(0)0i(0)

-
(k_/2) c/i which corresponds to a

negative curvature at potential maximum, as it should. Mul-
tiplication of (3) with c/' and integration we obtain the "en-
ergy law" çb'(x)212+ V(çb)=0 and a further integration

gives - V(ˆ)=J dt[fle(c/)flj()] which becomes

1 IUJ)\- V()=(l +K){_ Z7)

x[(+)2-2]- b(/30)15

X[(+)52_5/2]+}


	

I	 i 1U\
-(1+Ai)1+Z-=)0cb2

8

	

1+
.j_b(a.uo) 0112(- q5)512+	 ,	 (10)

where terms of 0(c/r3) have already been neglected. Two
further necessary conditions select the time-independent so-
lutions of the Vlasov-Poisson system (l)-(3) in a current-
carrying plasma, namely

V(-ç/i)=0,		(ha)

V(O)<O

in	

-ç/i<4<O.		(lIb)

(ha) yields the nonlinear dispersion relation (NDR), and
(1 ib) restricts the amount of particles trapped in the potential
well. Exploiting (ha) we find

k- ZD/\I)- Z(u0/\)

161	 3

	

1
=		,uo)03/2+ b(j6,vD)

j
02.		(12)T5

	

2

It determines u0 (respectively, v0) in terms of 1'D

k0_ ,0, c/', a, and /3. Of interest here are wave solutions with
phase velocities in the ion thermal range, i.e., u0 0(1).
Then v0= u0<O(i'), which is a small quantity.
Hence, if the electron drift 1D does not exceed the ion sound

velocity appreciably, vD0('[8), then r)0 is a small quan-
tity, too, and - /Z(v0IV5J) in (12) can be replaced by + 1.
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Assuming furthermore that the electrons behave isothermally
(i.e., /3= 1), then the last term in (12) is negligible and (12)
reduces to

z(

UQ) __(1 +k
+ b(a,u0)D.

16--

	

-
72	 6

	

15
(13)

The NDR (13) determines the possible phase velocities
u0 in terms of c/',k0_,a and 0. Note that in the solitary wave
limit (k0_-.0) (13) coincides with the NDR of Ref. 30 Eq.
(6). In this paper, presumably the first proper ion hole paper,
c/ has to be replaced by (0c/') because of the different nor-
malization of 'I'. (13) also corresponds to the NDR of Ref.
31, Eq. (14) or Ref. 32, Eq. (19). Equation (13) in the soli-
tary wave limit k0..-*0 is also identical with the NDR (3) of
Ref. 33.

Equation (13) can be utilized to simplify the potential
V(O) [the more general form of V(O) being based on (12)
rather than on (13) will be presented later in Sec. 5, formula
(42)]. We obtain	

8
_V(0)=_ ----(c/i+ ql)+	15

X(-	 )

8

x[4S(- )(h+ 0) V,1/2+o2

(14)
where in the second step the steepening (or anharmonicity)
parameter S_ has been introduced.22 It is defined by

64b(a,u3 03/20112
S_	 2	 (15)

15k_

and lies in the interval2234

-8--S- -_00.	 (16)

It generally describes cnoidal waves given by Jacobian
elliptic functions which become harmonic in the limit S_
-*0. Of special interest are the other two limits S-jind
S_- -8 because in this case the structure becomes soli-
tary one, as illustrated in Fig. 1. Figure 1(a) shows the situ-
ation for		and displays an ordinary solitary ion hole
structure for which holds k0_=0. As seen from (lib) and
(14) b(a,u0) must be positive and the parameter D intro-
duced in (13) becomes D_= - 1/0+ b(cr,uo)../75. If !DI
is small, we can use an expansion of Z in the vicinity of
zero [see later (26b)]:

-Z(u0I./')I-u0/1.307

	

(17)

to get the velocity u,.= 1.307[l -D_]. A positive D_ cor-
responds to a subsonic velocity, subsonic in comparison with
the so-called slow ion acoustic velocity

12.2' defined by
= 1.307. A subsonic u0 implies in view of (8) and of
b(a,u0)>0 that the trapping parameter a must be negative
(a<1 -u<0), corresponding to a notch in the range of
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a) S_=






x)








b) S=-8

JNX-5,		V

0)
\~M

FIG. I. The two solitary ion hole wave limits of the electric potential (x)
and the potential V( 4) for S_ = (a) and S_=-8 (b).

trapped (resonant) ions (justifying the name ion hole). For
this solitary wave the separatrix in ion phase space given by
e=u2/2+ Ocb=O is of 0 type.

Figure 1(b), on the other hand, shows the second solitary
2_q/-1/2.ionic structure for which holds 8b0312= - 15k0In

this case b(cr,u0) is negative and the parameter D_ in (13)
becomes D-=-(1+3k _)I6, which is negative too. If
again ID-1 is small, we get u0 1.307[1 + D_], which is
supersonic now. The trapping parameter a in this case is less
negative or even positive (a> 1 -ui) resulting in a less pro-
nounced notch or even in a hump in the trapped ion range.
Note that the separatrix in ion phase space for this second
kind of solitary waves is of X type. It is this structure (more
precisely, one half of it) which may typically provide the
front in weak electrostatic shocks excited in experiments.

