The Abdus Salam
International Centre for Theoretical Physics

SMR 1673/13

AUTUMN COLLEGE ON PLASMA PHYSICS

5 - 30 September 2005

Relativistic Plasma Physics in the vicinity of
black holes

Andria Rogava

Georgian National Astrophysical Observatory
Thilisi, Georgia

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 |; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it




Relativistic Plasma Physics in the vicinity of black holes

Andria Rogava
Georgian National Astrophysical Observatory



Black Holes

John Michell

Simon Pierre LaPlace

Karl Schwarzschild

Roy Kerr

John Wheeler “Black Hole.
Cygnus X — 1 black hole candidate

black hole candidates

supermassive black holes



Gas Disk im Mucleus of
Bcilive Galaxy MET

Core of Galaxy NMGCa4261 HST - WFPC2

1. galaxy NGC4261. A brown spiral-shaped disk, It weighs on hundred thousand times as
much as our sun. Because it is rotating we can measure the radii and speed of its
constituents, and weigh the object at its centre. This object is about as large as our solar
system, but weighs billion times as much as our sun! Almost certainly this object is a black,

hole.

2. M87: Near its core there is a disc of hot gas. Superposing spectra from opposite sides the
speed of rotation of the disk, its size and weight of the invisible object are determined. The
object is no bigger than our solar system but it weighs three billion times as much as the sun!

It must be a bona fide black hole.






T he general metric

The rotation of the central object (for exam-
ple, a rapidly rotating neutron star or black
hole) introduces off-diagonal terms g.4 in the
metric. It is assumed to be stationary and ax-
isymmetric [gy: = gi]-
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with the metric coefficients independent of ¢
and ¢.

Problem 1.: Find all nonzero components of
the contravariant tensor gaﬁ.



“34+1" presentation:

dt® = —a?dt® + v, (dx® + B'dt) (d=® + BFdt)

Lapse function:
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v, — three-dimensional “absolute” space (di-
agonal) metric tensor:
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Different kinds of black holes:

Kerr-Newman black hole - an exact solution
of the Einstein field equations possessing mass
M, angular momentum a, and (in principal but
not in astrophysical cases) charge Q:
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with A =r2—2Mr+a?24+Q2?, = = r2+4a?cos?8.

When a = (Q = 0 we have the Schwarzschild
solution, when a = 0, @ # 0 we have Reissner-
Nordstrom solution, and when a # 0,Q = 0O
we have Kerr solution.



Kerr metric through problems:

Problem 2.: Show that if three-velocities of
particles, as measured in absolute ~y-space v
are defined as: »* = (U*/U! + B*)/a then the
following expressions are held:

Ut =1/« U=T(—a+v-03)

where M= (1 —v-v)~1/2,

Problem 3.: A toroidal flow field U% = (Ut,0,0,U?)
is completely specified by either angular veloc-

ity Q2 = U¢/Ut or specific angular momentum

= —U¢/Ut. Derive the following relations:

U = (g1t + 2950 + 22g44) ~1/2
Uy = R(—0%gu — 2691 — ggp) /2

Uy, = (1 — Qo)1

where R2 = gt2¢ — Gtt9epe



Kerr metric through more problems:

Problem 4.: Show that angular velocity 2 and
specific angular momentum £ of the flow from
the previous problem can be expressed through
each other in the following way

Q= —gut + 914)/ L1y + 9p0)
= —(9tp + 9¢¢) /(gtt + QG1¢)

Problem 5.: Show that Kepler's law

Q2 = M/r3

holds exactly for circular orbits around a Schwarz-
schild black hole, if r is the curvature coordi-
nate radius, and <2 is the angular frequency as
measured from infinity. Derive an analogous
law for equatorial orbits around a Kerr black
hole of specific angular momentum a.



Locally Nonrotating Frames:

T he set of local observers who, in some sense,

“rotate with the geometry” [Bardeen, ApdJ,

171, 52 (1970)]. Each observer carries an
B _

orthonormal (eﬁl]e[b]gaﬁ = n[a][b]) tetrad of 4-

vectors, his locally Minkowskian basis vectors.
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eft] = 1/a, eg[bt] = —3%/a, efi] = 1/\/7ii

T he observers’ world lines are: r = const, 06 =
const, ¢ = wt—+ const. They are called LNRF
or ZAMO'’s (Zero Angular Momentum Ob-
servers) or simply Bardeen’s tetrads.



General co-moving frames (GCMF’s):

The set of local observers, “atached to (co-
moving with) the plasma partricles” [Ro-
gava, Gen. Rel. & Grav. 24 (1992)]. Each
observer carries an orthonormal (eaa]e(b)gaﬁ =
M(a)(v)) tetrad of 4-vectors, his Ioca?ly Minkowskian
basis vectors.
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In the case of pure rotational motion they are
called “orbiting systems’” (Novikov & Thorne,
1973).



Problem 6:
Show that :

(a) LNRF really are ZAMO's: tghey have an-
gular momentum:

¢ = 0;

(b) Lorentz transformation between the LNRF
and GCMF tetrads, in the same point of space-
time, is described by the tensor:
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[For details see: Rogava, Gen. Rel. & Grav.
24, 617 (1992)]



“34-1" electrodynamics:

The electromagnetic tensor decomposition:
— B 5
PP = ey B — ey E* 4 7%, 1) B
withEoonzBozBo=0ande[5t]:
{1/a; —(/a} being LNRF tetrad commponents.

Maxwell equations:

Fogy + Fgyat+ Fyap =0

can be written in the following “3+41" form:
V-B=0

V X (OéE) = —(8,5 — "€5)B

with
£5A =(B-V)A—-(A-V)3



What we'll do on Friday?

o Write down Kinetic equations for the relativistic distribution
function,

o Obtain the system of transport equations for the macrosco-pic
parameters of plasma: number density, pressure, thermal eneryy,
heat flux density, etc. These quantities will be defined in the
GCME reference frames;

 Derive the closed set of “3+1"" general-relativistic MHD
equations describing collisionless plasma with anisotropic
pressure tensor.

o Consider (at least) one astrophysical problem, where this theory
has been applied.