35

IV. SECOND PROCEDURE: ELECTRON HOLE
EQUILIBRIA AND ION ACOUSTIC WAVES

To describe electron holes36 and nonlinear ion acoustic
waves22 in a convenient manner it is appropriate to change in
a sense the polarity of c. This is accomplished by the trans-
formation

(18)
so that the single particle energies in (5) now become

EeV2/23,

	

(19a)

E,:=-+ O(çb-çli)

	

(19b)

and it holds
Again, e,,=0 represent the phase space trajectories

separating trapped and passing particles. Trapped electrons
are absent at (0=0 and trapped ions at 0=0. Integrating
(5a) and (5b) over the velocity we obtain the densities

e()=(l +Ke)

H. Schamel

n,(4)(1 +A,){1 -Z(uo/./)O(i/i- t)

(20b)

This time, as will be justified in the following, we choose for
K the opposite sign and a different proportionality constant
k0+: Kek+cliI2. The parameter Ae in (5b) and (20b) is
then found in the solitary wave limit (k0-*0) by equating
the densities at qO, which is the potential minimum now,
corresponding to <k"=0. We obtain

Ae= + Z(uo/'J)Oi/i+ b(a,u0)(Oçb)3.

	

(21)
With this A we get for a finite wavelength perturbation
k0ˆ0 at =0 for the density difference fle(0)nj(0)
= + (k/2) ti, which corresponds to a positive curvature at
potential minimum, as it should be.

The classical potential V( ) is then found by integration
of (3) and becomes

-V()=(1 +Ke){_ZD/\)2

15b v -J
x{_ Z(u0/) O[ fr- )2]

- b(a,u0) 0112[01/2 ( ,,1i_ )5/2]" .

(22)

Again, the two conditions

V( tb) =01		 (23a)

V(O)<O

in

	0<ç5<		(23b)

guarantee the existence of a solution. The NDR (23a) with
A given by (21) becomes

k- Z(EDI\I)- Z(u0/\/)

=
	16

[b(0)+	 b(auo)O3]
,	 (24)	15

	

2
which determines the phase velocity u0 (respectively, t'0) in
terms of UD ,ko+ , 0, çl',a, and /3. In comparison with (12) the
right-hand side has changed and essentially differs due to a
change in the species being trapped in the potential.

Making use of K=(k/2)çb and of (21) and (24) the
potential V() in (22) simplifies to




	

-V()=	 _)+b(p,1,)2[_	 ]
k5,		 8

+b(a,uo)03/2±1(3_5)	15

(25)	

Again, the potential V determines uniquely the shape or	
spectral decomposition of the wave structure. Two limits are

(20a)	 of special interest in this case: electron holes moving at the
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electron thermal speed and nonisothermal ion acoustic soli-
tary waves moving at the ion sound speed. We start with the
second, the slower structure.

A. Nonisothermal, ion acoustic waves

This class of solutions refers to waves which propagate
approximately with ordinary ion sound speed, i.e., u1-
v0- \(. As typical for ion acoustic waves we assume 0

1, so that u0 1. We also assume a drift velocity not larger
than ion acoustic speed, VD-V-(5, in which case IUDIIUD
-voIIl.

To exploit the formulas further, we make use of the fol-
lowing expansions:

Z(x)

1	 1 -2x2/3+''),	 111	 (26a)

=
-	 (x_x0)+(x_x0)2,	 IX -x0<l	 (26b)




	_[1+3I(2x2)+		],	 IxI1.	 (26c)
2x 2

In (26b) the quantity x0=0.924 marks the zero point of
- 4Z(x) [see also Fig. 3(a), not to mix up with x°].

It follows

Z'(_D/~2)= I- V 2					 (27a)r V

		

D,

	3			 J	 3,5
Z'(,0/12)= -			 -

.,	 2		 u 2	 0v2				0
-							

(27b)

With this and realizing that b(a,u0)-'exp(-uJ2) is negli-
gible for large values of u0, we get for the NDR (24):

si	 38\ 16
k+l----3i		(28)V\

	

0v/

Equation (28) can be solved by the ansatz v= 6(1 + e) with
e4 1 provided that k. and the right-hand side of (28) are
small quantities. We get in this limit	

16(l-p) 1
v=8[

I -k+ +(VD )2
15 j.

(29)

Since we have VOVO/Vthe, the dimensional phase velocity
VOthe'I	 \/Tef/mi=C.c is of ordinary ion acoustic type.
The potential V() in (25) simplifies in this limit to

k	8(l-/3
-V()=+-)+

	15

-
8 (1-/3

v1)]-iv
(30)

where
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s :=64(1_		(31)
15 ,

Equations (29) and (30) (in the limit u0-'O) agree with the
corresponding expressions of Ref. 22. Again, S lies in the
interval

-8_'Sc

	

(32)

and describes cnoidal electrostatic perturbations but moving
with ion sound speed now. In the limit S- (k0+-0) we
get nonisothermal ion acoustic solitons22'23 in which case the
electron trapping parameter /3 has to satisfy

/3<1.

In particular, if /3 is negative, this results in a depression
(notch) of the electron distribution function in the trapped
electron range which is in the bulk of the distribution. The
electric potential (x) is bell-shaped. The second solitary
wave, on the other hand, is obtained in the limit S -* -8 in
which case (x) has the shape of a trough approaching çt= cu at infinity. We mention that in contrast to the solitary
potential hump, where the width z scales like - 0- 114 (see
Refs. 22 and 23), the width of the solitary potential dip is
amplitude independent. Its shape is given by formula (3.33)
in Ref. 34. The ordinary ion acoustic soliton is obtained in
the isothermal limit, 3_* I, in which case the next order con-
tributions, which are of 0(1/I) in (28) or (29) and of Q(1/,3)
in (30), have to be taken into account. 22,23

B. Electron holes

The class of electron hole solutions is obtained by de-
manding phase velocities in the electron thermal range: v0

=0(1),u0".fi'1. In this case the NDR (24) and the
potential V (25) simplify to

k(33)

k,2 ,	 8

	

-- V(çt -i-0( 41- )+ -1-b(/3,vo)cb2( .f- \[),
(34)

in agreement with Eqs. (3.13) and (3.14) of Ref. 34 which
also contain the next order terms. .

j)7
In the case where the RHS of (33) and are small and

where a drift is absent, so that VD in (33) can be replaced
by v0 we obtain by utilizing (26b)

v0= 1.307[ 1+k',- 4b(3, 1.307) f]

	

(35)

an expression found earlier in Ref. 36, Eq. (26), which ap-
pears to be the first electron hole paper based on realistic
Maxwellian-type distributions.

A typical electron hole velocity lies in the electron ther-
mal range. The corresponding shape is again determined by
the anharmonicity parameter S+ in (31) which satisfies (32).
Again the two solitary wave limits represent a potential
hump for S-cc and a potential dip for S-* -8. Note that
a potential hump of lower phase velocities is referred in this
paper either to a nonisotherma] ion acoustic solitary wave,
when its phase velocity is ion acoustic like [u0 'J, Eq.
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(29)], or to a slow ion acoustic solitary wave, when its phase

velocity is in the ion thermal range and below VO

For the latter to be true it must hold S_ =-8, according to

Fig. 1(b). To get a more general solution the isothermal limit

J3_* 1, when one goes from (12) to (13), has to be lifted.

V. A UNIFIED DESCRIPTION OF BOTH PROCEDURES
AND THEIR EQUIVALENCE

In the previous sections we have derived general expres-
sions for the phase velocity and the shape of hole or hump
equilibria. We have distinguished two different procedures
depending on whether ion trapping represents a major con-
tribution or not. For phase velocities in the ion thermal range
(and below) we arrived at the general NDR (12) and at the

(reduced) potential V(4) (14) valid for bl8,i'D)'0. We as-
sumed - çtiq0, so that trapped ions are absent only at
=0, which is the potential maximum.
On the other hand, for hole equilibria propagating with

ion sound speed and faster ion trapping becomes less impor-
tant being dominated by electron trapping. In this case a shift
in the electric potential (18) appeared to be appropriate, so
that trapped electrons are absent only at =0, which is the

potential minimum now. The general NDR is within this
second procedure given by (24) and the general potential V

by (25).
In this section we first show that both general forms of

the NDR and of V() can be unified in single expressions,
and in a second step we prove their equivalence.

A. Unified description

For this purpose, we define

t.,. :=b(/3,)± O3'b(au0),	 (36)

(37)

where s = - 1 for ion hole solutions, as defined in Sec. III,
and s = + 1 for electron hole and ion acoustic solutions, as
defined in Sec. IV.

We postulate, that the general NDR is given by

k- ZT0I\I)- Z(u0/\)

(38)

and the general potential V( çb) by

- V(çb)= sç6(fr-sc)

+A+(s)cb2(_

	

)+A(s){c2




	_(qJ_s)5/2_s\/(5 i-3s)/2}	 (39)

and show its correctness by considering the two cases s
= ± 1 separately.

Ifs -1, we get

8	 0312b(cr,u0)	 +
A_(-1)=----		 -		(40)	-	 15 b(13,UD)	 -

so that the NDR (38) becomes

H. Schamel

k-

16

[
Jb(a,uo)O312+ b(J3,D)	 (41)15		 2

which is identical to (12). For V(q5), we get from (39) in this
limit	

8
_V(0)=_ --4(+ q)+	15

8- /+ 15 b( D){-(+ )512

+I(5+34/2}.			 (42)

It agrees in the limit b(f3,JD)-0 with (14), as expected.
Ifs-+I, we get

8 Ib(/3,U0)	 +
A.,(+ 1)=	15 0312b(cr,u0)	 -	 (43)

so that the NDR (38) becomes

k- Z/)- Z(uo/Th
161

	

3=	
	[b()+

O3b(auo)]		,	 (44)15

which is identical to (24). For V(çb), we get from (39) using
(43)

-V()=-)+	 b(D)2([_)

+ 0312b( a,uo){5- (15

-J(5i-3)/2},			 (45)

which is identical to (25).
We conclude, that (41), (42), and (44), (45) represent the

most general expressions of the NDR and of V( (k) describ-

ing phase space vortices or hole-type equilibria6f the
Vlasov-Poisson system (1)-(3) in current-carrying plasmas
and being unified in the expressions (38), (39).

B. Equivalence of both procedures

To show the equivalence of both procedures, we lift the

(ion hole) potential q of See. III by i, i.e., we define

(46)

rewrite the general expressions in terms of , for which

holds 0 iE 'I' and show that they agree with the general
expressions of Sec. IV.

In terms of the general potential V of Sec. III, given
by (42), becomes
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-V(4-1------L 2

+		b(e)2(\I- f+	 -b(i)O3
15

	

	15

(47)

where we introduced the abbreviations

b(e)b(P,D); b(i)b(a,u0).

If we now switch from k0_ to k0 by the following relation:




	kk+f[b(e)- 03'2b(i)],	 (48)

we easily get from (47)





-V()=			 )+	 b(e)2(_	 )

8
+

X(5,!i-3)I2},					 (49)

which is identical with (45) [or (25)].
Note that in the limit of b(e)-0 and S_--8, when

the structure represents a potential hump and moves with
approximately ion thermal velocity [Fig. 1(b)], (48) becomes
k0 0. The shape of the structure is hence given by the
third expression on the RHS of (49).

The general potential hump solution is, therefore, best
described by (49) [or (45)] in the limit k',-O for 0--,k

i, whereas the general potential dip solution is most easily
described by (42) in the limit k0_-0 for -rç0 irre-
spective of the phase velocity.

This was the main reason why we introduced two pro-
cedures in deriving the NDR and the potential V() al-
though one procedure alone would have done the job also.

The equivalence is complete if also the NDRs (41) and
(44) correspond to each other. But this is easily seen by
insertion of (48) into (41) which then becomes (44).

VI. ENERGY OF HOLE PLASMA SYSTEM

Next, we focus attention on the question which amount
of energy is associated with a hole structure. We assume a
periodic (cnoidal) wave of period 2L and calculate the total
energy Wper wavelength by making use of the energy law of
the Vlasov-Poisson plasma (1)-(3):

v2	 1	 02	 1

J
dx

~ Jdufe+fdufj+1)2,				
	(50)

which is the true total energy normalized by NTej/2, where
N is the average number of particles per wavelength. If no
structure is excited at all (çfr0), so that the distributions are
given simply by the shifted Maxwellians [(4a) and (4b)] we
obtain in the limit of no electron drift VD=O:
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(1 +u)1
W00L[1+v+ ej

L[1+'+u(l +5)9],

	

(51)

where we used v= öuIO. The last term in (51) being pro-
portional to represents the kinetic energy stemming from
the remaining drift since we are working in the frame mov-
ing with u in the electron and with U in the ion phase
space. This term vanishes if we go over to the lab frame in
which case W reduces to L[1 +

In the presence of a structure, we have to take into ac-
count the full distribution (5a) and (5b) with K=K.
=k ,1i/2 and A given by (21) (we prefer here the second
procedure, given by Sec. IV).

First, we calculate the quantity

We()f
du U2fe(V22),

	

(52a)

which is twice the electron kinetic energy density. In (52a)
we explicitly pointed out the dependence Offe(2Ee) with 6e
given by (l9a). Differentiating we() we find

w)=-2f dov2f(v2-2)

f

	

d

=-j dvv-fene(q5)

and similarly for the ion kinetic expression [with E1 given by
(19b)] we get

w,()= - On(q5).

	

(52b)

Hence, both quantities w,. can be found by a çb integration
of the densities

We() J4fle()d+We(0)	 (53a)	

1
w() -91 n()dçb+w,(0)OJo	 J4		

	(53b)

Making use of the "energy law" related to Poisson's equa-
tion (3),

4
v(	 I d[fle()fli()]

q5, (X) 2

2

	

Jo

w1(q5)	 w,(0)
9

we can rewrite (50) and get

1 f+L
W-f dx[w(ç)H-w1(q)/O-2V()]2JL

1 r-"-
=L[We(0)+ w(0)/9] - -j dx[V(çb)+2V(çb)]2 -L

3 r-'--
W0+	 dx[-V()],	 (54)J -L
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where W0 is defined by the last equality sign. It furthermore
holds

we(O)=(1+Ke)(1+u)	 (55a)

and with (53b) we obtain

0 'w(O)= 0-'(l +A,)(1 + u)+ fol,n()d, (55b)

where the first expression on the right-hand side (RHS)
comes from 0'w(1i). W0 in (54) then becomes

WO=L{(l+Ke)(l +v)+0(l +A)(l +u)

+ f",n)d.

	

(56)

Again, in the limit -*O it reduces to Woo and the terms with
2

	

2v and u disappear if the energy is formulated in the lab
frame. The first expression in (56) represents the kinetic elec-
tron energy at the position where trapped electrons are ab-
sent, i.e., at q5=O, and where fe reduces to a shifted Max-
wellian. The factor (I+ Ke) reflects the change in the
normalization of (5a) with respect to (4a). Analogously, the
first ion term in (56), namely 0w(s), represents the ki-
netic ion energy at the position where trapped ions are ab-
sent, i.e., at 4= 4', and where f reduces to a shifted Max-
wellian, modified by the normalization constant (1 +A).
The last term in (56), as seen from (55b), is the difference of
the ion kinetic energy densities between the two states at 4
= 0 and 4 = 4, and reflects the circumstance that at 4=0 the
ion distribution has maximum distortion in the resonant re-
gion since the trapped ion velocity range is largest there.

W0 in (56) refers to q5O and already represents a pre-
pared state. To prepare this state one has to provide an en-
ergy per wavelength (in lab frame)

WO__ (WO W(m)L[Ke+ 0-'A,+
fni(4)d4J.




(57)

To this expression one has to add the last term in (54) which
is denoted by W. It represents the energy due to the spatial
variation of 4(x) and hence corresponds to the wave energy
in an ordinary derivation of the energy on the basis of a
linearization procedure. Using 4'(x)= ± J-2V(q5) it can
be transformed to

- 31_

W-J d2V(çb).		(58)2

As seen from the second line in (54), one-third of this term
stems from the particle (electrostatic) energy and two-thirds
from the field (wave) energy, as is true for ordinary linear
waves.37 The full difference in energy per wavelength be-
tween the excited state and the unperturbed state (4'-+0) in
lab frame is therefore given by

Aw=L K, + 0- 'A, +
foll ni(O)do I + W,	 (59a)

H. Schamel

an expression which holds for arbitrary amplitudes 4'. In the
small amplitude limit, 'e 1, it becomes by insertion of Ke
=(k/2)4' and of A, from (21) and by integration

WL4'[l+

	

+Z(u0/)

+ b(a,u0)	 +O(4') + ,

	

(59b)

where the unity in the brackets comes from the density inte-
gral and where u0 satisfies the NDR (24). By inspection it
can be seen that the "wave" term W is 0(4,2) and therefore
negligible. As said before it corresponds to the usual qua-
dratic energy expressions derived in the framework of a
linearized treatment.3841 Note that in the harmonic wave
limit, when -V(4)=(k/2)W becomes
(3ir/l6)k04'.

Equation (59b) tells us that for the excitation of a vortex
structure in phase space most of the energy resides in the
particle energy needed for the preparation of the underlying
ground state (namely that for qS0).

We conclude that the phenomenon of trapping forces us
to reconsider the standard wave energy expressions resulting
in a term that dominates the bilinear contributions.

A further interesting point should be mentioned. Since,
in principle, b(cr,u0) can be negative, we might find situa-
tions where iXW is negative, that means that the perturbed
state would be energetically lower than the unperturbed one:
namely a negative energy state.

To see whether this is possible, let us evaluate the lead-
ing term in (59b) further for holes (or humps) propagating
with ion sound speed or slower, u0( 'f). Since v0

we can replace u by zero, neglecting terms of
0(me/nhj). The NDR (24) with 0D0 reduces in this case
to

Z(U0/\/5)'' 0(l +k)

-	 0 'b(p,O)+ b(a,u0) 01/2] 4,1/2
which generalizes (13) (note the different use of k0).

Inserting this expression into (59b), we get

1	 k

	

2
W=L4,1++.-.-- 1+	

-




	1
15	 0	 15
6
b(fi0)\r_±b(au]	 (59c)

and by insertion of k0_ instead of k0 from (48) we get

1	 k	 2	 4

	

6
zW=L4i l++--- l+ -- l+




	4 	 1
1 +

~
b(a,u0)031201121-5

(59d)

Next, we assume like in Sec. III isothermal electrons, /3
= 1, in which case the electron trapping term vanishes and
we obtain
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1	 k

	

2
W=Ltb1+-+----- 1-




	4		 1
+		1+

~b(a,u(,)OJs1T5 ~	 I
Inserting S_ from (15) we find

1	 k_	 2	 k_

	

1
W=Lçb 1+	 +---- 1+	 1+

	

S.

From S_ we know by Eq. (16) that it lies in the interval
-8S_c'. Hence iW must satisfy the inequality

1	 k_
W'Lç1' 1+~ +--->0.	

20

At least in this situation (namely for isothermal electrons) a
negative energy state is not possible.

However, if we admit a notch in the electron distribution
corresponding to -/3>0, we see that the electron trapping
term in (59d) is negative, since b(/3,0) = ( 1IJ)( 1-,B) >0.
Furthermore, if b scales like b> 0(0- 112) this term becomes
of order unity and can overcome the positive terms in the
brackets of (59d).

A more detailed analysis taking into account the exis-
tence conditions of the structure via V() from (10) rather
then from (14) is needed to decide whether this can indeed
happen. Physically we expect that this is possible because a
notch in fe principally lowers the kinetic energy of electrons.

The crucial question is, therefore, whether b

	

0(1)
is possible, even if t' 1. To see this explicitly, we perform
(and repeat in some sense) in more detail the underlying
analysis in the infinitesimal amplitude limit, i-*0.

VII. THE INFINITESIMAL WAVE LIMIT

A. The harmonic wave limit and a first comparison
with linear theory

Let us finally discuss some more details of these wave
solutions and make a comparison with the conventional
wave theory. We prefer the second procedure and describe
the marginal hole solutions by the NDR (24) and the poten-
tial (25).

In the limit of negligible terms

b(/3,U0)f0, b(a,u0)O312'J0,

	

(60)

later on called the harmonic wave limit, the RHS of (24)
vanishes and we get for a nondrifting electron component
(VD =O)

k2- Z(CUr/k\) - Z( WjL/k\) =0,

	

(61)

where we replaced k0 by k and V by Vü='Wr/k, the real
phase velocity in the electron frame. The potential V(g5), on
the other hand, becomes

k2
	(62)
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which yields by a quadrature of the "energy law"
'(x)2/2+ V(O) r0,

OW =(1+coskx)

	

(63)

representing a purely harmonic wave which propagates in a
stationary manner through the plasma. We contrast this mar-
ginal, small amplitude mode with the corresponding linear
eigenmode governed by the linear Landau dispersion relation

k2- Z'(./k1)- Z'(w/2/k\/)=0

	

(64)2

	

2

valid in the time asymptotic limit of an initial wave problem
which can be found in any plasma textbook. The difference
to (61) is that w, is replaced by a;=wr+iY, the complex
wave frequency, and that the full plasma dispersion function
Z(z) =Zr(Z)+ iZ1(z) rather than the real part Zr is taken into
account. A well-known fact is that (64), derived for a thermal
plasma, has only damped solutions, the least damped modes
being the Langmuir waves with large phase velocities wr/k

' 1 and the ion acoustic waves, assuming 0> 1, with phase
velocities in the ion acoustic range w,/k= \fme/mj. For
these two modes the Landau damping rate ' is small, and if
these modes exist sufficiently long, they can affect the evo-
lution of the plasma described by a weak nonlinear analysis,
as in the weak turbulence regime, taking into account mode
coupling, nonlinear wave-particle resonances, parametric in-
teractions, etc. The reason for a weak Landau damping is that
I 9ufoI is small for these two linear modes. There are many
other complex solutions w of (64) but all of them represent
strongly damped "waves" which die out due to phase mix-
ing long before any influence has taken place.

Equation (61), on the other hand, which is the real part
of (64) and involves only real arguments, has solutions in the
thermal range where dfoI is no longer small.

Let us for demonstration concentrate in the following on
periodic electron hole equilibria propagating at electron ther-
mal velocity in which case the last term in (61) vanishes (see
also Sec. IV B). In the long wave length limit k2'41 a solu-
tion of (61) [or (33)] is given by [see (35)]

jr= l.307k[1 +k2],

	

(65)

representing a true solution of the dispersion relation (PT).
Hence, this marginal wave solution emerges under the con-
straints (60). One may argue that these constraints can al-
ways be achieved by assuming the infinitesimal wave limit,
çli-0, in which case (61) would be nothing else but Vlasov's
dispersion relation8 (where the Landau contour in the defini-
tion of Z is replaced by the principal value) or a special case
of the van Kampen continuum (namely X = 0) given by the
van Kampen relation

k2Z,(Wr/k'.J)=X(k,O)r/k).

	

(66)

The latter results from a solution of the linearized Vlasov
equation for the perturbed distribution f in an extended
class involving singular distributions

-f( u)
f1	

V-U) Ik°'	 cb,	 (67)
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FIG. 2. The distribution function (68) as a function of the velocity v. The

trapped range is denoted by III, and the range II (I) refers to untrapped
resonant (nonresonant) particles. The quantity f is given by (69).

where P stands for the principal value.
This is, however, not the complete story, since at least in

van Kampen's theory Xˆ0 is admitted. To approve a rela-

tionship also in this case let us show how the first constraint
in (60) can be lifted even in the infinitesimal wave limit.

B. Derivation of density in a more general context

To understand the appearance and consequence of a non-
vanishing term b(f3,v0) in (24), which can appear as
we will see even in the infinitesimal wave limit, let us shortly
repeat the derivation of the electron density expression
(20a)24'34 in this limit. We first allow for arbitrary functions
and then take the Maxwellian case limit. A solution of the
time-independent Vlasov equation is given, like Eq. (5a), by

f()
f(x,u)'(1 +Ke)

f,(II),	 v22,

	

(68)

where we defined

:=sgnuv2-2ç&j"2

	

(69)

and where fe(X,U) is assumed to be continuous at the sepa-
ratrix v2=2 and f0(u) to be normalized to unit density. In
the limit of a vanishing perturbation, tfr=0, we have
f(x,u)-fo(u) which represents the unperturbed distribu-
tion function.

A central role in the density expression is played by the
resonance region, which consists of two parts (see Fig. 2)

i<IvI'R region 11,

uH;"'fR; region III,

where R is small, say R--O( sJ). In region II, which may
be termed the free resonant region, the following Taylor ex-
pansion holds

fo(fo(0)+f(0) ff(o)+,

	

(70a)

whereas in the nonresonant region I, RIuI, the expansion

NO fo(v)--f(v)+"

	

(70b)

is meaningful. [Note that the correct size of R is of less
importance, as we could equally well choose RO(V"4),
and that the following expressions can be obtained also by

H. Schamel

integrating first over the full nonlinear expressions and then
take the small çb limit.22] In the trapped region III, the ex-
pansion

f,(!)=f,(°)+ f'(0)(70c)

holds,	 Siifl1u.ic 4l,icf

	

the
term f (0) vanishes. We, however, can equally well use the
algebraic equation (70c) as the full trapped electron distribu-
tion in which case f'(O) would not be subject to any restric-
tion (except, perhaps, the mild condition thatf, must be posi-
tive in Ill). With this we can find the density as follows [we
drop for the next three formulas the factor (1 + Ke)]:

11e( lift,
()dv + fiif~,(~)d, + f, f(I)du

Inserting (70b) in the first and (70a) in the second integral
and using for f an expansion similar to (70a) in the third

integral we obtain

n) I fo0	
1

	

1

_f(v)jdu+J
fo(0)

III.

+f(0)2]dv+J[ft(0)+	
1(0)2

I
f4	 du,

where the terms linear in dropped out because of symmetry
reasons. Extending the first integral to u=0 and subtracting
the overdue terms in II and III we get

(Pf{f0(	 _f(v)Jdu

+ f [oo+ 1
f",

+flft() f'(0)2fo(v)+ Op f(u)]du.

Due to the continuity of f at v2=2ç6, several terms of the
second integral cancel with terms of the third integral and we
finally gel24

fle(çb)(l +Ke)

f(v)

	

4
X 1P

J__dv+__[f(O)+f'(0)]cb3I2.

(71)

A more general expression can be found in Ref. 34, Appen-
dix A, Eq. (A6).] We see that due to the last term in (71) the
density in the infinitesimal wave limit cannot be specified by
the unperturbed distribution fo alone. Doing so, part of the
solution has already been thrown away. Moreover, f,'(0) can
be large and dominate the expression fg(0), stemming from
the unperturbed distribution, without being in conflict with
the expansion scheme, e.g., when If'(0)H(fr2). In order
to get (20a) we merely have to set (vDO)

1	

(v+vo)2],	
(72a)exp

~
-
2
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f,()= _exp(-v/2)( 1 +
2)

	

(72b)

where (72b) coincides with the second expression of (5a) in
the small amplitude limit. With this and using

1

	

exp(-i2)

Zr(X)TPIdt t-x	 (73)

we finally get	

1
tu() =( 1 +Ke)[ 1-





4
+		(v_1+P)e23I2+],	 (74)

which agrees with (20a).

C. Nonlinear cnoidal waves as a specific

superposition of linear van Kampen modes

Let us discuss next the corresponding NDR and potential
WO),

16
k2-	 Z(v0I) =		(1 _v_p)e_2k2S,

(75)




	k2	 8- V(q --(çli- )+				FO)

k2 ,2		
I

W1		 2(			 (76)

where çp:=Itji and S is defined in (75) and corresponds in
the appropriate limit to the steepening or anharmonicity pa-
rameter 514 given in (31). The use of k instead of k0 will
be justified later in the small S limit.

In Fig. 3(a) we compare the NDR (75), denoted by N,
with the van Kampen relation (66) denoted by L. Shown is
the limit X=O=S and the solution for small k given by
w/k= 1.307[1 +k2] sJx0 which lies in the thermal range
of the electron distribution function, as shown in Fig. 3(b),
3(c) for X=O and S=O, respectively. If ) and S become
positive (negative) and increase (decrease) the phase velocity
decreases (increases).

To see the relationship between our and van Kampen's
approach, also in the nonlinear case of SˆO and XˆO let us
first present as an example the solution for the electrostatic
potential for the case OS< 1/4 by integrating the "energy
law" '2(x)/2+ V(q)O, using (76). The solution becomes
[Ref. 34, (3.28), (3.25)]

'J(x)=i/'[l-K_sn2(ujin)]2		(77)

with




K= 1 +[1 i '/i -4S]/2S,


	

nK_/K,		 uv'kx/4,	
	(78)
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FIG. 3. The two cases of marginal modes in the infinitesimal amplitude
Ii		 .	 -	 '(x) as a function of xfor X=O=S; the insetmit (a) The function IZ,
shows the dispersion relation for van Kampen modes (L) and for electron
holes (N), respectively, its solution being given by v5. (b) The distribution
function ff0+f1 for harmonic van Kampen modes as a function of u for
three values of s; the inset shows the perturbation f analytically. (c) The
distribution function (68) for anharmonic e-hole equilibria as a function of

v; the insets at three values of S show on an enlarged scale that f is well-
behaved; for the harmonic case S=0 the expression of - is given ana-

lytically in a further inset,

where sn is a Jacobian elliptic function. It represents a coi-
dal wave involving a descending, albeit infinite series of har-
monies. This already holds in the limit of small S as shown
next. Expanding the above-mentioned expressions with re-
spect to small S, OSc1, we get up to 0(5)

K_2+S, K+i/S, ,st2S, ukx/4. (79)

Furthermore using the expansion of sn(um) for small m
(Ref. 42, 16.13.1)

sn(ujm)=sinu-(u-sinucosu)cosu

	

(80)

we obtain
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1+coskx	 1 kx
OW i 2 ±Scos--

kx	 1
X

~ coskx+2cosT_3
+kxsinkx

11. (81)

For S = 0 we get as expected the harmonic wave solution
(63). Whereas the first expression in 0(S) involves a finite
number of half harmonics k/2, the last expression corre-
sponds to a slowly decreasing alternating infinite series of
higher harmonics k,,:=nk;n0,± 1,±2

	

The latter is
true because of

1	 Icos2kx cos3kx

kxsinkx=l_coskx_2[ 22_i	 32_i

cos nkx
+	(-1)" +	 .	 (82)

n2- I

This implies that already in the simplest and weakest nonlin-
ear solution (i.e., when 0<S 1) all harmonics are involved,
a peculiarity of hole equilibria which is absent for standard
weak nonlinear wave theories. This effect is even more ap-
parent if we consider the electron density, fle(X)

=

+ 1, in the expansion of which the nth harmonic is multiplied
by a factor n2. Hence, the spectrum is extremely slowly
decreasing with n, the convergence being guaranteed by the
alternating sign of the series only. The consequences can
immediately be seen.

First, we realize from expression (81), which is symmet-
ric in x, that becomes zero at x= ± 7r/k, so that the actual
wave number is indeed given by k=2ir/X where K is the
wavelength now. In this small S limit there is hence no need
to distinguish between k0 and k, the difference being of
0(S2).

It then follows that (81), formulated in the lab frame
now, can be written as an infinite series of harmonic van
Kampen modes

0(x-v0t)"	 Cexp[i(k,,x-w,,1)],

	

(83)

each component satisfying the van Kampen relation (66),

k2- Z(w,,/k)=(n2_ 1 +S)k2

n(kn?;kP,)

	

(84)

Hence, to each harmonic k=nk we can find in the van
Kampen continuum a wave frequency w:=k,,v0 and a cor-
responding parameter K,, such that all selected modes have
the same phase velocity w,/k=u0. According to (84) the
van Kampen parameters K, have to be chosen in a very
specific manner. They depend on /3 and i/i through S, which
is given by (75), and hence reflect the status of trapping and
nonlinearity.

H. Schaniel

When S becomes of order unity or larger, namely when
/3IQ(/,_I/2), kin (75) has to be replaced by k0 which is
a functional34 of k and K,, in (84) is then given by K,
=n2k2+(S-1)ko+(k).

It then follows that only by a sophisticated superposition
of an infinite number of linear van Kampen modes, a non-
linear exact solution of the Vlasov-Poisson system can be
achieved, which is true already in the weakest nonlinear re-
gime, O<S1.

A single van Kampen mode and all other superpositions
cannot be considered as a proper solution of the full nonlin-
ear system, even in the infinitesimal amplitude limit.43 Al-
though an arbitrary phase velocity can be obtained by select-
ing K appropriately [Fig. 3(b)], a smooth and from the
perturbation theory permitted small perturbation of the dis-
tribution function can only be obtained by going into the
nonlinear regime, as it holds for electron holes and related
structures [Fig. 3(c)].

There exists only one exceptional case where a van
Kampen mode comes closer to a real solution of the full
nonlinear system in the		limit, namely when K0 in
which case the (5-function contribution vanishes. This is,
however, nothing else but the harmonic solution of Vlasov's
linearized dispersion relation. It also corresponds to S-*O in
the present context. There are yet two different ways to per-
form this latter limit. One way, we may call the linear one, is
to take a finite /3 and let			 Another one, we may call
the nonlinear regularized one, is to select /3 appropriately to
let b in S be zero already before the l-*0 limit is taken
[see the inset of Fig. 3(c)]. Vlasov's interpretation of the
resonance singularity in terms of the principal value is hence
justified a posteriori and best by the present nonlinear pro-
cedure and others, 43 as indicated in Sec. I.

An electron hole with its tiny, seed-like distortion of the
distribution function in the trapped range [see Figs. 2 and
3(c)] does not experience Landau damping, as we know al-
ready from numerical simulations [see, e.g., Fig. 2(c) of Ref.
34]. Landau theory, being a linearized, time-asymptotic con-
cept, is simply not applicable here. In the framework of spe-
cifically superimposed van Kampen modes, phase mixing
and hence Landau damping is absent because of their com-
mon phase velocity V=WrIk.

We hence state that a regularized solution s4th -,8
Si"2 [see (75)], -2So, will remain nonlinear, no

matter how small , is taken. This is in contrast with the
usual assumption made in any conventional theory, namely
that waves can be described by linear equations in the infini-
tesimal amplitude limit.

It is the presence of the wave-particle resonance that
renders the treatment intrinsically nonlinear meaning that the
linear wave spectrum generally cannot be used for getting
solutions in this domain by superposition. Only by a very
delicate superposition of infinitely many modes, a nonlinear
solution could be constructed. A description of the Vlasov-
Poisson system is therefore incomplete unless hole (and
hump) solutions are included as new members in the wave
spectrum at least. Van Kampen modes are merely solutions
of a truncated system and are hence generally not suited to
describe proper solutions of the full nonlinear system.
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VIII. SUMMARY AND CONCLUSIONS

In the present paper the problem of wave-particle reso-
nance has been treated rigorously in the weak amplitude for-
mulation. Stationary BGK-like traveling waves have been
constructed characterized by a nonlinear dispersion relation
giving the phase velocity of the perturbation and a "classi-
cal" potential representing the spectral decomposition of the
wave. We have evaluated the basic properties of these solu-
tions in various velocity regimes and their dependence on the
anharmonicity parameter such as (15) or (31) which com-
prises the effects of trapping, amplitude, temperature, and
periodicity. Two different approaches were shown to be
equivalent and a unified description encompassing both ap-
proaches has been presented. A new energy expression of a
hole carrying plasma has been derived which essentially dif-
fers from that relying on linearized treatments. Whereas the
latter are quadratic in the amplitude (i the present expression
appears earlier in an expansion scheme in çl' and hence domi-
nates. It is due to the excitation of the "ground state" that
involves trapped particles. This will add a novel component
to the controversial discussion as how to define the energy of
a Vlasov-Poisson plasma appropriately.

44.45 The possibility
of having negative energy states is mentioned also. The
question as to how linear van Kampen theory and the present
exact nonlinear wave theory are interrelated has been an-
swered by taking the infinitesimal wave limit. It was shown
that there is some connection between both wave solutions
but that this relationship is more sophisticated than expected
(and described in the literature). Already the mildest anhar-
monically distorted wave solution involves a superposition
of an infinite number of van Kampen modes, each mode with
mode number n being associated with a specific parameter
X in front of the delta function ansatz for the distribution
function in van Kampen's theory. The way X, is determined
by the harmonic wave number, phase velocity, status of
trapped particles, and wave amplitude has been shown ex-
plicitly. We conclude that statements like that found in Refs.
15 and 46, saying that a BGK wave becomes a van Kampen
mode in the infinitesimal wave limit, hence must be treated
wish caution. Only in the above sense, i.e., by a specific
superpoition of an infinite number of van Kampen modes a

proper solution of the full nonlinear Vlasov-Poisson system
can be obtained, remaining valid in the infinitesimal ampli-
tude fin'.

We, emphasize that these solutions could be obtained

only by choosing the potential22 rather than the BGK"
method for construction. With it we could from the begin-
ning :;elect "physical" distributions and formulate the nec-

essary conditions in phase space rather than in real space.
This allows a much broader class of distributions including
notches or humps in the resonant region which are topologi-
cally different from distributions that are monotonic in the

energy, as often used. In this sense, the ordinary BGK
method' ' is ill-posed because it does not allow the incorpo-
ration of the full information of a phase space distribution
function for this entirely kinetic phenomenon. It is almost

imposrable to guess within the BGK method the correct form	
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of (x) together with the correct phase velocity to come out
with well-behaved hole distributions.

In this paper we have treated weak hole solutions only.
The extension to finite amplitudes is possible but requires a
numerical evaluation of the corresponding equations. Re-
views about finite amplitude hole47 and double layer-48 solu-
tions can be found in Refs. 25, 32 and 36. Another extension
is the admittance of weak collisions. In a two component,
current-carrying plasma it could be shown34 that electron
hole solutions do survive weak collisions in a modified form
provided that ion mobility is taken into account. That opens,
as we believe, new horizons for wave theories and anoma-
lous transport descriptions

49.50 inclusively multidimensional,
magnetic features. 51 This point definitely deserves and will
attract further attention in the near future due to the omni-
presence of more or less collisionless plasmas in fusion and
space research as well as due to the improved diagnostics,

52

allowing for the first time the experimental approach to ki-

netic structures without manipulating (or destroying) them.

And finally we mention that the present approach should
be applicable to other types of resonances and associated
continuous wave spectra too, such as the Rayleigh
spectrum

53 for an inviscid, shearing fluid54 or the spectrum
of ideal Alfvén waves propagating in inhomogeneous mag-
netic fields. 55
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